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It is shown that the equilibrium state corresponding to propagation of a monochromatic wave in a 
plasma is unstable. Two instability mechanisms are investigated. These are the instability due to 
stimulated scattering of waves on thermal particles in the plasma and the instability due to parti­
cles trapped in the potential well produced by the wave. The trapped-particle instability leads to 
the excitation of satellite lines in the spectrum, these satellite lines being shifted in frequency with 
respect to the main wave by an amount k0 v'ecp 0 /m (ko is the wave number and 'Po is the peak po­
tential in the wave). 

1. It is well-known that the Landau damping of a plasma 
wave, which is predicted by the linear theory and is 
associated with the absorption of wave energy by reso­
nant particles in the plasma, operates only for times 
shorter than the period of particle oscillations in the 
potential well produced by the wave To~ (kov'ecpo/mt1 

(k0 is the wave number and <Po is the peak potential). 
The nonlinear solutions obtained by Mazitovr 1J and 
O'Neilr 2l describe the transition, in a time To, to a 
wave of constant amplitude -cp 0 (x- vcpt). The vanish­
ing of the damping decrement in the nonlinear solution 
is due to the smearing of resonance particles in phase 
space, a process which occurs because of the depend­
ence of the oscillation period of the particle in the po­
tential well on energy. r3 ' 4 l Because of the smearing ef­
fect the distribution function for the resonant particles 
is found to be a rapidly oscillating function of velocity. 
The wavelength of the oscillations diminishes without 
limit in the course of time so that at long times one is 
dealing with a distribution function which is essentially 
averaged over the rapid oscillations. In the reference 
system fixed in the wave this distribution function, as 
in any stationary state, depends only on the particle 
energy f = fo( E), E = 0'2) mv2 - e <Po( x). 

In the present work we investigate the equilibrium 
state found in[1' 2l which corresponds to the propagation 
of a monochromatic wave of fixed amplitude in the 
plasma; we are interested in stability with respect to 
the excitation of plasma waves with close values of 
phase velocity. In Sec. 2 we find the perturbation of 
the distribution function for the resonant particles due 
to a test wave and obtain the equation that describes 
the time variation of the amplitude of this wave. In 
Sec. 3 we investigate this equation and determine the 
conditions for the appearance of the instability of the 
monochromatic wave. If there is a large discrepancy 
between the phase velocities of the primary wave and 
the test wave I vcp- v~ I » v' e <Polm only that instabil­
ity is possible which is associated with stimulated 
scattering of the wave on thermal particles of the 
plasma. This instability has been investigated earlier 
for the case of waves with random phases_l5-7 l This 
instability leads to the excitation of oscillations in the 
longwave region of the spectrum. For small values of 
the discrepancy I Vrp- v~l Z v'ecp0/m an instability 

arises which is associated with particles that are 
trapped in the potential well produced by the primary 
wave. As the result of the instability the oscillation 
spectrum exhibits satellite lines that are shifted in 
frequency by an amount proportional to ~' in agree­
ment with the results of the experimental investigations 
reported by Wharton et al. raJ 

2. The analysis is carried out in the reference s ys­
tem of the primary wave, in which the equilibrium 
state is characterized by a stationary potential distri­
bution r{!o( x) and a stationary distribution function 
f0 ( E ). 1> As in [l, 2J we will assume that the following re­
striction holds on the amplitude rp0 : 

The perturbation of the equilibrium state will be 
sought in the form of a plane wave of charge density, 
in which the electric field is given by2> 

(1) 

E(t,x) =~ Ek(t)exp[i(kx- WAI)], (2) 

where Wk = wp ( 1 + %k')..D) - kvph is the frequency of 
the plasma oscillations in the reference system fixed 
in the wave, wp = (41Te'11.0 /m)112 is the plasma fre­
quency and ;\.D = (T/41Te 2 no)112 is the Debye radius; we 
shall limit ourselves to the longwave case k;\.D « 1. 

We shall first find the perturbation in the electron 
distribution function in the field given by (2 ). The dis­
tribution function for the initial time is written in the 
form 

where the second term ~eikx is the initial perturba­
tion of the equilibrium state that leads to the plasma 
oscillations. 

