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The heat conductivity of the current carriers in Bi has been determined by a study of the effect of a 
strong classical magnetic field on the total thermal conductivity of the crystal. In this way the Lorentz 
number and the Wiedemann- Franz law could be determined. At T = 80-100°K, the Lorentz number 
corresponds to elastic scattering. The value of the Lorentz number at T < 30°K indicates the inelastic 
character of the scattering of the carriers. An analysis showed that the inelasticity due to intravalley 
scattering by acoustic phonons is small and cannot explain the experimental results. The observed in
elasticity may be due to intervalley scattering by the current carriers or to their mutual scattering. 

INTRODUCTION 

THE parallel measurement of the electrical conductiv
ity (a) and the electron heat conductivity (Ko) of a con
ductor allows us to determine the Lorentz number L in 
the Wiedemann- Franz law: K 0pT = L. Subsequent com
parison of the experimental value of the Lorentz number 
with its theoretical value for different electron models 
of a conductor can serve as a source of information on 
the spectrum of the carriers and on the mechanism of 
their scattering in a crystal. Information on the second 
problem is especially important, since other known ex
perimental approaches to its solution frequently lead to 
ambiguous conclusions. Analysis of the Wiedemann
Franz law at least allows us to carry out a review of 
the possible scattering mechanisms in the conductor 
under study. If we are dealing with semiconductors and 
semimetals, for which phonons make a contribution to 
the thermal conductivity along with electrons, then the 
question arises as to the method of separate determina
tion of the electron and phonon components of the heat 
conductivity of such a conductor. The effect demonstra
ted by a strong transverse magnetic field on the total 
heat conductivity Ko can be used as such a method. 

We have in mind the classical case of a strong field 
uH/c » 1 (u is the mobility), which, because of the 
rather high temperature T of the experiment 
(koT » fleH/m*c), does not produce any characteristic 
quantum effects. 

In the analysis of the heat conductivity of Bi, it is 
necessary to remember that electrons and holes enter 
into the composition of its carriers in equal concentra
tions, and therefore, even in a limitingly strong mag
netic field, the electron component of its heat conductiv
ity is not completely suppressed. The remaining part of 
this heat conductivity (as H- 00 ) can be determined 
from theoretical formulas, which contain components 
of galvanomagnetic (Pij) and thermomagnetic (aij) ten
sors of Bi, which can be suitably determined experi
mentally. 

If the coordinate axes 3 and 1 are directed along the 
trigonal and binary axes of the crystal, while the axis 2 
is perpendicular to 3 and 1 and is directed along the 

bissectrix direction, then the formulas for the remain
ing electron heat conductivity along the two fundamental 
directions of the Bi crystal have the form (see the 
Appendix): 

(1) 
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Still another circumstance is associated with the bipolar 
nature of the current carriers in Bi; this must be kept 
in mind in the analysis of its heat conductivity. (1] In 
contrast with the electric conductivity (a = a e + oh), the 
total heat conductivity of the electrons and holes is not 
an additive quantity, and contains a component which is 
determined by bipolar thermal diffusion: 

+ +T UeUh 
Xo = xe xh --- ( a.1 - a0)0. 

a.+ ah 
(3) 

During the past forty years, a number of researches 
have been published in which the analysis of the heat 
conductivity of Bi at low temperatures has been carried 
out by the method of a strong magnetic field, l2 l but none 
of them took into account, whether wholly or in part, 
those special features of this method which were dis
cussed in connection with Eqs. (1), (2), and (3). 

