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Spectral representations for the commutator and Green-like functions of vector currents and fields 
of a renormalizable theory are derived in the framework of dispersion theory. The contribution of 
one-particle intermediate states to the spectral density is taken into account exactly. The mass and 
wave function renormalization constants are expressed in terms of spectral integrals. Canonical 
commutators are constructed for the Heisenberg fields and an asymptotic relation is derived for the 
quantization scheme involving a supplementary condition. 

1. INTRODUCTION 

IN connection with the problems of current algebra, 
several authors[ 1 l have pointed out formal contradic­
tions between traditional dynamical calculations of 
equal-time commutators and the results which seem to 
correspond to them, based on spectral representations. 
In evaluating these contradictions, one should clearly 
keep in mind which is the correspondence between the 
quantities which are being compared in these two ap­
proaches. Usually, in the dynamical calculation one 
starts from a definite Lagrangian scheme, and relates 
the contradictions which arise with an incorrect defini­
tion of the current in the framework of that scheme. 
This mode of operation is not unique. 

Inr 2 - 41 an improved version of the Lagrangian formal­
ism has been developed, closely related to the disper­
sion relations approach to quantum field theory. It 
turned out that such a formalism, allowing to take into 
account more consistently the effects of renormaliza­
tion, does not remove the above mentioned contradic­
tions. But we hope that at least the renormalizable 
theories are in principle self-consistent. Therefore, 
in order to remove the contradictions it is necessary 
to pay special attention to both the definition of the 
S-matrix satisfying the usual axioms of field theory in 
the Lagrangian scheme, and to making more precise 
the form of the spectral representations in renormal­
izable theories. The spectral representations for the 
commutators of vector fields are usually written down 
without difficulties[ll. The difficulties appear when one 
considers the representations of Green's functions 
where subtractions become necessary, since the struc­
ture of the counterterms can in principle be quite ar­
bitrary. The usual reasonings do not answer the ques­
tion of the order of the differential operators, or the 
tensor structure of the counterterms. In Sec. 3 it is 
shown that a unique answer can be obtained in a special 
model, in which the whole interaction reduces to wave 
function renormalization. In addition, as has been made 
clear on the example of the scalar field theory[sJ, the 
transition to the Green's functions requires a consistent 
consideration of the contribution of one-particle terms 
to the spectral density. As a result we obtain the cor-

rect spectral representations for a renormalizable 
theory of a massive vector field, automatically taking 
into account the effects of renormalization. 

As usual in the dispersion relations approach[ 6 l, we 
shall operate with a vector source-current defined by 

6S 
J~(x)==i----S+ (1) 

6u~(x) ' 

where uJl ( x) is the out-field of a massive neutral vec­
tor boson, satisfying the commutation relations 

. ·( il~ilv \ (2 ) [u,(.r), u,.(y)j c:c- tD.v(:t- y) ~= --! guv +~ }D(x- y), 

corresponding to quantization with the supplementary 
condition a Jl uJl (x) =0, whereas the free Green's func­
tions satisfy the transversality condition: 8JlDt 11 (x) 
=m-2 811 c5(x). In addition we have to introduce into con­
sideration current-like operators satisfying the "equa­
tions of motion"[ 7 J of the type 

{jf,.(:r·) ) 
A,..(x, y) = -.---- ifr(Yo- Xo)[J11 (x), lv(Y) ]. (3 

li!lv(Y) 

Below we shall not deal directly with the operators (1) 
and (3), but rather with their vacuum expectation 
values, denoting, as usual, 

-i([J,.(x),Jv(Y)])o=/11v(x- y), (4) 

- <-liJ"~~) = f,.,a(x- y), (5) 
liu,(y) o 

. a(D) 
-W(Yo-xo)([J,.(x),Jv(Y)])o=f,., (x-y), (6) 

-{A11v(.t·, y))o= t., .. (x- y). (7) 

The multiplication with the theta-function in (6) is to 
be understood in the sense of Dyson, defined unambigu­
ously in[61 • 

2. DERIVATION OF THE SPECTRAL REPRESENTA­
TIONS IN THE DISPERSION RELATIONS APPROACH 

The conditions of locality and relativistic invariance 
allow us to assert that fJl 11 (x- y) is an antisymmetric 
Lorentz-covariant function vanishing outside the cone 
( x - y )2 ::::: 0. It can therefore be written in the form 

f,,.(x- Y) = ~ ds d"v(s)D,(x- y), (8) 

where Ds(x - y) is the Pauli-Jordan commutator func-
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tion for mass s 112, and 

(since Ds satisfies the Klein-Gordon equation for the 
free field, one may consider d1111 (s) to be a differential 
operator of at most second order). In (2) we have as­
sumed that the complete set of out-states contains only 
transverse (in the four-dimensional sense) vector par­
ticles of mass m. Therefore the integration in (8) 
starts from a threshold so > 0. 

