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We calculate the force density of dragging of a crystal lattice by conduction electrons under condi
tions of a rapidly deforming crystal, non-stationary distribution of the electron velocities, and the 
presence of external time-varying electric and magnetic fields and a concentration gradient is cal
culated. It is shown that there is a major term in the drag force which is proportional to the ex
ternal force applied to the electrons, and is not related to the momentum transfer to the lattice 
from electron scattering. Account of this term makes it possible to generalize and refine the re
sults of previous investigations, and remove their mutual inconsistencies and the errors of cal
culation obtained in considering trivial examples. 

1. INTRODUCTION 

IN recent years, many investigations have appeared of 
the amplification on ultrasound by the drift of the cur
rent carriers in crystals, and also other works on 
acousto-electric phenomena. They contain solutions of 
the equation of motion (oscillation) of a crystal lattice, 
in which the lattice drag by the electrons is sometimes 
the important force. For this force, various authors 
use different expressions that are mutually inconsistent. 
For example, the expression 

fH = -m ~ "( ~) d3v (1) 
at coli 

is used in[1 J for the drag force exerted by the electrons 
per unit volume of the lattice. Here m is the mass of 
the free electron, f the velocity distribution function 
of the conduction electrons, v the velocity of the elec
tron, and (3f/3t)coll the collision term in the kinetic 
equation. If the time of free flight of the electron T 

does not depend on the velocity, (1) can be rewritten in 
the form 

(2) 

Here Je is the electron current density relative to the 
lattice (the current density in a set of coordinates mov
ing with the lattice), e the algebraic charge of the con
duction electron, m* the effective mass and IJ.o the 
mobility of the electron in the absence of a magnetic 
field. 

In[ 2 J the force density applied to the lattice is, in the 
same notation, 

IR=1efl1o· {3) 

In[3J, the expression c-1 J x H is used for the total 
ponderomotive Lorentz force applied to the lattice and 
the drag force by the current carriers, where H is the 
magnetic field intensity, c the velocity of light, and J 
the total current density (electron current and the 
current of charges attached to the moving lattice); J 
and H are in the laboratory system of coordinates. 
Hence the drag force density due to the carriers is 

1 { 1 . } 
fG=-;-(Jll)-pL. E+-;(ull] . (4)* 

Here PL is the charge density connected with the 
lattice, E the electric field intensity (in the laboratory 
system of coordinates), u the velocity of the lattice. 

In [ 4 J, the expression 

m aJ 
fK=fc,---. 

e at 
was used for the drag force density. 

(5) 

In[ 3 J, Eq. (4) is used for a strong magnetic field, 
when eHT/m*c » 1. ln[4 l, Eq. (5) is used for an arbi
trary magnetic field. In both[ 3J and[4 l, a neutral crystal 
is considered. 

The foregoing four expressions for the drag force 
densities fH, fR, fa, fK are different and are, generally 
speaking, incompatible with one another. For example, 
the values of (2) and (3) differ by the factor m/m*. 
The values of (4) and (5) differ by the component 
me-1 3J/at. 

In the experiments of Stuart and Tolman, the drag 
force is exactly equal to (1) or (2 ). Equation (5) also 
gives the true result, inasmuch as in this case E =H 
= 0. The same is true for (3) only for m* =m. For 
constant ohmic current ( H = 0 ), the entire momentum 
acquired by the conduction electrons in the external 
electric field is transferred to the lattice. In this case, 
as is well known, the drag force density is exactly 
equal to enE, where n is the conduction electron con
centration. Consequently, the true result here gives (3) 
(and in the case of a neutral crystal, (5) also)); on the 
other hand, Eqs. (1) (2) are now incorrect. 

For a stationary diffuse current through the crystal 
(E = H =0), the force (5) is equal to zero. Actually, the 
drag force is not equal to zero, as will be shown below; 
forces that differ from zero, and are different in mag
nitude, are also obtained from (1 ), (2 ), (3 ). 

It will be shown below that even for strong magnetic 
fields Eqs. (4) and (5) are sometimes incorrect. Thus 
Eqs. (1 )- (5) are each true only in a separate particular 

*[JH) =J X H. 
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case. However, inr2 - 41 , these formulas are con5idered 
as general, and are applied when the current is Ron
stationary, when there is accelerated motion and there 
is diffusion current. 