(3) 

Since the distribution function is an integral of the 
motion in the absence of collisions, at any arbitrary 
time, limiting ourselves to terms that are linear in the 
amplitude of the perturbation, we can write 

1>In the present problem the averaging of the distribution function 
over the fast oscillations occurs by virtue of the fact that resonances 
between the test wave and particles have a finite width according to the 
velocity -'Y/k ('Y is the damping rate). 

I 2>If the condition in (I) is satisfied, the field harmonics due to the 
presence of the potential >Po, -exp [i(k + nk0 )x), n =F 0, are weak. 

1121 
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f(t, x, v) =/o(e)- (e-eo)d/o/de-f-ft(v0)eihxo, (4) 

In this expression E 0(t, x, v), Vo(t, x, v), and 
x0(t, x, v) are initial coordinates of the particles in 
phase space along trajectories which, at time t, go 
through the point x and v of this space. In the last 
term, which is proportional to the initial perturbation 
of the distribution function, the unperturbed particle 
trajectory can be used to find the relation between x0 

and v0 and t, x and v. 
Thus, the problem of determining the distribution 

function reduces to the search for the variation of the 
particle energy in the field given by (2 ). It is then 
necessary to integrate the following equation: 

de/ dt = -eE .. v(t)exp[i(kx(t)- Wkl)], (5) 

where v(t) and x(t) on the right side of Eq. (5) are the 
velocity and coordinates of the particle along the unper­
turbed trajectory which are due to the effect of the po­
tential cp0(x). If the amplitude cp0 is not too large, so 
that the condition in (1) is satisfied, it can be assumed 
that cp0(x) is a harmonic function of x: cp0(x) 
= cp0 cos koX. Then the unperturbed trajectories of 
transiting particles with energy E > ecp0 are described 
by the equation (cfPl) 

F(~. __!_) = F (to,_!_)~~~""' 8 (t, !',0 ). (6) 
'X X To 

In this equation 
kox ko.ro 2 8 + eq>o 

~=-, !',o=-, Tt= , x =---
2 2 ko ft!'fJo/ m 2ecpo 

where F( ~, 1/ K) is the elliptic function of the first kind. 
The relation in {6) holds for the case v0 > 0, that is, 

for particles moving in the positive x direction. When 
v0 < 0 it is necessary to change the sign of the term 
proportional to t. Using the well-known expansion for 
the elliptic function am9 in terms of the Fourier 
series (cf., for example£91,) we can write the function 
x(t) that appears in the solution of Eq. {6) in the follow­
ing form: 

nx t 4 ""· g-• 
x=.ro+----+-:3 

K(1/x) koro ko n-t n(l -1- g-2ft) 

r nn8 nn80 J 
X sinl((l/x) -sin K(i/x) =x0 -f-ut-f-x(t). 

Here g = exp[wK' ( 1/ K)/K( 1/ K)], K( 1/ K) is the com­
plete elliptic function of the first kind, K' ( 1/ K) 
= K(.J1- 1/K2), and ®c = ®(t = 0). 

(7) 

The term x(t) in Eq. (7), which describes the devi­
ation from the equilibrium motion of the transiting 
particles, is a periodic function of time with period 

~ dx ? K(i/x) 2n 
r(e)= ~ ---To. a=- {8) 

0 l'2m-t(e-f-e1Po(x)) x ko 

In accordance with Eq. (7), the velocity of the uniform 
motion u is 

a :nx 1 u=-=-----. 
T K(1/x) koro (8') 

In the present work we limit ourselves to the case 
in which the phase velocities of the primary and test 
waves are rather close I Wk 1/k << Vcp. In this case the 
detuning between the wave numbers of these waves is 
also small: 

lik lk-kol :::::M~i. 
k= k kvph 

Then, neglecting small terms proportional to ok/k, we 
can write the following relation: 

exp [ikx(t)] = exp [~(-k- ko)xo T i(k- ko)ut + ikox(t)] 
(9) 

r ( 2nn) l =l!xpfi(k-ko).ro] ~ 'lln(l'o)t>xp i (k-ko)u-1-- t I 
l r J 

•=-eo 

The coefficients for the Fourier expansion of the func­
tion exp[ikox(t)] are computed in the Appendix: 

4n2x2 ng'" [ nni ( 1 )] ljl.=-------cxp ---F ~-
K2(1/x)1-g'" K(l/x) 'x 

[ E(l/x) ~ l 
(n+O), 

(9') 

'llo=-2x2 K(l/x) -1-1- 2x2 . 