The renormalizability condition for vector theories 
is the conservation of the vector source-current 
( n I a 11 J 11( x) I m) = 0 [9 ' 101 • This implies the trans­
versality of the function f 1111 : a11 f 1111 (x) = 0, leading for 
the spectral functions 11(s) and I2(s) to the relation 
11 ( s) = s 12( s ). Since the point s = 0 does not belong to 
the spectrum, the representation (8) takes the form 
(we omit below the subscript of the function l1( s)): 

. ""1. ( a"a' ) h"·l.r-y)== ds !J"'v+-- D,(x-y)l(s). 
. • li 

'·] 
where the spectral function I( s) has the well known 
expression in terms of the current matrix elements: 

(9) 

I (!r') = j_~~)~ ,2; (0 I h(O) In) (n I h(O) I O)o (Pn- k). (10) 
" 

Since current conservation implies P11 J 11 ( 0) = 0, 
where P 11 is the timelike energy-momentum vector of 
the intermediate state In), the 4-vector ( 0 I Jx ( 0) In) 
is space like; therefore the spectral function is positive 
definite. 

Usually one does not include the one-particle state 
into the sum over intermediate states (10 ), referring 
to the stability condition ( 0 I J A. ( 0) 11 ) = 0, and picking 
the lower integration limit in (9) to correspond to the 
two-particle state: s 0 > m 2. In fact, as has been shown 
by the example of the scalar field theoryrsJ, the one­
particle states, although not contributing to the spectral 
representation for the currents, become essential for 
the corresponding representations of the field opera­
tors. It is still more convenient not to include them in 
the sum and to consider them separately. 

In order to obtain the spectral representations of the 
advanced functions f~v we form the vacuum expecta­
tion values of the equations of motion (3 ), in the same 
manner as in[ 5 l: 

j 1,.• (x) =/,~;D) (.r) + /.pv(x) = 'fr (-xo) /uv (x) + /.pv(x) • (11) 

We now make use of the fact that the multiplication by 
the theta-function is here fixed by our method of extend­
ing the Fourier transform of the advanced function into 
the complex plane in such a manner that the contribu­
tion from the integral along a large circumference 
tends to zero. Formally this reduces to using the usual 
integral representation for the theta-function, and in 
particular the condition: 

fJ (x"'- Yo)'fr (Yo-- zo) ••• tl(vo- zzo) = 0, if Xo = Uo. 

a(D) (' apav) Dpv,s(x)=-tt(-xo) g"v-t--5 - D,(x) 

( Opiiv) .S(x) 
= guv+-5- D,"(x)-llpoll-..o-s-. 

It is usually assumed that the integral with respect to 
s in the spectral representation (12) for f~~) diverges. 

Therefore it is convenient to effect in (12) a identity 
transformation, separating explicitly the convergent 
part. As a result, one obtains for f~~) the represen­
tation: 

r /(s) a Q 
f•,,;Dl(x-y)=(-Q1,p)x .1 ds ( ')" Dpa,s(x-y)(- o,·)y 

· s-m -,, 

+ cw(-Q"v) .S(x- Y)+ CoDg,,.6 (x- Y) + CoD'b 1w1lvoll (x- Y), (13) 

where 

Cw =- \ -~"]~/;.-, CoD= r J(s)ds ' CoD'=- s /(s) ds ' 
:. (-'-·In·)' • s-m2 ,, s (14 ) 

and the notation -Q11 v = g11 v ( m 2 - c ) - a 11 a v has been 
introduced. We note that the operator -QIJ.v plays with 
respect to the function D~ 11 (x) the same role as the 
operator m 2 - [J plays in the scalar theory with re­
spect to the function Da(x): -Q1111 D::_ 11x(x) = g/lxo(x). 