The purpose of the present work is the considera
tion of the major component in the expression for the 
drag force, which is omitted in the works mentioned, 
and also inr 5 l, and the deviation of a drag-force formula 
that is valid in the more general case. Here we shall 
clear up tl!le contradictions noted above. 

The results omtained below are valid under the 
following limitations: 

1) It is assumed that the external force F acting on 
the carriers changes sufficiently smoothly in space 
(it changes little over a distance of the order of the 
lattice constant), i.e., we apply the effective-mass 
method. 

2. Part of the results obtained with the help of the 
kinetic equation is valid when the latter is valid. 

3) For simplicity, a simple conduction band is 
assumed with am ialotropic effective mass. 

2. GENERAL EXPRESSION FOR THE LATTICE DRAG 
FOitCE DENSITY 

We first consider a crystal with immobile fixed 
nuclei. As is known, [sJ the mean quantum mechanical 
value of the electron velocity, computed in the Bloch 
state 1/ik,, is exactly equal to the group velocity of the 
wave: 

- tli 
V=--V, 

m 
(6) 

where k is the quasi-momentum of the conauction 
electron and g"(k) is its energy. A similar relation 
can be obtained in the approximation of the effective
mass method, on the basis of the wave equation with 
the periodic potential omitted. In this method[?], each 
Bloch function 1/Jk is.accompanied by a "smoothed" 
function 'Pk = V-112 e1k. r (V is the volume of the 
principal cyclicity range). As a result, we get in place 
of (6) 

- 1 - m 
(rpklv*lcpk) =--;_-- Vk8(k), v• = --V. (7) n m• 

Inasmuch as g"( k) is the same in both cases, 
(1/iklvll/lk> = <fPklv* I'Pk>· 

According to the Ehrenfest quantum-mechanical 
theorem, we have, for an electron in the conduction 
band, 

m~('i'I,:I¢)=(1JJIF-VWI¢), F=e{E++[vHJ}. (8) 

Here F is the force of the external fields aad W( r) is 
the periodic potential of the conduction electron in the 
crystal. A similar theorem in the effective-mass ap
proximation gives 

We choose 1/1 in the form of a wave packet 1/i(r, t) 
Eak(t)l/lk(r), in which the 1/ik enter only from the 
k 

(9) 

lower part of the conduction band. The corresponding 
"smoothed" function (in the sense of the effective 
mass methodf6 1 ) is equal to 

•(r,t)= ~ ak(t)q~k(r), 
k 

with the same ak(t). Then 

(,;jvl'i')=~ ak•ak.(,hi;.IWk•)=~ lakl 2(¢kl~l¢k) (10) 
kk' k 

= ~ lak I 2 (1Pki~·I1Pk) = (rpj~*IIP) = (v). 
k 

Inasmuch as F is a smooth function of r, we have 
(I/IIFII/I( =(cpjFjcp) =(F). Eliminating d(v)/dt 
from (8) and (9 ), we obtain 

<1!1IVWI't>= (i-mtm•)<F>. (11) 

This formula shows that the drag force of a periodic 
potential of the lattice per electron -vw is not equal 
to zero in the mean if an external force (F) is present. 
According to the third law of Newton, the conduction 
electron should act on the lattice with the force VW. If 
the concentration of conduction electrons is n( r ), then 
the drag force density on the lattice due to the electrons 
is 

ft = n( 1- :. ) (F). (12) 

Here ( F) can be replaced by the force F( r) at that 
macroscopic point r to which the value of n refers. 

The drag force (12) was not considered in previous 
researches. The meaning of f 1 becomes trivial in the 
limiting case m* - ao, when the conduction electrons 
become almost bound to the lattice, and in this case it 
is clear that the lattice drag force density is equal to 
f1 = nF. 