To this same accuracy we have the expansion 

v(t)exp'ikz(t)]=exp[i(k-k0 )x0] ~ ll>,.(xo) (10) 
n=-"'"' 

r ( , 2nn \ ) 
xexpl i (k- k~)u +-T-)t , 

where 
, (k- ko)u + 2srn/r 

< ... = tp. k . (10') 

As expected, the coefficients 1/Jn(xo) and <I>n(xo) are 
periodic functions of x0 with period a. Equations (9) 
and (10) for these coefficients have been obtained for 
the case Vo > 0. When Vo < 0 the coefficients <I>n(x0 ) 

and 1/Jn(xo) are determined from the relations 

IJ)n (xo, vo) = -(f)-n · ( -l·o, -vo); 'P• (xo, uo) = ~·-· • ( -xo, -vo) · (11) 

Substituting Eq. (10) in Eq. (6), integrating over 
time and neglecting the term that depends on the initial 
conditions, which is unimportant when t >> 1/kvT ( VT 
is the thermal velocity), we have 

lit:= e- Eo= -eEl< exp [J(k- k 0)x0] 

(12) 
X ~ !l>n ( ,1·o) e_x_:_p~[ i-'-:( :'---( k_---::k_.c·o'-) u_-_w::...• ..:.+...,2,....n_n:_h_.;.)...:!..t J 

n~-oo i[ (k- ko)U- Wt -1- 2nn/r] 

In accordance with£21 the unperturbed trajectories 
of the trapped particles, characterized by energy 
E « Ecp0 , can be obtained from the equation 

F(~,x) =F(~o,x) -f-t/To=0''(t,t;o). 

In this equation l; ( t) is associated with ~ = ( Y2)koX 
through the relation 

sin t; = x-1 sin£, ~0 = ~(t = 0). 

From Eq. (13) we have 

8 oo g,;n-'h [ . • :t0tr 
x=xo-1-- ~ sm(2n-1)--

-ko •~•1 -f-g~~n-t 2K(x) 

n0 tr J 
-sin(2n-1)--0 - =.r.,-f-.l:''{t). 

~K(x) 

Ctr = exp(nK'(x) I K(x) ). 

(13) 

(14) 

Here, xtr(t) is a periodic function of time with period 

T 1'(e) = 4K(x);0• (15) 

Neglecting terms of order tk/k, for the trapped 
particles we find the following expansions in place of 
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Eqs. (9) and (10): 

I'Xp[ikx(t)] = ~xp[i(k- kn)l·u] 
~ t ] h tj1, 1'(xo)t•xp[2nin- , 

..:'' 
n=-""' (16) 

.. t l 
v(t)Pxp(ik.r(l) ]= ~xp[i(k- ku).ru] ~ !ll,1'(.ro)cxp[ 2nin~ , 

n=-«~ 

where 

n-¥= 0, 

(17) 

Equation (17) has been obtained for the case vo > 0. 
When v0 < 0, the coefficients <I>~ and lPlf are expressed 
in terms of <~>hr and l/J~r for v0 > 0 through the use of 
(11 ). 

The change in the energy of the trapped particles in 
the oscillatory field (2) can be obtained by integration 
of Eq. (5 ): 

. "' exp(i(2:w 1T 1'- w")t] 
lit·= e- ee =- eEk exp(z (k- k.,)xo] l;c!J,'' (.r 0 ) 1 

i(2:m/r1'- '''") 

(18) 
We now consider the derivation of the equation for 

the amplitude of the test wave. We start from the con­
servation of energy which, in the case being considered 
(plasma waves), is written in the form 

1 dlEnl 2 e [ \(:l ----- J d.rEk"exp[-i(kx-w,t)]· 
4n dt 2o -u/2 (19) 

. ~ dv(v+vph)lif+ c.c.J =0. 

