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A nonlinear kinetic equation for the one-electron density matrix in stationary crossed E and H fields 
is obtained for the case of the electron-phonon and impurity scattering mechanisms. It is demonstra­
ted that when scattering by impurities is predominant the transverse conductivity becomes dependent 
in the ultraquantum limit on the electric field strength even at such small values of E which cannot 
lead to heating of the electron system. An interpolation formula is derived for this dependence in the 
case of scattering by short range impurities. 

1. It is known that in the initial variants of the quantum 
theory of galvanomagnetic phenomena the kinetic coeffi­
cients were expressed in terms of integrals that 
diverged logarithmically at low energies1 >liJ. To elimin­
ate the divergence it was necessary to introduce into 
the theory, from the outside, additional assumptions. In 
the later investigations, this shortcoming of the theory 
was overcome. In the case of the electron-phonon 
mechanism of scattering, it was shownl21 that the diver­
gent integrals can be cut off in a natural manner at the 
characteristic phonon energy. For impurity scattering, 
the divergence is eliminated by foregoing the Born ap­
proximation, which is not applicable at sufficiently low 
energies. As shown inl31 , for short-range potentials, 
the effective cut off parameter is the quantity 
Eo= h2e/2ma\ where f is the amplitude for the scatter­
ing of the electron with zero energy in the absence of a 
magnetic field, and a= (c1i/eH) 112 is the quantum Larmor 
radius. 

In this communication we wish to call attention to 
one more factor that has a bearing on the elimination of 
the divergence from the quantum theory of galvanomag­
netic phenomena. We show that there is likewise no 
divergence in the Born approximation if inelasticity is 
completely neglected, provided the theory is not linear­
ized with respect to the electric field. The change of the 
position of the center of the cyclotron orbit, due to the 
collision, and the associated change in the "longitud­
inal'' energy of the particle, proportional to the electric 
field, turn out to be equivalent to inelasticity of the 
collision. The role of the cutoff factor in this case is 
assumed by the quantity eEa. The point E = 0 is singu­
lar. When E- 0, the dissipative current behaves like 
E ln (1/E). However, this non-analyticity in the behavior 
of the current means only that at sufficiently small E it 
is impossible to use the Born approximation for scat­
tering. The lower limit of the values of the electric 
field, at which the logarithmic growth of the conductiv­
ity stops, is determined, in order of magnitude, from 

1>We have in mind here the quantum limit when only the zeroth 
Landau level is filled, and the energy is taken to mean that part of the 
energy which is connected with the motion of the particle along the 
magnetic field. 

the relation eEa = Eo. Thus, if the decisive scattering 
mechanism is scattering by impurities, then the trans­
verse conductivity will have a nonlinear behavior 
already in relatively weak electric fields, when the 
"heating" nonlinearity is still not noticeable 
(eEa «:: fl.s/a, l 41 ); a study of this behavior may turn out 
to be useful, since the form of the oxx(E) dependence 
is a source of additional information concerning the 
scattering center. 

2. We start out in the derivation of the expression 
for the current from the nonlinear equation for the 
single-particle density matrix ff3' {3 = Tr(pa~af3'), where 
{3 = (n, k , kz) is the set of quantum numbers determin­
ing the slate of the electron in crossed E and H fields. 
(We shall henceforth use the following orientation of the 
fields and gauge of the potential: E = (E, 00), H = (0, 0, 
H), A= (0, Hx, 0).) In the approximation linear in the 
electric field, an equation for f13'f3 was obtained by 
Gurevich and NedinlsJ with the a1d of the Konstantinov 
and Perel' diagram technique, and by Argyreslel by the 
method of uncoupling the Bogolyubov chain of equations 
for the correlation functions. The method used inlsl can 
be readily generalized to obtain a nonlinear kinetic 
equation. Without stopping to discuss the derivation, 
which is perfectly standard, we present the final result: 

i~>n/~·• = ~ Y. I c4 1" {I~·,· I,.,* [0 (w,·~- ro~ )((1 + N4 )/.·, . 
lt'y,y~;q 

X (llo.J -/..-)- Nq{o.J (Oy•y -/,·.)) + o (ro,·~ + ro4 )(N4/,·. (ll.,- fo.J) 

-(1 +N4 )/ .. ~(0n-/.·.))) +l.~J; ... [o(w,~· -wQ)((1 + N4 l/v·v 
X (6-· .. -/,·.)- N4 /w. (o,·. -/.·.)) + o(rovJ' + ro4 }(Nq/v·• (l:J, .• - fs·.) 