The drag force density f 1 has been obtained for 
immobile nuclei and is not connected with the scatter
ing of conduction electrons by lattice oscillations. If 
we now consider a lattice executing thermal oscilla
tions, then an additional drag force appears, connected 
with the transfer of the momentum of the electrons to 
the lattice upon their scattering (by lattice oscillations, 
impurities, etc.). For consideration of this force, we 
introduce the conduction electron velocity distribution 
function f(v), which is so defined that f(v)d3v is the 
number of electrons per unit volume possessing veloci
ties in the ranges dvx, dvy, dvz and any value of spin. 
Here the Fermi distribution function, i.e., the mean 
filling factor of a single quantum state, is equal to 
4( 1rti/m* )3 f( v). The kinetic equation has the form 

of+ vVrf+~(E +_!_[vHJ) Vv/ = (!!_)\ , 
ot m c Bt coli 

(::)col;=~ {W(v,,-')f(v')[1-4(nli/m•)a/(v)] 

- W(v', v)/(v) [1- 4(n/ifm•) 3/(v')]}d3u'. 

(13) 

(14) 

Here W ( v', v) is the scattering probability per second, 
in which an electron with initial velocity v moves into 
the unit volume of velocity space located at the point v'. 

The additional contribution to the drag force density 
f 2 is equal to the momentum transferred to the lattice 
per unit time per unit volume by the scattered elec
trons: 

f2 = m) ~ (\·- v') W(v'. \")/(v)[i- 4(nlijm•)a f(v')}d'lu dV. (15) 

Comparing (15) and (14) we readily see that 

fz = -m ~ v( Bf) aav. . at coli 
(16) 

This is identical with the quantity (I). 
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If there is a time-varying macroscopic deformation 
in the crystal, for example, a sound wave, then a co
moving set of Cartesian coordinates can be chosen for 
the given small element of volume, in which the lattice 
will be fixed. This system will move in accelerated 
fashion; therefore, an additional D'Alembert force must 
be introduced in F, equal to -mU. As a result, an ad
ditional term appears in the lattice drag force density, 
equal to -n(1- m/m*)mU, where u(r, t) is the de
formation vector of the crystal. The left side of the 
equation of motion of the lattice has the form y\i , 
where y is the density of the crystal. Inasmuch as 
y » nm(1- m/m*) always, the D'Alembert force can 
be neglected. Thus the last term in the left side of (13) 
will have the same form in the laboratory set of coordi
nates and in the co-moving coordinates. The first and 
second terms of the left side of (13 ), taken separately, 
are not invariant relative to the Galilean transforma
tion. However, their sum is invariant. The connection 
between the distribution functions in the laboratory and 
co-moving coordinates has the form 

!lab (r, v, t) = /com(r- u, v- u, t). (17) 

It is assumed below that Eqs. (13)-(16) refer to the 
co-moving coordinates, inasmuch as the calculations 
in them appear to be simpler (one can use the concept 
of electron mobility, its diffusion coefficient, and so on). 
However, the same results are obtained even if (13)
(16) refer to the laboratory set of coordinates. 

Substituting the left side of (13) in (16) i:-;. place of 
( Bf/Bt)coll and taking it into account that 

(viJ/ d311=__!_ ~1•e\ v(E+_!_[vH], v.t)d•v= -enE-__!_ [J,ll], 
~ at tl vt ~ c c 

(18) 

where Je is the electron current density in the co
moving coordinates, and also introducing the notation 

s 0 
R; ""' S V£(v, V r/) d3v = 2; ;;--;;;kn, 

A-lliZA 

- 1 s v;vk ""' - v;vh}dlv, 
n 

(19) 

In this case, if f( v) differs slightly from the quasi
equilibrium Fermi distribution function with some ef
fective electron temperature T, one can replace f( v) 
by the quasi-equilibrium distribution function in zeroth 
approximation in (19 ). As a result, we obtain 

v·v _ 6 {kT I m· in the nondegenerate case 
' A - ;• 1f!l•h2 (3n)"• I 5m'2 in the degenerate case (22) 

If in the presence of a nonquantized magnetic field, we 
introduce the mobility tensor J.1. and the diffusion coef
ficient D, then the Einstein relation will have the form 

D _ {kT 1 e in the nondegenerate case 23 
8 - 1.t 8 (n)'lan~•h2 13'1•em· in the degenerate case.( ) 

In both cases, the last term in (21) can be written in the 
form 

R me -ll m~ n. 
11! = m•flH )H yn = ----,;-y/1. 

m flo 
(24) 

inasmuch as it is seen from (23) that JJ.H~ does not 
depend on H and consequently it has the same value as 
in the absence of the magnetic field. 