In this equation the first term corresponds to the 
variation of wave energy (the potential energy 
I Ek l2/8n and the kinetic energy associated with the 
oscillatory particle motion in the wave ( Y2) nom I Vk 12 

= I Ek 12/ 8n while the second term describes the change 
in the energy of particles that interact with the wave; 
Of is the perturbation of the distribution function for 
these particles. Averaging over the period a in Eq. 
(19) we can determine the current 

j=-eS (v+vph)ofdv 

and also the component eikx, which corresponds to the 
change in time of the amplitude Ek. For convenience 
in the further calculations in Eq. (19) we shall inte­
grate with respect to the initial coordinate of the parti­
cles in phase space, making use of the conservation of 
phase volume: 

dxo 
dx dv = dxo dv0 = de---­

mvo(:ro, e) 

Then, substituting Of from Eq. (4), we can write Eq. 
(19) in the form 

[
co a/2 

1 d I £ 1.1' e£1* d.rn . 
1.--·-a-'- = - -.j- \ de ~ --(-·-) exp [- z (l•.t- '''• t)] 
ut I _a ,;_,~ --a .2 mv0 J-n· f 

( dfo . ) . ~· • r d.rn 
X(v+ ) -'--lie-/1 (L'0)P'""" + \de' 

ph de -~~. -·x mz·o (·"o· e) 
(20) 

X cxp (- i (b•--<•1,1)] (v -l F ) (d1fo oe -- f 1 (z\1) ,,;;,_..,)1 
ph ( £ . c.c .. 

where, in the integral with respect to E, we separate 
the contributions due to the trapped particles and the 
transiting particles; X(E) and -x(E) are the turning 

points for the trapped particles: 
In the integral with respect to E on the right side 

of Eq. (20) at long times the most important term is 
~ ( df0 /dE) oE. It is easy to show that the term that de­
pends on the initial correction to the distribution func­
tion f 1 makes a contribution in (20) which decays in a 
time t ~ 1/kvT. Now, in Eq. (20) we substitute 
exp[ -ikx(t)], v(t) exp[ -ikx(t)] and oE in the form of 
the Fourier expansion Eqs. (9), (10), (12), (16), and 
(18) and then carry out the integration with respect to 
x0 (cf. Appendix). In this way, after a number of ele­
mentary transformations we obtain the following equa­
tion for I Ek 12, which holds at times t » 1/kvT: 

d IF, i 2 G4n•c~ . , {"; ;<3 ---- = --(ulc + kl' )<•J,,To!Ek!- J de-.. --
dl mk Ph "''" K•(l/v.) 

In this equation f 0 ( E) is the equilibrium distribution 
function for the transiting particles while ftr ( E ) is the 
distribution function for the trapped particles; the inte­
gral with respect to the transiting particles includes 
particles that move in the positive and negative sense 
along the x axis (u > 0, u < 0). 

Equation (21) determines the change in the ampli­
tude of the test wave due to the resonance particles, 
the velocities of these particles being approximately 
equal to the phase velocity of the wave (u i:::< wk/nko 
~ .J ecp0 / m, n = 1, 2, . . . . In the summation over the 
transiting particles in Eq. (21) we omit the term char­
acterized by n = 0, which corresponds to the resonance 
(k - k0 )u = Wk· In the laboratory reference system 
this resonance condition can be written 

lab lab 
(k- ko) (u + vph[) = '''' - "''·· 

and coincides with the condition for stimulated scatter­
ing of oscillations on thermal particles of the plasma, 
the velocities of these particles being equal to u + Vcp 
""' 3k;>..0wp << vT in the laboratory system. For a 
monochromatic wave the stimulated scattering occurs 
in the same way as in the case of wave which has been 
considered earlier, and leads to an instability of the 
original wave with respect to longwave perturbations 
characterized by k < k0 • The coefficient for stimulated 
scattering y can be expressed in terms of the scatter­
ing cross section for waves with random phases 
yll(k, k0 ) which had been obtained earlier: 3> 

(22) 

The quantity yll(k, k 0 ) for various cases (scattering 
by thermal electrons or ions) is given, for example, 
in[ 11 J. 

3. We now consider Eq. (21 ). In the argument of the 

3lWe note that in the analysis of stim~!lated scattering on thermal 
particles in addition to considering the radiation of particles associated 
with oscillations in the electric field of the wave Ek, which is computed 
in the present work, it is also necessary to take account of the transition 
radiation due to density inhomogeneities produced by the wave (cf. [ 10 ) ). 
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I)-function we neglect terms of order (k - ko)lk and 
carry out the integration over E, obtaining the follow­
ing expression for the growth rate 'YR associated with 
the interaction of the wave with resonance particles: 