Inl3 J, the total electron heat conductivity and its 
components, which appear in Eq. (3) (for the interval 
T = 80-300°K), were calculated on the basis of known 
data on the partial values of the concentration, mobility 
and chemical potential of electrons and holes, which 
were obtained by analysis of a large amount of experi
mental results. The lattice component of the heat con
ductivity was calculated here as the difference between 
the experimentally measured value of the total heat 
conductivity Ko and the computed value Ko. In the pres
ent work, the values of the total heat conductivity of the 
crystal Ko and its lattice component K were measured 
experimentally, while the value of the electron compon
ent was computed from the difference of the experimen
tal heat conductivities Ko = K0 - Kz. After giving the ex
perimental results, we shall make a comparison of the 
results of the determination of Ko here for two different 
approaches to the analysis of the heat conductivity of Bi. 
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EXPERIMENTAL RESULTS AND THEIR DISCUSSION 

The value of the heat conductivity was determined by 
the method of stationary heat flow between the sample, 
soldered to the end of a vacuum chamber and placed in 
a liquid thermostat (nitrogen, oxygen, helium). Carbon 
resistors served as thermometers for the range 
2°-40° K and copper- constantan thermocouples for the 
range T > 40°K. The thermal emf of the studied sam
ples was measured in relation to copper. The length of 
the single crystals exceeded 50 mm, the transverse 
dimensions amounted to 1.5-4 mm. 

Figure 1 shows some typical curves for the depen
dence of the change in the total heat conductivity of the 
crystal t.K0 on the magnetic field intensity H. In single 
crystals of pure Bi, because of the high mobility of the 
current carriers, complete saturation was achieved in 
all cases. 

Figure 2 shows the principal results of the investiga
tion of the heat conductivity of pure Bi. Two of the 
studied single crystals of longitudinal (VT II C3 ) and 
transverse (VT 1 C3 ) orientation had resistance ratios 
P300oK/P4.2oK of 230 and 390, respectively and diam
eters of 2.56 and 2.65 mm, respectively. The electron 
heat conductivity was determined as a sum: Ko 

= Ko(H- 00 ) + OK. The first component gave curves of 
the type shown in Fig. 1, and the second was determined 
from Eqs. (1) and (2). The upper two curves (7 and 8) 
characterize the anisotropy of the total and the lattice 
heat conductivities of the crystal. Curves 3 and 4 show 
how the total electron heat conductivity of Bi(Ko) changes 
with temperature along the two principal directions of 
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FIG. I. Typical curves for the dependence of the change of the total 
heat conductivity on the magnetic field intensity for different tempera
tures in single crystals of pure Bi of two orientations: I - V'T II C3, 2 -
V'T 1 C3; a - T = 27°K, b - T = 95°K 

FIG. 2. Temperature dependence of the total K0 11, 1 (I ,2) and elec
tron Koll, 1 (3,4) heat conductivities of pure Bi single crystals: I and I' 
for V'T II C3, 2 and 2' for V'T 1 C3 ; dashed parts !', 2', 7' are taken irom 
[ 7 ];3 and 3' for'VT II C3;4 and 4' for'VT 1C3;dashed partsof3', 4', 
5', 6' are computed by us from the data of [8 ); 5 and 6 -relative values 
of K 0/K0 for'VT II C3 and V'T 1 C3 ; 7 and 8- anisotropies of the total 
and lattice heat conductivities. 

the crystal. Curves 5 and 6 show how the relative frac
tion of these two components of the electron heat con
ductivity changes with temperature. 

Our experimental data were obtained in the tempera
ture range 2-100°K. The dashed curves 3', 4', 5', 6' 
for the range 1.8-1.3° K were computed by us from the 
experimental data ofl 4J. A certain lack of agreement of 
curve 3' and 4' with our curves 3 and 4 can be attribu
ted to the difference in the purities of the crystals, 
which has a strong effect on the heat conductivity of Bi 
in this range of temperatures (below 3 o K). It is essen
tial that curves 3' and 4' have the form expected for the 
region of very low temperatures, when the heat conduc
tivity of the electrons is fundamentally determined by a 
heat capacity that decreases with temperature. In the 
range of temperatures 10-100° K, the increase in the 
heat capacity of the electrons with temperature is 
almost neutralized by the decrease occurring in the 
length of the free path. Curves 5 and 6 of the lower part 
of Fig. 2 show that the relative part of the electron heat 
conductivity of Bi, which becomes a difficult quantity to 
measure for T < 20°K, increases up to entirely meas
urable values for T < 3°K and increases rapidly with 
further decrease in the temperature. 