Equation (21) is the general expression for the 
density of the drag force on the lattice from the con
duction electrons. It is obtained without any assump
tions on the form of the electron velocity distribution 
function and without approximations that are usually 
employed in the solution of the kinetic equation. Equa
tion (24) is also obtained under the assumption that the 
distribution function is close to the Fermi value. 

3. CONSIDERATION OF SPECIAL CASES AND A 
COMPARISON WITH THE RESULTS OF OTHER 
AUTHORS 

Equation (21) can be simplified in two special cases: 
1) If the time of free flight of the conduction elec

tron T does not depend on its velocity, and the electron 
scattering can also be regarded as elastic, then, as is 
known, raJ 

(!]_) /o(v)- f(v) 
Otcoll T' 

(25) 

we can rewrite the force (16) in the form 

m 61, m{ 1 } f2=--;-at+ m' enE+-;;-[I.H] -mR. 

where fo( v) is the spherically symmetric part of the 
distribution function.•> Substitution of this expression 

(20) in (16) gives 

The total drag force on the lattice by the conduction 
electrons, in accord with (12) and (20), is equal to 

1 m iJJ, 
f = f1 + f2 = enE +-[J,H]---- mR. 

c e ot 
(21) 

Here it is necessary to emphasize that the component 
with the factor m/m* in the force (20) is due to elec
tron scattering. But in the expression for the total drag 
force, it reduces exactly to the second component of 
the force (12), which does not have any relation to the 
electron scattering. This identity of terms cannot be 
obtained in the theories which take into account only 
the single force (16), for example, inr•J. Inr21, the force 
(12) is also ignored but, in addition the factor m/ m * 
is erroneously lost in the calculation of the momentum 
of the conduction electrons (see[21, Eq. (3)). As are
sult of random compensation of these two errors, the 
expression (3) that is obtained turns out to be valid for 
the stationary ohmic current ( H = 0 ). 

(26) 

which is identical with the value of (2). As a result, the 
total drag force, taking (12) into account, is equal to 

f= fs +f:~-=(1-~)( enE+.!_[JeHJ)+~~. (27) 
m• c m J.Lo 

Formula (21) contains the term e-1 mBJe/Bt, 
whereas this term is not explicitly separated in (27 ). 
Nevertheless, both formulas are equivalent in the case 
of elastic scattering and when T does not depend on 
the velocity. Both formulas, in particular, are valid 
for a nonstationary velocity distribution when it is 
necessary to take into account the first term in (13). 

2) Equation (21) can be simplified if the external 
fields change sufficiently slowly with time and for each 
instantaneous value of these fields, a stationary distri-

1lfo(v) is the zeroth term of the expansion of f(v) in spherical har
monics. 
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bution of the electron velocities f(v) is established. 
This is the case when one can neglect the first term in 
(13), and the corresponding term e-1 m8Je/<H in (21). 
The criterion of this case for periodically changing 
external fields is the condition wT « 1, where w is 
the frequency of oscillation of the external field. In 
this quasistationary case, the current is determined, 
as is known, from the equation of electrical conductiv
ity and diffusion: 

J,=en!lii (E- ~"vlnn). (28) 

The electron velocity distribution approaches the Max
wellian or Fermi value with an electron temperature 
T generally different from the lattice temperature. 
From (21) and (24) we obtain 

1 m Do f=enE+-[J.II]-e-. -\'n. 
c m !lo 

(29) 

Expressions (21 ), (27 ), (29) for the drag force 
density on the lattice by the electrons are obtained in 
the traveling set of coordinates. In nonrelativistic 
theory' by neglecting terms of order u'/ c2 and uv/ c2 ' 

we can assume the force density to be an invariant of 
a Galilean transformation, i.e., it will be of the same 
value in the laboratory set of coordinates. It is easy 
to see this in Eq. (21 ), where the sum of the first two 
components of the right-hand side is invariant and the 
sum of the last two components is invariant. 