J:!:tSe2 
)'n = --;;;k2(WA + h'ph/)w~to 

f ' ( x• In i g2n 1 du ~-l dfo ) 
· t~0 A"i(ij-;) (g'" ~c-'")2 1--;_j; d;. nhau(e)=»k 

X 1 'V, / 1 lnl k dfi'\1 
.)! ~ \ K3(xJ-(g-=• 2 -(·--l)"g"2)2jdP''/de/ de'/ nU a:Fo tr ,,. .. n~ (e)=.ok 

(23) 

We first consider large detuning between the phase 
velocities of the main wave and the test wave, in which 
case I Wk Ilk » .J ecpo/m. In this case the resonance 
values of the energy of the transiting particles lies 
somewhat higher than the limit of the potential well 
ER ~ mwk lk2 » ecpo. Thus 

x2 =~>l, K(l/x)<=:: ~, K'(1/x);::::ln4x, g"='Jlix2, 
-e<f• -

and in the summation corresponding to the transiting 
particles in Eq. (23) we are left only with the term 
n = 1. Obviously the contribution of the trapped parti­
cles disappears in this case. As a result, we find from 
Eq. (23) that when I Wk Ilk» ..fecpolm, because of the 
interaction with the resonance particles the test wave 
damps with the Landau damping factor 

2;,.2e2 d/0 ( 1/ 2e Wt ) 
'\'L= mJ.-2 (wh+kL'ph)--au-, u(e)=y -;;;:=J!-. (24) 

Under these conditions, when dfoldu < 0 only the 
instability which is associated with stimulated scatter­
ing of oscillations is possible. The instability arises 
when cp 0 is large enough, in which case the increment 
for stimulated scattering exceeds the damping factor 
due to the resonance particles. Assuming that the 
scattering is due only to the thermal electrons, we find 
that the loss of stability is given by the condition 

e<p0 2 ( 8 )'''( 'YL )''' 2 exp(-l/4k2/. 1}) 

mL'pb2 > J g;-_ Wpk3').D3 "='. (3l'e)';, k3').D3 

(25) 

In obtaining the last relation we have assumed that the 
distribution function of the resonance particles is a 
Maxwellian. The instability condition in (25) is first 
satisfied for longwave perturbations. 

We now investigate the possibility of an instability 
due to resonance particles when I wk Ilk$ -1 ecpo/m. It 
follows from Eq. (2 3) that when Wk > 0 the excitation of 
test waves is associated with particles whose distribu­
tion function increases with energy in the reference 
system fixed in the primary wave dfolde > 0, As a 
result of the interaction with the test wave these parti­
cles diffuse toward lower energies and a plateau ap­
pears on the distribution function; the particle energy 
is thus converted into wave energy. When Wk < 0 the 
energy of the test waves in the reference system of the 
primary wave 

is negative [e(wk, k) = 1 - wpl(wk_ + kvph)2 is the die­
lectric constant in this reference system]. In this case 

the excitation of test waves is associated with particles 
for which dfolde < 0; these particles acquire the en­
ergy of the wave in the diffusion process. 

The distribution function of the resonance particles 
f 0 ( E), which is established under the effect of the wave 
cp0 , can be expressed in terms of the original distribu­
tion function fg( v ), which exists in the plasma at the 
time cp0 is switched on; for this purpose we use the 
relation (cfYl) 

( \' d.x )-'r dx 
/o(e)= J jv(.x,e)j ) jv(x,e)i /oo[v(x,e)]. (26) 

Here, for the transiting particles ( E > ecp0 ) the integra­
tion over x is carried out between the points -al2 and 
al2; for the trapped particles ( E < ecpo) the integration 
is carried out over a closed trajectory between the 
turning points: -x(E) and x(E). Equation (26)derives 
from the fact that under the action of the wave there is 
a uniform smearing of particles in phase along the 
lines E = const. 