- (1 + N 4 )/s· .. {o.·.,- /.·.,)))}. (1) 

We adhere here, in the main, to the notation oflsl. Cer­
tain differences are connected only with the fact that in 
our case ff3' f3 is the total single-particle density matrix, 
and not an addition, linear in the field, to the equili­
brium density matrix. In addition, Eq. (1) is written in 
the representation of a Hamiltonian in crossed E and H 
fields, and therefore the difference between the single­
electron energies Ef3- Ef3' = bwf3f3' differs from the 
corresponding quantity inlsJ by an increment containing 
the electric field, wf3f3' = w~13,- eEXf3{3h-1 • In view of the 
complexity of the expressions, we have written out in 
(1) only that part of the collision integral which is due 
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to the electron-phonon interaction. The impurity colli­
sion integral is obtained from the right side of (1) by 
discarding the factors Nq and 1 + Nq, discarding the 

phonon energy in the arguments of the o functions, and 
also by replacing lcq 12 by Nd IV q 12 , where V q is the 
Fourier component of the scattering potential and Nd is 
the number of impurities. We do not present an equa­
tion for Nq, since the phonon system will henceforth be 
assumed to be in equilibrium. 

It is easy to verify that linearization of Eq. (1) with 
simultaneous transition from the representation of 
crossed fields to the representation of the Hamiltonian 
in a magnetic field only leads to the linear kinetic equa­
tion obtained inl5 J. Formally, the linearization is real­
ized by substituting in (1) 

(t) eEv~~~ (n~- nw) 
!~·~ = n~liw~ + fw~----,2----, (2) 

ww~ fz 

where fB~~ is the linear addition to the equilibrium den­
sity matrix; this addition was considered in l5l. The 
last term in (2) is due to the difference in the repre­
sentations. 

3. Just as in l5 l, the expression for the dissipative 
current jx will be sought in the lowest approximation in 
1/wr (w-cyclotron frequency, r-relaxation time). In 
the zeroth approximation in this parameter, the only 
elements of f{3{3' which do not vanish are the diagonal 
elements determined by the equation 

~ jcqi 2 IJ,~I 2 {li(w,~- Wq)L(1 + Nq)/,(1- h)- Nqh(l.- /vll 
q, y 

+ li(w,~ + <Uq)[N.fv(1- h)- (1 + Nq)fp(1- /v)]} = 0. (3) 

It can be shown that (3) is equivalent to the energy­
balance equation jxE = Q, where Q = v- 1~'flwq(Nq)eph is 
the power radiated by the phonons as a result of the 
electron-phonon interaction. If we stipulate that at a 
distance equal to the quantum Larmor radius the ene1·gy 
acquired by the electron from the electric field be small 
compared with the characteristic average energy 
reckoned from the zeroth Landau level, i.e., if we 
stipulate satisfaction of the condition eEa(E'- fl. w /2f 1 

« 1, and if in addition we use the assumption of small 
inelasticity ('bwq(E' -flw/2r1 « 1), then Eq. (3) goes 
over into the balance equation derived in the analysisl 4 J 

of the problem of nonlinear heating of an electron sys­
tem in crossed E and H fields. 

The nondiagonal elements of f{3' 13, in the first order 

in 1/wr, are expressed in terms of the diagonal ele­
ments as follows: 

X[(1 + Nq)/1 (1- M- N.f~(l- /v)] + li(w,r + <Uq) 
X(Nq/v(1- /p)-(1 +Nq)fB(l- fv)] (4) 
+ the same with~- ~'}; n' =I= n. 

The notation used in the left side of (4) emphasizes the 
fact that f{3' {3 is diagonal inky and kz, and does not de­
pend on ky, this being the consequence of the spatial 
homogeneity and the absence of spatial dispersion. 