However, the situation is different with Eqs. (27) 
and (29), because they were obtained from (21) under 
the simplifying assumptions of noninvariant character. 
Thus, if the scattering is elastic in the co-moving set 
of coordinates, then it will be inelastic in the labora
tory system. Therefore, Eqs. (25) and (27) are valid 
only in the co-moving system, which does not prevent 
the use of the resultant numerical value of f in any 
set of coordinates. Furthermore, if there is quasi
stationarity in the co-moving system, i.e., if 8f/Clt = 0, 
then there will not be such in the laboratory system, 
which can be established by differentiating (17) with 
respect to time. Therefore, Eqs. (28) and (29) are 
valid only in the co-moving set of coordinates. 

We now compare Eq. (21), obtained by us, with Eqs. 
(4) and (5). We shall assume for simplicity below that 
u = u = 0; here the co-moving and laboratory systems 
are identical. We consider the case of stationary dif
fusive current through the given region of the crystal 
in the absence of electric and magnetic fields. Accord
ing to (4) and (5), fa= fK =0 in this case. According 
to (21) and (24), f differs from zero and is equal to 

m Do J, m 
f=-e--\'n=--, 

m' flo !'o m' 

which is identical with fH from (2 ). 
In[4 l, the drag force on the lattice by the electrons 

is obtained from the law of conservation of momentum 
of the whole crystal. This momentum is composed of 
the momenta of the conduction electrons, the electro
magnetic field, and the moving lattice (see[ 4 l, Eq. (3.7)). 
The advantage of such an approach is that the interac
tion of the electrons with the lattice is internal and 
one can ignore it when considering the change of the 
total momentum of the crystal with time. In particular, 
knowledge of the force (11) is not necessary. 

However, the inadequacy of this method is that it 
gives only the lattice drag force, due to the electrons, 

integrated over the volume of the crystal, and not the 
density of this force. Knowledge of the integral force 
makes it possible to determine the force density only 
with accuracy to within a component of the form 
~a<Pik/axk, where <Pik(r, t) is an arbitrary tensor. 
k 
Our component mRi in (21), as is seen from (19), has 
again the same form. Therefore, it is lost in[ 4l. 2J For 
a convincing illustration of this, we consider the trivial 
case of free electrons which do not interact with the 
lattice (W(r) = 0, m* = m, T = oo, E =0), and which 
move along circular trajectories in the magnetic field 
H. This can be, for example, motion along concentric 
circles which form a ring current, or another station
ary motion, which forms a current density different 
from zero. In this case, fa = fK =Je x H/ c "'- 0 follows 
from (4) and (5). Actually, however, f = 0, since the 
conduction electrons, by assumption, do not interact at 
all with the lattice. Equation (21) in this case gives the 
true result, since the term Je x H/ c cancels exactly 
with -mR. 

In order to show this, we note that in the case under 
consideration, Eq. (13) reduces to the form 

YVr I + -~ [v HI 'i/v r c~ u. 
r m*c (31) 

Multiplying this equation by v, integrating over 
velocity space and taking (19) into account, we obtain 
R = Je x H/m*c. Inasmuch as m* = m in the case 
considered, we obtain f = 0 from 121 ). 

Turning from the trivial example to real electrons 
interacting with the lattice, we consider the case of a 
strong magnetic field where eHr/m*c » 1. In this 
case, we can neglect the force (16) in comparison with 
(12) and obtain 

f=ft=(l-;)(enE-t-![J,II]). (32) 

This formula is valid even when u and afjat are dif
ferent from zero. It differs significantly from Eq. (4) 
employed in[ 3 J in the case of a strong magnetic field. 
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2l An attempt to determine 1/lik from thermodynamic considera
tions [4 ) is not justified, since the considered systems are essentially 
nonequilibrium, and also because the forces should be determined be
fore the thermodynamic functions. But even in the case of a limiting 
equilibrium of the electrons and electrical neutrality, account of the 
terms al/lik/axk in [4 ) did not lead to agreement with our results. 


