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The magnetization of a holmium single crystal in the basal plane and along the hexagonal axis is 
measured at temperatures between 80 and 300°K in pulsed magnetic fields up to 240 kOe. The uni
axial anisotropy constants of holmium are calculated from the magnetization data by taking into 
account the paraprocess and the interaction responsible for the helicoidal structure of the metal. 
Between 80 and 122 .5°K the temperature dependence of the first uniaxial anisotropy constant of 
holmium is satisfactorily described by the theoretical formula. The value of the first anisotropy 
constant at 0°K, obtained by extrapolation from the temperature region above 80°K, is (2.5 ± 0.25) 
x 107 erg/g. 

As is well known, the energy of magnetic uniaxial 
anisotropy of ferromagnetic rare-earth metals with 
nonzero orbital angular momentum (terbium, dyspros
ium, holmium, erbium, thulium) is so large that in the 
magnetically-ordered state none of these metals could 
be magnetized to saturation along the direction of the 
difficult magnetization in fields on the order of 100 
kOe[l-al. Yet the behavior of such strongly anisotropic 
ferromagnets in fields exceeding the saturation field is 
of considerable interest, since such measurements 
make it possible to determine the magnetic anisotropy 
constants, and also to estimate the magnetization 
anisotropy, the existence of which follows from the 
most general considerations in the case when the en
ergy of the anisotropy is comparable in magnitude with 
the energy of the change interaction [ 4-sJ. 

Among the foregoing rare-earth ferromagnets, 
holmium is the most convenient for the investigation 
of the magnetization along the difficult direction, since 
it has the lowest magnetic-anisotropy energy. This is 
seen from the comparison of the anisotropy of the 
paramagnetic Curie point, which for terbium, dyspros
ium, holmium, and erbium amounts to 44, 48, 15, and 
29°K, respectively[?]. 

We present below the results of measurements of 
the magnetization of single-crystal holmium grown by 
the method of recrystallization annealing. The meas
urements were performed in the temperature interval 
8-300°K in pulsed magnetic fields up 240 kOe along 
the hexagonal axis of the crystal {the difficult-magneti
zation direction) and in the basal plane (the easy
magnetization plane), using the setup described in(a,DJ. 

Figure 1 shows the isotherms of the magnetization 
in the basal plane, while Fig. 2 shows the isothermal 
of the magnetization along the hexagonal axis of the 
crystal. 

In the paramagnetic temperature region ( T > ®a 
= 133°K), the magnetization in both directions depends 
linearly on the field, with the exception of the strong
field interval near ®a. 

In the temperature interval 20-133°K, holmium has 
an antiferromagnetic helicoidal structure with a heli-

coid axis parallel to the hexagonal axis of the crys
tal[lo,uJ. As shown in[ 1a' 13l, when the helicoid in the 
basal plane is magnetized in fields smaller than the 
critical field He, the magnetization increases rela
tively slowly. In the field He, the helicoid becomes 
destroyed, causing a magnetization jump, and when 
He s H s Ho the growth of the magnetization is due to 
the gradual transformation of the resultant sinusoidal 
structure intq a collinear ferromagnetic structure. 
When H 2:: H0 , the growth of the magnetization is con
nected with the paraprocess. The experimental iso
therms of the magnetization of holmium in the basal 
plane (Fig. 1) agree qualitatively with the theoretical 
curves, and the values of He determined from our 
measurements are close to the data given by Flippen[ 14l. 

At T < ®a, the isotherms of magnetization along the 
hexagonal axis {Fig. 2) show clearly two sections, a 
relatively rapid increase in fields weaker than the 

FIG. I FIG. 2 

FIG. I. Dependence of the magnetization of holmium in the basal 
plane on the field. Curve 1-80; 2-89; 3-100; 4-116; 5-133; 6-155; 
7-173; 8-203; 9-218; 10-292°K. 

FIG. 2. Dependence of the magnetization of holmium along the 
hexagonal axis on the field. Curve 1-80; 2-85; 3-97; 4-107; 5-116; 
6-123; 7-141; 8-173; 9-198; 10-227; 11-240; 12-294°K; dashed
dependence of the absolute value of the magnetization on the field. 
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saturation field Hs, due to rotation processes, and a 
slower growth at H > Hs, due to the paraprocess. 

We note that in the investigated temperature inter
val, the susceptibility of the paraprocess is large and 
amounts to 0.15-0.3 of the susceptibility due to the 
rotation processes, i.e., it is comparable with the 
latter in order of magnitude. The anisotropy of the 
magnetization of holmium in the magnetically ordered 
state at H > Hs does not exceed the errors in the 
measurements of the absolute value of the magnetiza
tion (~to%). 