In renormalizable theories the degree of growth of 
the Fourier transform f~ 11 (x) cannot be larger than 
two. Therefore the function A./lv(x), correspondiag to 
the contribution of the large circle to f~ 11 , must be a 
polynomial of degree at most two in the derivatives of 
the delta function. In general, this polynomial may have 
a complicated, non covariant form. However, if the 
whole function f~v is covariant, the noncovariant parts 
in fa(D) and AIJ.!I must compensate each other. Taking 
into11 iccount the structure of the quasilocal terms in 
(13), it is convenient to select >c11v in the form 

i. 1" (x- y) = i" ( -Q1,,.) o(x- y) + i.ogpv.S(x- y) + /.o'.S"o~·oll (x- y) · 

(15) 
Summarizing, we obtain for the total function f~ 11 (x) 
the expression 

a r l(s)ds a ( Q ) 
jpv(X- y) = 1-Q,,p)x J (s _ m")' Dpa, ,(x- Y) - crv y 

so 

+c!( -Q1") o (x- y) + cog,.,l\(x- Y) + c0'o1wOvoli(x- Y), (16) 
where 

c1 = cw + }q, co= CoD+ /,o, co'= CoD1 + t.o'. 

Equation (16) determines the spectral representation 
for the advanced Green's function up to a possible con­
tribution of the one-particle terms, which still needs 
to be investigated. The coefficients c1, Co, and c~ must 
be finite. At the same time, their components CiD and A.i 
may actually be infinite, after removing the intermedi­
ate regularization. Appeal to additional physical re­
quirements helps to make more concrete the values of 
these coefficients. 

3. STABILITY AND UNIT ARITY CONDITIONS 

Then 
~ .. 

a(D) s a(D) j 1" (x)= dsl(s)Dpv,s(x), 

Imposing on the Green's functions the condition of 
stability of the physical one-particle state, we obtain 

(12) two conditions .. 
where, by definition }.o =-co, /.o' = -co'. (17) 
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Before discussing the selection of the coefficient c1, 
we consider the role of the one-particle states in the 
spectral representations. 

The contribution of the one-particle intermediate 
state to the spectral density is proportional to 
( s - m 2 )2 5 ( s - m 2 ). It is obvious that the inclusion of 
such a term will not manifest itself in the functions 
fiJ.v· For ftv it should reduce to mutually compensat­
ing additions to the integral term and the constant CiD· 
However the question arises as to the direction of op­
eration of -Qil v, or equivalently, the order in which 
multiplications are carried out in the nonassociative 
product of generalized functions (p2- m 2 - iE:po rl 
x (p2 - m 2)5(p2 - m 2) in the p-representation. This 
problem does not arise in the integral term, for which 
the positions of all the singularities of the delta-func­
tions and the fractions do not coincide, and the order of 
action of -QiJ.v is irrelevant. Therefore, following the 
procedure developed for the scalar case, it is more 
convenient to considerthat the integration in the spec­
tral integral is carried out for s 0 > m 2, and the one­
particle term is considered separately, determining it 
from the solvability and unitarity conditions. 

On the basis of the solubility condition 

f~v(X- Y) = /"v"(x- y) - /.,v"(x- y). 

On the other hand, substituting a complete set of inter­
mediate states I n ) ( n I into the current commutator, 
and separating the contribution of the one-particle 
state, we have 

f"v(x- y) = /,~~ (x- y)+ contribution with c n;;;. 2, 

where 
(1) r f", (x- y) = J dz du f1,0" (x- z)D00 (z- n)/crv"(u- y). (18) 

The integral terms in f~p, f~p do not contribute to 
(18), since Dpa satisfies the free Proca equation. 
Consequently, one might try to find a nontrivial expres­
sion for f(l>, setting from the beginning I(s) =0. This 
is done in the next section. 

4. A MODEL FIELD THEORY BASED ON THE 
UNIT ARITY CONDITION 

Thus, we consider a model in which the one-particle 
state unitarity condition is exactly fulfilled, i.e., all 
current matrix elements ( 0 I J A ( 0) I n ) vanish for 
n .= 1. In such a model the equation fiJ.v = fl/~ is ex­
actly satisfied, and the model is determined by the 
equations 

fJw(x-y)= S dzdnf.,0"(x-z)D0a(z-n)fa,"(u-y), (19) 
/ 1.v"(x- y) = fw"(y- x), fJ!v(x- y) = /liv"(x- y)- /.,v"(x- y). 