In what follows we shall assume that the initial dis­
tribution function fg( v) is a Maxwellian in the labora­
tory reference system. It follows from Eq. (26) that 
for a Maxwellian or any other stable distribution func­
tion f0 ( v) when dfg I dv < 0 the condition dfo I de > 0 is 
satisfied for the transiting particles when u < 0 while 
the derivative df0 lde < 0 when u > 0. From the reso­
nance condition u(e) = Wklnko (n is an integer); it is 
then easy to show that the transiting particles lead to 
excitation of the test wave by virtue of resonances 
characterized by n < 0, which correspond to the ano­
malous Doppler effect; the resonances characterized 
by n > 0 correspond to the Cerenkov effect and the 
normal Doppler effect and are stabilizing. 41 

When .Jecp0 /m « v1:1vcp the distribution function 
f8(v) under the integral sign in Eq. (26) can be ex­
panded in powers of v. Then, taking the transiting 
particles and limiting ourselves to the first two terms 
in the expansion, we have 

(27) 

Substituting f0 ( E) in Eq. (23) we obtain the following 
expression for 'YR associated with the transiting parti­
cles: 

, 32n"e' iJfo0 

Yn = --k2-(Wn + kvph )--(0) · 
m · iJu (28) 

·a~ ~ ( 1 )I , 
Ff" (x)- g-2 n (x) · w'K(w -•F=~/n 

-~· 

where we have used the notation 

Since 

g = exp f nK' (: )/ K( ~)] > 1, 

4lThe presence of the wave <Po converts particles which are resonance 
particles for the test wave into oscillators with characteristic frequency 
w0 = k0 u(e). The resonance condition for the transiting particles is of 
the form Wk-ku = (n-1) w0 ; since k "" k0 , when n =I= 0 this condition 
can be written Wk = nk0 u. 



STABILITY OF A MONOCHROMATIC WAVE IN A PLASMA 1125 

in the summation that corresponds to the transiting 
particles in Eq. (23) the contribution of the stabilizing 
resonances is found to be larger in this case so that 

I < 0 5) 'YR • 
We now consider the trapped particles. In comput-

ing the distribution function for these particles in Eq. 
(26) we need not retain the linear terms in small v in 
the expansion of f8( v), but take account of the following 
terms, which are quadratic in v. In this way we obtain 
the following expression for ftr(E:) from Eq. (26): 

tr 'o•t.• ~lr(e)x~ j'2 ( ) fo (e)=fo0 (0)--;-,...-(0)-2- I -(e+e<p0 cosk0x) da; 29 
vv· n _ ~ 111 ... 

n ( t> h•) [ 4 , f e<p v z01' ( ) 
=y2ii.ovT exp- 2~T2 l+nv mo phv;~koe {K(x)(:K'-1) 

+E(:K))]. 

In computing the equilibrium distribution function 
for the resonance particles fo( E:) we have neglected 
binary collisions. In this connection it should be re­
called that we are considering a time t ~ 1/yL « 1lv 
( v is the binary collision frequency). Under these con­
ditions collisions are important only in a narrow energy 
range close to the separatrix ( E: = ecpo) in which the 
gradients of the distribution function f0 ( E:) given by 
Eqs. (27) and (29) grow without limit: 

dfo = ofo" (0)~ =...::.. ofo0 (0) sign u_, (x' -1)J.n2 4 
de ov de 4m iJr; ye~p0/ m -yxr- 1 

for the transiting particles for K- 1 ( E: - ecp0 ) and 

dfo 4 iJ2/o0 1/ elpo 1 dQtr 
Te = -;a;;;--<0> r -;;-T;;a;:-

1 02/o0 --
=-2m iJv2 (0)/{1-x2)ln2(4fl'1-r.') 

for the trapped particles for K- 1. 
Collisions lead to a smoothing of the distribution 

function f0 ( E:) in this energy region (cf yaJ) so that in 
actuality the quantity df0 I dE: remains finite as K - 1. 

It should be noted that the distribution function for 
the trapped particles, which is given by Eq. (29 ), is 
similar to that for a beam: at low particle energies it 
increases with E:, reaching a maximum at Ka 

= (E: +ecpo)l2ecpo = 0.875; thereafter it falls off as E: in­
creases. By virtue of this distribution function it is 
possible to have excitation, by the trapped particles, 
of both red 

( dwlab v ) 
f:lwl•b=.--(k-rko)=--1 wk<O, 

dk ~h 

and violet (~wlab > 0) satellites in the oscillation 
spectrum. 