In the calculation of the anisotropy constants, it is 
usually assumed that the magnetic moment remains 
constant in the process of rotation. This assumption 
is justified in the case of ferromagnets of the iron 
group, in which the anisotropy energy is smaller by 
several orders of magnitude than the energy of the 
isotropic exchange interaction. In heavy rare-earth 
metals, the energy of the uniaxial anisotropy is com
parable in magnitude with the energy of the exchange 
interaction, and the magnetic moment changes, in 
general, whenever it deviates from the basal plane[ 4l. 
Therefore to calculate the constants of the uniaxial 
anisotropy of heavy rare-earth metals it is necessary 
to know the dependence of the absolute value of the 
magnetic moment of the crystal on the field when the 
crystal is magnetized along the difficult direction be
low the saturation field. 

We describe below briefly the method used by us to 
calculate the constants of the uniaxial anisotropy of 
holmium with allowance for the paraprocess and the 
energy of the helicoid. 

The energy of the helicoid can be written in the 
form [12,13] 

Fh= -I,(a,.a,.-cl)- h(cr,crn+2) -· · ·. (1) 

Here a n• an.1, and an. 2 are the magnetizations of the 
n-th, (n + 1)-st etc. layers, and in the case of magneti
zation along the axis of the helicoid we have I an I 
= I an.1l = I an. 2l = a, l1 and l2 are the integrals of 
exchange interaction respectively between the nearest 
layers and the layers that are separated from one 
another by one layer. With allowance for the helicoidal 
structure, the energy of the holmium in a field parallel 
to the hexagonal axis is 

E = £ 0(o)- a"(I1 (sin' 'lj; -1- cos21j: cos a) -1- /2(sin2 lj; -1- cos21jl cos 2a)] 
+ K1 sin2 \(' -1- K2 sin'¢- !fa sin~·. (2) 

Here E0 ( a) is the exchange energy inside the layer; 
K1 ( a) and K2( a) are the first and second constants of 
uniaxial anisotropy, and in accordance with the theo
retical papers [4 ' 5' 151, we propose that the constants of 
the constants of the anisotropy depend on the field and 
the temperature only via the magnetization; 1/J is the 
angle between the direction of the magnetic moment of 
the layer and the basal plane; a is the angle between 
the projections of the magnetic moments of neighbor
ing layers on the basal plane. 

Minimizing (2) with respect to a, z/!, and a, we 
arrive at the following conclusions: 

a) When the helicoid is magnetized along the axis, 
the angle between the projections of the magnetic mo
ments of the layers on the basal plane in fields 
H < Hs is constant and is equal to the angle of the 
helicoid a 0 in the absence of a field. 

b) At H < Hs the magnetization O'c of the helicoidal 
ferromagnet in a field parallel to the hexagonal axis is 
described by the same relation as for an ordinary uni
axial ferromagnet: 

(3) 

For a helicoidal ferromagnet however, the first uni
axial anisotropy constant K1 in (3) is replaced by the 
effective first anisotropy constant K1eff, which in
cludes the contribution due to the helicoidal interaction: 

(4) 

The addition t..K characterizes the energy of destruc
tion of the helicoid upon magnetization in the basal 
plane, and can be calculated as the work necessary to 
destroy the helicoid from the isotherms of Fig. 2: 

b.K = .!_allo= s'n da. 
'2 0 

(5) 

c) The absolute magnitude of the magnetic moment 
a in a field parallel to the hexagonal axis equals, ac
curate to terms of first order of smallness in 
(a- as)/as, 

a = <18 - X {II, -ll :: - ( dl~~ff ) a=a [ 1 - ( :: ) 2] 

s 

- ( (~!_) v~J 1 - ( :c, ) ']} . (6) 

Here as is the magnetization in the saturation field 
along the hexagonal axis, x is the susceptibility of the 
paraprocess (in calculating the value of x, accurate to 
terms of first order of smallness in (a- as)/as, the 
susceptibility of the paraprocess can be assumed to be 
isotropic and independent of the field). 

According to our experimental data, with the aid of 
relations (3)-(6) we calculated by the method of suc
cessive approximation the dependences of the absolute 
value of the magnetization a of holmium in the case of 
magnetization along the hexagonal axis with H :S Hs, 
and the dependence of the anisotropy constants of this 
metal on the magnetization. 