1. HIGH TEMPERATURES: 80-100°K 

After finding the electron heat conductivity of the 
conductor, one must analyze the Wiedemann- Franz law 
K 0/oT = L. As was pointed out above, a comparison of 
the experimental value of the Lorentz number with the 
theoretical value can be the source of important 
information on the current carriers and heat carriers 
in the crystal. The data on the electric conductivity a 
of the single crystals studied, which are needed for this 
analysis, are shown in Fig. 3. The experimental data 
for the Lorentz number for T > 2° K along the two prin
cipal directions of the bismuth crystal, L1 and L 11 are 
shown in Fig. 4. It was shown above that inl41 there are 
all the necessary experimental data for the calculation 
of K 0 below 2°K, and consequently, all that is needed for 
the calculation of L. For the single crystals of Bi, No. 7 
and No. 4, studied inl 4 J for the temperature range 
1.3-1.8°K, the values obtained for L1 and L 11 were close 
to 2 X 10-8 V2-deg-2 • 

It is seen from Figs. 2, 3, and 4 that for T = 80°K, 
the anisotropy of a does not amount to 10%, while the 
anisotropy for Ko and L exceed 40 and 30%, respectively. 

From Eq. (3), one can obtain an expression for the 
total Lorentz number 

~ =L= --~+-~+ OeOb(~th- rLe)~ (4) 
ol' 1-l-oh/Oe l+o./oh (o.+oh)" 

where Le h = Ke h/o e h Tare the partial Lorentz num
bers for ~lectrons ana holes, which depend on the re
duced chemical potential J.1. * = J.L/koT, the scattering 
mechanism and the dispersion law. If the dependence of 
the relaxation time on the energy is the same for all 
directions of the crystal, then Le and Lh are isotropic 
quantities. The numerical values of Oe, oh, ae, ah, /.Le, 

and J.i.h are given inl3 J. The partial thermal emfs 
ae and ah are isotropic and the factors ahae in the 
third component of Eqs. (3) and (4) differ by a factor of 
three for the two principal directions of the bismuth 
crystal (1 and II C3 ). The anisotropies of Ko and L are 
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FIG. 3. Temperature dependence of the specific electrical conduc
tivity for the two principal directions of the Bi crystal: I - j II C3, 2 -
j 1 C3. 

FIG. 4. Experimental results of the determination of the Lorentz 
number for I - 'VT II C3 ; 2 - 'VT 1 C3. The solid lines represent there
sults of calculation. The dashed line is the Sommerfled value. The dot
dash line represents the result of calculation from the formula ( 11). 

connected with these very components, which determine 
the contribution of thermal diffusion in (3) and (4). 

The difference L 1 - L11 = 0.53 X 10-8 V2-deg-2 , com
puted with the help of data on the partial values of a, 
a, and J.1., given in l3 J , is in excellent agreement with the 
experimental value of this difference, which is shown in 
Fig. 4 (0.55 X 10-8 V2-deg-2 ). 

By solving two equations of type (4) for L 1 and L 11 
at the values of the total Lorentz number L 1 and L 11 

known from experiment, we obtain: Le = 1.5 
X 10-8 V2-deg-2 , Lh = 1.45 X 10-8 V2-deg-2 • Inl3 J, the 
partial values Le and Lh were computed from the given 
values of the chemical potential under the assumption of 
a quadratic dispersion law and scattering of the current 
carriers by acoustical phonons. The values of K;; and 
K~1 computed in this way were higher by 30% than our 
experimental values. It is of interest to determine the 
reason for such a divergence in this region of tempera
tures, which are comparatively high for Bi, where the 
scattering is thermal and where the individual proper
ties of the samples, determined by the amount of im
purities and defects, do not come into pla~. Analysis 
has shown that if, following the method of 3 J, we com
pute Le and Lh with account of the nonparabolic char
acter of the bismuth spectrum, under the assumption of 
elastic scattering, we obtain the values Le >::! Lh >::! 1.5 
x 10-8 V2 -deg-2 , which agrees with the values obtained 
from our experimental data. The nonparabolic charac
ter of the spectrum has practically no effect on the dif
ference O!e- O!h which enters in (4). 