(20) 
Taking into account the analogy of the form of the spec-
tral representations for the vector and scalar[ 5' 11 l 
cases, we obtain directly the following solution of the 
system (19) and (20): 

j~::(x-y)=(--Q",) pD~;(x-y)p(-Qo,) 

-(- Q",)po(:c-y)-o(x-y)p(-Q.v), 

f", (x- y) = I- 0",) pD,0 (J; - y) p (- (!0 ,), (21) 

where p is an integra differential operator of the type 

of i or N (cf.[l2 l). It is imperative to indicate which 
way the operator -QiJ.v acts, since, e.g., by reversing 
these directions we would get for fiJ.v an expression 
which vanishes identically. 

In this case it is of particular interest that the solu­
tion (21) allows orie to reconstruct the dynamics of the 
model. Indeed, since only the matrix element 
( 0 I JA 11) is different from zero, the Heisenberg cur­
rent JA is linear in the out-field, so that the relation 
(5) can be explicitly ''integrated,'' yielding 

!,,(_>·)=- S dyf,"·"(.t-y)u,(y). 

After this the Heisenberg field can be determined from 
its expression in terms of the Yang- Feldman equation. 
Utilizing the concrete form (21) of the solution for 
f~ v, we obtain 

J"(x) ~" (:- O.,lp ~dy {o (r,- y)gp,- D~.(x- y)p(- Q0_:}} 

X u,(y} + f>(- Q"v)u, (x), (22) 

l/" (x) =(1 -- Jp) ~dy {6 \.I:- y)gl',- n:. (t-:_ y) p (~ Q0~} U, (y), (23) 

One can now recognize how the Heisenberg current 
is expressed in terms of the Heisenberg field, i.e., 
reestablish the form of the dynamical law that would 
define our model in a Lagrangian approach. For this 
purpose it suffices to express the integral in (22) in 
terms of (2 3 ), and to determine the term ( -QiJ. v) uv 

by applying the operator -QIJ. v to the Yang- Feldman 
equation: 

(- Q",) u,(x) = (- Q",)U,(x) + fJ" (x). (24) 
As a result we obtain 

_ I f p , • 
J.,.(x) -- --.-..; ~ (- Q",) ------= --r p(- Q~,)} U,(x). (25) 

J --/p , ___ 1-Jp --·-

Comparison of (2 5) with (22) shows that no matter how 
we select the operator p we cannot simultan~ously get 
rid in (22) of the integral kernels containing I. The 
largest interes}: is presented by two special cases, when 
the operators I are absent in either of the two equa­
tions. 

The first possibility corresponds to the ''pure re­
normalization model," considered in[l2l. In this case 
p = -(1- Z112 )N = -(1- z112)/[1- (1- Z1/ 2)i}, and 
the simplest form is taken by the dynamical law in the 
Lagrangian formulation: 

J.,(x)= -(1-Z)S dy(-Q1,)b(x-y)Uv(y), (26) 

whereas the expressions (22) and (2 3) of J iJ. andy iJ. 
turn out to be fairly complicated (the operators I in 
these expressions, as in that for p show up in the de­
nominators). 

The second possibility, p = -(1- Z112 )/Z 112, corre­
sponds to a simpler form (without the operator i) of 
all the expressions characteristic for the axiomatic 
S-matrix theory: 

J~ (x) =- ~dyf~SR>(x- y)u,(y) = 

-- J -]·Z r Q Q ---vr ;_(~) + (-=---:Jl u, (x}-

(
t-]0 2 • (' a 

- -.--,.-) (- (!.,)~dyDp,(.?;-y)(- Q,.)u,(y), 
)L - ---

1-- z 
A"•R(.T- y) = -z (-Q"v)t'(x -y) (27) 
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(the superscript R refers in the sequel to quantities 
in the pure renormalization model). However, if we 
wish to have in the theory a dynamical law of the form 
JR = f( uR ), for which it is necessary to introduce 
first the Heisenberg field uR, the formalism of the 
theory will involve the operators i. The relation be­
tween JR and uR, in place of (26), will have the form 

1 - Z ( 1 -fZ A)-1 ~ l .. "(.r)=--- 1-l--.=-/ dy(-Q .. ,.)6(x-y) 
Z l'Z . 