In the zeroth approximation, it is assumed that the 
magnetic moment of the layer at H < Hs is constant 
and equals as; the anisotropy constants are calculated 
from the isotherms of the magnetization with the aid 
of relation (3 ). From the calculated functions K1 eff( a) 
and K2( a) one determines the first derivatives of the 
anisotropy constants, and this makes it possible to 
find, with the aid of relations (6) and (3 ), the values of 
a(H) when H :S Hs, the anisotropy constants in the 
first approximation, etc. The number of approxima
tions was determined by starting from the requirement 
that the error due to the approximate nature of the cal
culation be much smaller than the experimental error. 
The dashed curves in Fig. 2 are the plots of a(H) de
termined by us in this manner for H < Hs. 

We note one more detail in the processing of the 
experimental data. The presence of an appreciable 
paraprocess makes it impossible for us to regard the 
anisotropy constants and independent of the field. 
Therefore the anisotropy constants in the first and 
succeeding approximations were calculated by means 
of formula (3) at a constant magnetization, using dif-
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FIG. 3 FIG. 4 

FIG. 3. Dependence of the anisotropy constants of holmium K1 eff 
and K1 on the magnetization a and on the reduced magnetization m = 
afa0 (a0 -magnetization at 0°). e-for K1 , Q-for K1 eff, dashed curve
for K1 (m) = (3/2) k~I5 1 2 [2'-1(m)]: 2.5 X 107 I512 [.2'-1 (m)] [.erg/g). 

FIG. 4. Dependence of the anisotropy constants of holmium K1 eff 
and K1 on the temperature. For K1 : 0-H = 0, e-H = Hs; for K1 eff: 
()- H = 0, ,__H = Hs. 

ferent isotherms ac(H), and not only one isotherm as 
is customary. 

Figure 3 shows the plots of Kt eff and Kt against 
the magnetization, calculated by this method, and 
Fig. 4 shows plots of K1eff and K1 against the tem
perature. The second constant of uniaxial anisotropy 
of holmium in the investigated temperature interval 
(80-122.5°K), according to our measurements, is 
negligibly small compared with the first ( K2 < 3 
x 105 erg/ g). 

It is seen from Figs. 3 and 4 that in holmium, at 
nitrogen temperature, K1 reaches 107 erg/g, which, 
while somewhat smaller, is comparable with the aniso
tropy energy of dysprosium and terbium [2l. It follows 
also from our results that in holmium the interaction 
giving rise to the helicoid makes an appreciable con
tribution to the effective first constants of the uni
axial anisotropy K1 eff. 

In the interpretation of the experimental results and 
in their comparison with the theory, it is more con
venient to use not the anisotropy constants K1, K2, etc., 
but the coefficient of expansion of the anisotropy energy 
is spherical harmonics k2, k4 ... kz)[ 15l. In the case 
K2 = 0, the values of K1 and k2 are connected by the 
relation K1 = 3k2/2. 

It is shown in[ 16l that the temperature dependence of 
the anisotropy coefficient k2 of terbium and dysprosium 
is satisfactorily described by a relation that follows 
from the theory of single-ion anisotropy[15l 

k2lo(T,/J)] =k2°h,{.P-t[m(T,I/)]}. (7) 

Here kg is the value of the coefficient k2 at 0°K, l5;2 
is the reduced hyperbolic Bessel function, 2'-1 is the 
reciprocal Langevin function, m = aja0 is the reduced 
magnetization, and a0 is the magnetization at 0°K. 

The experimental dependence of the coefficient of 
uniaxial anisotropy of holmium k2 on the magnetiza
tion, obtained by us, is also well described by relation 
(7) (see Fig. 3 ), and the value of the coefficient k~ at 
absolute zero, obtained by extrapolation of the experi-

mental data to the value m = 1, is kg = ( 1.65 ± 0.17) 
x 107 erg/g. This corresponds to the value of the first 
anisotropy constant at 0°K, K~ = 3kgj2 = (2.5 ± 0.25) 
x 107 erg/g (under the condition that the second aniso
tropy constant at 0°K is equal to zero). 

A comparison of the values obtained in our investi
gation for the anisotropy constants with the data for 
terbium and dysprosium [9 • 15] shows that in holmium 
the energy of the uniaxial anisotropy is smaller by a 
factor 2-3 than in terbium and dysprosium. This fact 
is attributed to the dependence of the symmetry of the 
spatial distribution of the charges of the electrons of 
the unfilled f shell in the atoms of the metals under 
consideration on their atomic number[ 17l, The cloud 
of charges of the electrons of the f shell in terbium, 
dysprosium, and holmium is oblate in the direction of 
the magnetic moment of the ion, while in the case of 
erbium it is prolate, the minimum spatial anisotropy 
being possessed by the holmium ion, leading to a 
smaller uniaxial anisotropy energy compared with the 
other heavy rare-earth metals. 

The authors are deeply grateful to K. P. Belov for 
interest in the work and for numerous hints. 
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