Substituting (4) in the expression for the current 
2e ~· (x) 

ix = - LJ VVB fw 
v p·.~ 

and adding the term corresponding to the impurity scat­
tering, we obtain after a number of transformations 
i:. = 4rn L; Xwlla·a I 2 1Jcq l'li(<Un- OOq) [(I+ Nq)/p·(l-- M 

v q;l''," 

- N•f" (1 -/~·)] + Nd I v. 12 li(<Up·•)(/a·- /a)}. (5) 

4. Let the decisive factor be scattering by impuri­
ties with small action radii (ro «a, V(r)Vo~ (r- ri)). 

1 

In the ultraquantum case, assuming Boltzmann's statis­
tics, we obtain from the general expression (5) for the 
current 

1 fdX 00sdX1 
' [ I (X1 -X)2] F(6) =- 1-::::- -==-(x- x )exp -x - . 

f,3 ~ l'x o yx' 2~2 
(6) 

Here n is the electron density, which is assumed fixed, 
nd is the scatterer density, and ~ = eEa/T. In the 
derivation of (6) we have neglected the heating, assum­
ing that eEa « fls/a = ll!T. Making in (6) the change of 
variables x' - x = t, x' + x = 2u, and confining ourselves 
to the principal order in ~ , we transform the expression 
for F( ~) into 

F(~) = 2; 1. u2 ru"~'[ Io( ~:)-it(~:)] e-" du, (7) 

where 10 (x) and l 1(x) are Bessel functions of imaginary 
argument. It is seen from (7) that F( ~) ~ ln~ - 1 when 
~ - 0. However, if we introduce formally a cutoff o at 
the lower limit of the integration with respect to u, then 
the resultant expression 

2n !!! r ( u2 u2 )] 
Fb(S) = r S u2 e-uW l/0 ~) -/1 ( ~ e-u du 

• 
will be analytic at the point ~ = 0 and when ~ « o it 
will take the form 

,;--;; r e-U ,;--;; 
Fo(s)~ V? .l-du ~- V -2 lnli, 

~ 6 u 

which is equivalent to the result ofl 1l. 

(8) 

If the need for cutoff is connected with the non­
applicability of the Born approximation at low energies, 
then o ::::; Eo/T, and the function F0 ( ~) can be regarded 
as an interpolation expression, which gives the correct 
behavior of the conductivity when ~ « o and ~ » o. To 
obtain an exact expression for the intermediate region 
( ~ "'" o), a separate analysis is necessary, where it is 
necessary both to take into account the nonlinearity and 
to forego the Born approximation. 

The upper limit of the values of ~ , for which expres­
sions (7) and (8) are valid, is determined by the condi­
tion that there be no heating: ~ « 0!. If o « 0!, then the 
region of the nonlinear behavior of the conductivity in 
the absence of heating turns out to be quite wide. Thus, 
for example, putting f::::; 10-8 em, a::::; 10-6 em 
(H ~ 105 Oe), T::::; 10-15 erg, and m::::; 10-28 g, we obtain 
o .... 10-3 and 0! ...., 10-1 • The character of variation of the 
conductivity in the indicated region of values of the elec­
tric field is illustrated by the following results of a 
numerical calculation of the integral (8) for b = 10-3 : 

5-tQ-4 10-S 5·10-l tO-• 

7.93 7.93 S.25 7.18 6.33 
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In the foregoing analysis it was assumed that the 
density of the impurity centers is sufficiently low, and 
consequently we neglected the collision broadening of 
the energy levels of the electrons. H the line broaden­
ing is sufficiently large, then this broadening will deter­
mine the cut off in the intey.ration with respect to the 
energy. Then, as shown in 7l, the cut off is effected at 
the value 

lo = !!._ ( 4nfnm )''• . 
2m a2 

For this case, the lower limit in the integral (8) should 
be chosen to be 'li' = €'0/T, and the aforementioned non­
linearity in the behavior of the conductivity will occur 
when 6 « a. The question of which of the cutoff mech­
anisms is most effective can be solved by comparing 
the values of Eo and Eo, from which it follows that broad­
ening of the levels can be neglected if the inequality 
I\la4 < f/41T is satisfied. 

The authors are sincerely grateful to G. S. Popova 
for the numerical calculations. 
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