( 1-l'Z A )-1 
X 1 + yZ I UvR(y), 

i.e., contains "infinite polynomials" in f. Since in the 
present paper we deal only with the spectral repre­
sentations, i.e., essentially with S-matrix theory, it is 
more convenient to select the second version. 

In the framework of this version of the theory it is 
fairly simple to consider a more general case of solu­
ble model, which is of independent interest. Indeed, 
the system (19)-(20) is satisfied not only by (27), but 
also by the more general solution: 

f~.(x- y) =A'~- Q..,..)JJ~,(x·- y)(- Qo~ -2A(- Q..,.,)6(x-y) 

+Bo,JM(x-y), 

/..,..(x-y) = A 2 (- Q..,..)D,.(x-y)(- Q0 ,), (28) 

where A and B are ordinary numbers: the solution 
(27) corresponds to A= -(1- Z1/ 2 )/Z1/ 2; B = o. In 
this solution, in addition to the operators -QJ.J.v, which 
together with na, and I would generate the "algebra" 
of the pure renormalization model, there appear the 
new differential operators a J.J.. The rules of operation 
with these should be defined independently, and we 
adopt the simplest possibility, when the direction in 
which the operator a J.J. acts is indifferent (this does not 
lead to any ambiguities). 

The expressions for the current, the operator AJ.J.v• 
and the Heisenberg field in the model (28) are obtained 
from the pure renormalization model (27) by means of 
the substitution: 

l"(x) =J"R(x) +Bo .. a,.u.(x), 

A ... (x, y) = A"vR(x, y) + Ba .. a.6(x- y), 

u .. (x) = u .. n(x)- Bm-~a .. a,zr:.,(x). (29) 

The most interesting feature of this new model becomes 
manifest if we try to find the relation between the cur­
rent and the Heisenberg field, for which it is necessary 
to use, in addition to (24), the relation 

a .. u .. (x) = a .. u .. (x) + rn·2a.,J.,(x). 

It turns out that 

A(2-A) r 1 
h(x)= _ .I dy(-Q .. ,)b(x-y)--.U,(y) 

1-AJ' • t-Al 

Thus, we encounter an interesting situation. The 
Heisenberg current is Hermitian, locally related to the 
out-fields and the causality condition is verified. At 
the same time the relation between JJ.J. and UJ.J. which 
was found here corresponds to a nonlocal interaction 

Lagrangian of the form 1> : 

·I ( t- 2) A I A 

!l'I(.r)=- · · 2 :u.(.r)(l-.tl)-1 J dy(-Q .. ,-)6(x-y)(1-Al) 

1 - a .. a. 
XUv(!IJ :--JJ(1-.-1l)':u .. (x) • Uv(x) :. 

2 1 + JJm-2 0 (1- Al)-2 (31) 

We have arrived at a model in which the S-matrix and 
the current satisfy all the axioms of local field theory, 
whereas the Lagrangian formulation formally corre­
sponds to a nonlocal (or formally unrenormalizable) 
theory. 

This investigation of the model allows us to take 
into account exactly only the contribution of one-parti­
cle terms in the spectral representation. 

5. COMPLETE SPECTRAL REPRESENTATIONS FOR 
CURRENTS AND FIELDS 

We now write out the complete spectral representa­
tions for the currents, taking into account the condi­
tions of stability (17), and adding to (16) the contribu­
tions of the one-particle terms of the type (27). Here 
we set B =0, since we always include in AJ.J.ll only the 
terms which coincide in structure with the quasilocal 
terms in the spectral representation for f~~D). In other 
words, we write 

t~.(x-y)=~> {r </!..'1,:~;. D~, .• (:v-y)- A·D~a(x -vl} (- Qa:} .. 
+(cw+"-1 - A')(- Q..,..)6(x-y) (32) 

and accordingly 

/11-.(x- y) = <.=- Q..,..) n (sl~)n~~' D,.,,(x- y)- A2D~0 (x- y)}(- Q~). 
'• (33) 

The representations (32) and (33) are structurally ana­
logous to the appropriate representations of the 
scalar case[5 1, and the unitarity condition yields ex­
actly the same relation -2A = C1D + 'A1- A2, whence 
A=1- (1- ClD+ Al)112 • 

Naturally, the identification of the constants A, c1D 
and 'A1 in the renormalized (R) and unrenormalized 
(U) theories will be the same: 

1-Za 
a) R-theory 1., = -z;-· c~n = -l.~o A= o, 

b) u-theory 1.,=0, CJD=Z3--1, A=1-l•Za. 