2. LOW TEMPERATURES: T < 30°K 

We now consider the region of temperatures in which 
the electrons and holes in bismuth are strongly degen
erate. As is known (lsJ, p. 346; lsJ ), for degenerate 
carriers, the Lorentz number takes on the Sommerfeld 
value Lo = 7T 2kV3e2 = 2.44 x 10-8 V2 -deg-2 , if the scatter
ing is elastic (independent of the structure of the spec
trum), and deviates from the Sommerfeld value of 

inelastic scattering. It is seen from Fig. 4 that the 
experimental value of the Lorentz number for T ;S; 30° K 
differs appreciably from the Sommerfeld value; conse
quently, in this range of temperatures in bismuth, the 
inelastic scattering of the current carriers plays a sig
nificant role. 

In principle, the following inelastic mechanisms of 
scattering are possible: 1) intravalley scattering by 
phonons; 2) intervalley scattering by phonons; 3) inelas
tic scattering by impurities; 4) mutual scattering of 
current carriers. We now proceed to the analysis of 
each of these mechanisms. For this, we shall take into 
account not only our data, but also the experimental data 
on the temperature dependence of the electrical resis
tivity of pure bismuth, obtained by other authors. 

1. We first consider the scattering by acoustical 
phonons. In the case considered by us of strongly de
generate carriers with ellipsoidal nonparabolic disper
sion law 

pl2 
'\'{e)= ~ -. (5) 

1 2m1 

it is not difficult, in the usual fashionlsJ, to obtain the 
following expressions for the diagonal components (in 
the axes of the mass ellipsoid) of the tensors of electri
cal resistivity pzz and thermal resistivity "Azz: 

(6) 

- if ~ 2) 36~2 2 J d3/ 
J2 + 12f, 2."1 2 + f, -~-' (7) 

with f :s 2. Here yF = y(EF), fz = qz/v'2mzyF, q is the 
momentum of the phonon, ~ J.l.(f) = fJ.w(J.l.)jkoT, w(J.l.) is 

q q 
the frequency of the phonon of polarization J.1., 

w(J.l.) = (27T /b) multiplied by the square of the modulus 
f 

of the matrix element of the transition, 

(8) 

In order to proceed further, it is necessary for us to 
know the spectrum of phonons interacting with the elec
trons, and the magnitude of this interaction. The maxi
mum Fermi momentum of the electrons in bismuth is 
Pmax = (7.6 ± 0.3) x 10-21 g-cm/sec2 • l 7 J Consequently, 
acoustical phonons with wave vectors less than qmax 
= 2Pmax/h = 1.5 x 107 cm-1 interact with the electrons. 
This value is four or five times smaller than the limit
ing wave vector. From neutron diffraction studies of 
the phonon spectrum of bismuth, l8 J it follows that for 
such small wave vectors, the acoustical branch of the 
spectrum does not possess dispersion. The maximum 
Fermi momentum of the holes is less than that of the 
electron, and correspondingly less is the wave vector 
of the phonons interacting with them. 

It is still necessary to consider the following. The 
total resistance of the bismuth is obtained by summa
tion of the partial resistances pertaining to the separate 
ellipsoids. Since the components of the partial resis
tance along the minor axes of the ellipsoid is less than 
along the major axis, then these give the principal con-
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tribution to the total resistance. But the phonons with 
qmax do not participate in the components of the resis
tance along the smaller axes, so that actually we are 
dealing with phonons whose wave vectors are still less 
than qmax· 

Consequently, it is possible to use the spectrum of 
acoustical phonons in bismuth, which is established ap
proximately inl9 l from experimental elastic constants, 
and the interaction of the carriers with the phonons is 
computed within the framework of the model of the 
deformation potential. In the calculation of the electri
cal resistivity p and the Lorentz number L for elec
trons, the following simplifications were also made: 
the real phonon spectrum is approximated by an iso
tropic one, and the spectrum of electrons by a system 
of three ellipsoids of rotation, the axes of which coincide 
with the crystallographic axes; the axis of rotation (the 
major axis) is parallel to the twofold axis. One can 
show that errors brought about by the given approxima
tion of phonon and electron spectra compensate one 
another to a considerable degree. As we shall see be
low, these simplifications are admissible for the given 
problem. 