The growth rate for the instability due to the trapped 
particles is determined by the second summation in 
Eq. (23). The resonance values of the particle energies 
in this summation are related to the parameter 
a = w-1 1 Wk I To by the expression K( KR) = nl2a 
(n = 1, 2, ... ). When a varies in the range 0, 1lw the 
resonance energy of the trapped particles at the funda-

5lThe instability due to the transiting particles arises when.Je.p0 /m 
> VT2 /vph· In this case it is important to extend the distribution function 
f0 (e) defined by Eq. (26) to particles characterized by u < 0. The con­
tribution of these particles is basic in the growth rate; as a result there 
arises an instability for test waves characterized by Wk > 0. 

mental resonance ( n = 1) varies from the separatrix 
( K = 1 ) to the bottom of the potential well ( K = 0) while 
the other resonance energies of the trapped particles 
remain close to the separatrix. The resonance values 
of the energy of the transiting particles given by the 
relation K( 11 KR) KR = nl a (n = 1, 2, ... ) are also 
close to the separatrix in this range of a (cL table). 

As we have noted above, near the separatrix colli­
sions lead to a smoothing of the distribution function so 
that the quantity df0 / dE: remains finite as K- 1 while 
I du/ dE: I, I dotr I dE: I -co. For this reason, as follows 
from Eq. 23, there is a reduction in the contribution of 
the corresponding resonances to the growth rate . 
Hence, in computing the growth rate due to the trapped 
particles, limiting ourselves to the range of variation 
of a from 0 to 1/ 1T, we take account only of the funda­
mental resonance n = 1, using the distribution function 
in Eq. (29) for ftr(E:). We also limit ourselves to the 
n = 1 resonance for the transiting particles (the higher 
the value of n the closer KR is to unity and the smaller 
the contribution from the corresponding resonance in 
the growth rate) using as f0 ( E:) the distribution function 
for the transiting particles close to the sepa.ratrix as 
established by the effect of collisions :( 1aJ 

/o{e)= . 110 Pxp(l- vph2 )[1-~e-eq;o~signu] 
Y2rwT 2vr2 2'1• iemlj)o VT,2 

(here we assume that .J ecpo/m « vt lvph). 
As a result, we have from Eq. (23) 

2n.Ze2 iJ/o0 r v e!po v h J Yn=--(w~<+kv<t>)--(0) fl{a)- _ ___E!!..signulkrz{a) , 
mkl av m vr2 

(30} 
where the term ~ r 1 (a) determines the contribution 
from the transiting particles 

1\(ct) == 16 {2n•et•( x(:K'-.i) >I . 
E(+)<c'(x}-g-'(x)) K(x-•)x-•=·~ • 

while the term ~r a( a) determines the contribution 
from the trapped particles 

r. (:x) o= 32 n3 a• 

<2(x• + E (x)/J\·(xl)- ~~ E(x\fK'(x)(1- x') 
--({?l:(x) -1- 8Z (x))j E(x)/ K (x) (1- x')- 11 ) J K(x>-lf.!~. 

Curves of the functions r 1 ( a) and r a( a) are shown in 
the figure. It is evident that even when -./ ecp/ m vcp I vT 
~ 0.1 an instability of the test waves due to trapped 
particles arises. The transiting particles are stabiliz­
ing. The instability arises when I Wk 1/kov' ecpo/m < 1 
(a < 11 w ). For large values of a the resonance condi­
tion for the trapped particles is satisfied when n ~ 2. 
Under these conditions the stabilizing contribution in 
the growth rate due to the transiting partie les when 
v' ecpo/m vcplvT « 1 is found to be large and the insta­
bility is quenched when a > 11 w. 

When a varies from 0 to 0.202 the function r a( a) 
is negative. In this range of a, corresponding to 
trapped particle energies for which dftr I dE: < 0, we 
find that the violet satellites are excited (~wlab 
= -wkvglvcp > 0). In the range of a from 0.202 to 
11 w, which corresponds to values of E: for which 
df~r I dE: > 0, the function r a( a) is positive and the red 
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O.~o>3 0.999 1 O.D99 0.30 0.2ltl 0.979 0.981 

satellites are excited .::!l.wlab < 0. The maximum value 
of the growth rate for the red satellite is approximately 
an order of magnitude higher than for the violet satel­
lite. As the ampl:itude of the potential in the primary 
wave cp0 increases the frequencies of the excited waves 
~wk vary in proportion to .f(io. This result has been 
observed experimentally. raJ Under instability condi­
tions, in which th<e second term in Eq. (30) is much 
larger than the first, the growth rate YR is propor­
tional to fCPo when Wk / fCPo = const. 