Going over to the representations of the fields we 
obtain for the cummutator function: 

l)The denominator involving the d'Alembertian in the second term 
of (31) should be interpreted in such a manner as to verify the solvability 
and unitarity conditions for the S-matrix. It is easy to see that for this 
the second terms has to be interpreted in the form (for simplicity we set 
now I= I) 1 • - :!' m·' (1 --· .. 1) __ , :u 1, (x) ~ cly/J(.r- y)iJ,,O,·lldY) :, 

w}lere D(x-y) is the Green's function with symmetrical evasion of the 
pole, corresponding to an effective mass M2 = -m2 (I-A)2 B-1 . 

A second possibility consists of representing the second term as the 
formal sum of an infinite series in the powers of the d' Alembert opera­
tor. Such a treatment corresponds to a formally unrenormalizable the­
ory, in which the degrees of growth of the matrix elements increases 
without bound as the order of perturbation theory is increased. How­
ever, the summation of the series yields, e.g., for the current Green's 
function growth of secor.d order, agreeing completely with the "non­
local" interpretation. 
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G.,(x- y) = i ([U~(.r), U,.(y)])o = (1- A) 2 D~v(.r- y) 

r l(s)ds D +.) (s-m')2 l"·,,(x-y). .. 
In addition, it is interesting to find the expression of 
the matrix element of the Heisenberg field between the 
vacuum and the one-particle state. Starting from the 
spectral representation for f~ 11 it is easy to obtain 
that 

(OIU11(x)l1)= (1-A)(Oiu 11 (x)l1). (34) 

As regards the vacuum expectation value of the 
equal-time commutator of the currents could be com­
puted, of course, by multiplying 1i(x0 - y0 ) by f/J. 11 ; but 
such a procedure would be very clumsy for A.,. 0. 
Therefore it is convenient to use a roundabout way, 
used earlierr13• 14l for the Heisenberg field operators 
themselves (rather than their matrix elements). Owing 
to the current conservation, a /J.f/J. 11 =0 and ti;J.erefore, 
taking the divergence of the Dyson part f~~J, yields 
exactly the necessary combination li(xo - Yo )fo. Equa­
tion (11) implies the relation 

6(xo ..,- Yo)/CN(X- y) = a .. f .. ,•(x- y)- a .. l.~v(x- y). 

Substituting here (32) for f~ 11 and (15) for ""-/J.II and 
taking into account the interpretation of the coefficients 
A and Xi we obtain for the R-theory and for the u­
theory 

r l(s)ds 
6(xo- Yo)([Jo(x),J,(y)])o = {),.,. .l--iJ,.6(x- y). 

s . , (35) 

We have already related the divergent integral c1D 
with the renormalization constant Z3 for the field op­
erators. One could try to relate also the other two 
integrals CoD and c~D (cf. (14)) with the renormaliza­
tion constants which appear in the usual Lagrangian 
scheme. First of all, the argument developed in the 
scalar case[ls] lead here also to the identification 

• (' h-(s)ds 
-Cov = 6m- = .1 s _ m" , 

,, 
fr.(s) = Z3l"(s). mo2 = m2 + bm2• 

The last integral c~D is not expressible only in terms 
of the renormalization constants Z3 and m 2 ; after 
separating the standard divergent constants, there 
remains a presumably convergent integral: 

Cov'=~~-(s)ds =m2 +6m' -mLj-~ l(s)ds m'. 
.. s z3 ;. s(s-m0 ) 0 

6. CANONICAL COMMUTATORS 

One could also write out the equal-time commuta­
tion relations for the fields U iJ., but they are not very 
instructive, since they involve all four components of 
the field U/J., of which only three correspond to inde­
pendent physical quanta. Therefore, in order to verify 
the correctness of our adopted identification of the in­
tegrals, it is desirable to consider the canonical com­
mutation relations, which are most conveniently sought 
in the form of the commutators between the creation 
and annihilation operators of physical quanta. The ana­
logs of these operators for the Heisenberg fields are 
the amplitudes introduced by Lehmann, Symanzik and 
Zimmermann[le] for the formulation of the asymptotic 
condition. [l7J 

For the scalar field such amplitudes are the (time­
dependent) coefficients of expansion of the Heisenberg 
field B(x) with respect to an orthonormal basis of 
positive- and negative-frequency solutions of the free 
Klein-Gordon equation, 

(j)k±(l:) = (2rr)-'1•(2k0 )-'l•e±ikx(ko = yk0 + m•): 

B(~·) =Sdk {<Pk+(J:)B+(k,.ro) +<Pk-(x)B-(l•,xo)}, 

where the Lorentz-invariant inner product on the hy­
perboloid has the x-representation: 

(q>1 (.r). 'I':! (x)) = -i) dx(iJorpt(.r)<f".!' (.r)- <p,(.r)iJo<[':! (.r) ). 

The vector Heisenberg field off the energy shell has 
both transverse and longitudinal components: 

U11 (x) = V 11 (x) + A11 (.r), 

where a/J.v/J.(x) =0, a/J.A 11 (x)- a 11A/J.(x) = 0. We ac­
cordingly introduce two sets of solutions of the Klein­
Gordon equation for the vector field: the transverse 
ones VjJ. ;k,a( X) = ( 211' rs/a (2ko r112 e±ikx( lijJ.o~! 
- li/J.i )e~(k) and the lo_ngitudinal ones "A.tk(x) 
= (27r t 312 (2ko t 112 X e±1~1J./m. Their norm is defined 
through the inner product 

(q>~(.r).lj>.(.t)) = -i ~ dx(iJoql11 (l')lj>1," (~·)- q>11 (.r)iJo¢ 11' (x) ), 

and the orthonormality conditions take the form 

u.: k• ~:. k') = b(k- k') . 

We now expand the field U/J.(x) with respect to these 
solutions: 

u,,±(l') = ~ dk (v,~ k .• (.r) v.•·(k, .ro) + i.~; k(.r).\±(k, .ro) }, 

u .. (x) = ~' .. +(x) + u .. -(.r) 

where 

l'.± (k .. ro) = ( F 11 (.r), ,.; k •• (.1·) ), .\±(k. J'o) = (U1,(l·). 1..~\ (.r) ). 

For the amplitudes V"i<k, Xo ), A ±(k, xo) we construct 
the (vacuum-averaged) canonical commutators, which 
are expressed in terms of the Heisenberg commutation 
function G/J. 11 : 

. { ""~· I(s)ds } ([V.-(k,.ro),V.·+(k',.ro)])o= (1-.1) 2 + , . .s •• ·b(k-k'), 
. ., (s- m-)-

((l'.-(k, .ro), ;\+(k', xo)])o = ([A-(k, xo), A+(k', xo)])o = 0. 

For the same amplitudes one can formulate the 
asymptotic condition: 

lim (01 Va -(k, .ro) In) = (1- A) (0 I b.-(k) In) .S,, 

((the operators b~(k) referring to the physical quanta 
are introduced in [lOJ) 

lim (01.\-(k,xo) In)= 0. 

Thus, in complete agreement with the fact that there 
are no longitudinal quanta in a complete set of asymp­
totic states, it turns out that the correctly selected 
longitudinal components of the Heisenberg field U/J. (x) 
vanish in the limit x0 - "". On the other hand, the 
vanishing of the second commutator tells us about the 
dynamical independence (in a weak sense) of the longi-
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tudinal and transverse components for the field Ull (x). 
Finally, the canonical commutator of the longitudinal 
components themselves also vanishes. 

Thus, it turns out that not only in the case of simple 
extensions off the mass shell, but also in the transi­
tion to interpolating fields, the longitudinal component 
of the vector field is asymptotically bounded by a 
vanishing c-number. As regards the transverse com­
ponent, it naturally acquires a operator addition when 
the interaction is switched on, which in the canonical 
commutator leads to the substitution 

'~"' I(s)ds {Zs-• in the R-theory 
1-+(1-A) 2 + = 

·. (s- m2 ) 2 1 in the U-theory, 
,,~ 

justifying the above-mentioned interpretation of the 
spectral integral c1D· 

The last integral c~D which is specific for the 
vector theory does not enter anywhere, except into the 
Schwinger term of the current commutator (35). 

In conclusion the authors express their gratitude to 
M. K. Polivanov and A. D. Slavnov for valuable critical 
remarks and to the participants of the Conference on 
Elementary PartiLcle Theory at the Institute for Theo­
retical Physics of the Ukrainian Academy of Sciences 
for discussions. 
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