In this case th~rowth length l = vg/yR is inversely 
proportional to ..; cp0 , as has also been observed in the 
measurements reported in r 81. 

The authors are indebted B. B. Kadomtsev and Ya. 
B. Fainberg for their interest and for valuable com­
ments. The authors are also indebted to L. M. Gobunov, 
V. E. Zakharov and V. P. Silin for valuable discussions 
and to V. I. Karpman for calling their attention tor 8 l. 

APPENDIX 

We wish to compute the coefficients in the expansion 
of the function exp [ikoX( t )] in a Fourier series. For 
the transiting particles we have 

exp [ikoX(t)] =' ~ ljJ. exp ( 2nin-1-), t = 2::_. (A.l) 
"~oo -r(e) kolul 

The coefficients 1/Jn are determined from the relation 
1 2Kwx> 

ljJ,.= 1K(l/;;-) ) cxp[i(k.o:c(z)-.)K~l~· z)Jd:, (A.2) 
-2K(I/MJ ~ X) 

where we have used the notation z = Kt/r 0 • Substituting 
x(t) from Eq. (6) we have 

( (. 1) 1- [ ( 1 1 ±2icn F ~ •. -- +z.:-j sn F !;0.-)+z,-J, 
. X % , X X 

(A.3) 

where the upper sign refers to particles for which 
u > 0 and the lower sign to particles for which u < 0. 

Using the well-known properties of the elliptic func­
tion the integral in Eq. (A.2) can be transformed in the 

r 

r 

::-j ~ 
l!!,j· 

I 

-2ltr 

following manner when n ;>! 0 (cf. also[ 2 l):6> 

1 1 [ nnz J 
'i'n = '.K(I/v.) ~- exp -i 2K(l/v.) · 

x{~2_[F(~o.l/l<)+z.l/x]- sn2 (F(so- 1/x)+z.l/xJ (A.4) 
1-(-1)" g" 

± 2ic~J.~o.l/x)+z.1/x]sn[F(~o.1/x)+:.1/x] }'az. 
1-t-(-1)• g" 

The contour of integration C is a parallelogram with 
vertices at the points 

-zKC), zK(~), 2iK'C). --4K(;)+2iK'(~)-
Computing the integral in Eq. (A.4) by means of resi­
dues we obtain Eq. (9) and (11) for 1/Jn. The expansion 
in (10) for v(t)exp[ikx(t)] can be obtained without dif­
ficulty by means of the relation 

1 d 
v(t)exp{Jkx(t)] = tkdt exp [ikx(t)l 

and substitution of exp[ikx(t)] for Eq. (9). The coef­
ficients lfJ}[ and <Plf for the trapped particles can be 
obtained in similar fashion. 

We now wish to compute the integrals with respect 
to x0 on the right side of Eq. (20 ). For transiting par­
ticles with u > 0 these integrals are of the form 

1 "!' dxo , 16n~x 3 nn' g3(n+n') To 
-- --- $n• (~·o. £) ljJn (x0, E) = --- -:-:---:-:--:-:--~:-
a _012 uo(Xo,€) K 1 (1/x) (1-g'")(l-g'"') a 

X r d~oexp [Jii(n- n')F(~o.l/x)/ K(l/x)] (A. 5) 
_,,, l'l - x-2 sin2 !;0 

16:n'x3 n'g'• 
= ---koto 6nn' (n =I= 0), 

Kl(1/x) (g2n _ g-'")' 

where we have used the following substitution in com­
puting the integral with respect to ~ 0 : 

" lJ = F(~o, _!._) = ' d<p . 
x : 1'1- x-2 sint q: 

Considering the trapped particles and making use of 
the symmetry of the distribution function in velocity, 
we can combine the contributions in the integral over 
Xo for particles with v0 > 0 and v0 < 0. Calculating 
the integral over ~ 0 in the same way as in Eq. (A.5) 
we obtain the following orthogonality relations for the 
coefficients 1/Jlf: 

6lThe integral in Eq. (A.2) is tabulated for the case n = 0. 
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X {exp lni Fz(k"(x~\n- n')] + (- I )n-n' exp [ -ni F2~"(x~) (n- n'))) 
2n3 k0 '1'0 n' • ( , 0) 

= --- unn' n =f= • 
K3(x) [gl;'n-(-i)"glfl' (A.6) 
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