Numerical calculations were carried out on the 
BESM-3 high-speed computer. We used the following 
parameters: masses of holes and electrons in units of 
the mass of the free electronl1ol m? = m~ = 0.0677, 
m~ = 0.758, mf = 0.00709, m; = 1.71, mf = 0.0115. The 

Fermi energieslul: E~ = 26 MeV, E~ = 11 MeV. The 

constants of the deformation potential [12 ]: nrin~2 
= -1.03; D~3 = ± 1.2 eV; nr/n;2 = -0.37; n;/n;2 
= -0.29; n;2 = ± 5.9 eV. The elastic constants were 
taken froml 13 l. 

Figure 4 shows the theoretical dependence of the 
Lorentz number on the temperature, due to the inelas
ticity of the phonon scattering. It is seen that in the 
range 10-30°K 4h is much greater than the experi
mental L and consequently the considered mechanism 
is not the basic mechanism of scattering in bismuth at 
low temperatures T. Analysis of the electrical resis
tivity supports this conclusion. 

In superpure samples for T < 30°K, p"' T2 l4' 14-17l 
but the resistivity computed by us should have such a 
curve only for T < 5°K; the transition from the quad
ratic dependence of p(T) to the linear takes place in the 
range 5-20°K. The theoretical value of p was shown to 
be significantly less than the experimental: for 
T = l0°K, p~1heor = 2.4 x 10-7 ohm-em while p~xp = 1.2 

X 10-6 ohm-em. l14l The divergence of the theoretical 
and experimental results is so significant that it is not 
possible to explain them by simplifications made in the 
calculation of the electrical and thermal resistivities. 

The role of optical phonons in the intravalley scat
tering is more difficult to set forth, since the energy of 
coupling of the phonons with the carriers is unknown to 
us. The minimum energy of the optical phonons is 
100~K according tolal. One can therefore expect that 
their contribution is unimportant for T :S: 20°K. 

2. Intervalley scattering in bismuth can take place 
from ~honons with limiting wave vectors. According 
toc8 ' 16 , the energy of such phonons in the direction 
rx (r is the center of the Brillouin zone, Z the center 
of the rectangle bounding the zonel7l) amounts at most 

to fl.w 0 ~ 40°K. It was shown inc 16l that the phonons of 
rx can cause the transition of electrons between the 
electron and hole ellipsoids, while the symmetry allows 
the participation of such a phonon in this process. It is 
not difficult to see that transitions between electron 
ellipsoids can also exist for the phonons of rx. 1> Thus, 
the intervalley scattering can be important at the tem
peratures T < 30°K of interest to us; therefore, it is 
necessary to consider this mechanism in detail. 

Since phonons with momenta much greater than the 
intravalley momenta of the carriers take part in the 
intervalley scattering, the scattering probability does 
not depend on the initial and final states of the carriers. 
This circumstance allows us to describe such proces
ses with the help of the relaxation time. l1al A simple 
generalization of the Herring theory to the case of de
generate statistics of carriers with Fermi energies 
EF » flwo gives the relation 

__ 1_=H"g.,(f'l)cth flwo n(c1 --l-flwo)n(e1 -!zw0 ) (9) 
T(e,) " '2/,ol' n 2 (et) ' 

for the relaxation time of the carriers of ellipsoid 1 
scattered into ellipsoid 2. Here W = 27Tfi -1 x the square 
of the modulus of the transition matrix element, g2(E) 
is the density of states of the ellipsoid 2, and n(E) is the 
Fermi distribution function. 

For the i-th component (in terms of the axes of the 
ellipsoid 1) of the electrical conductivity aii (1 - 2) and 
the Lorentz number L, we have 

2n(11 e2 1 fzw 0 ( 1 flw 0 ) 
cr,,(t ---+2)= th-- 1 +-ch-- , 

:lm, 1Vg1 (<F) 2k,T 2 k.X . 
(10) 

L = L.,( 1 _ 6
2 

ch (hwo/kor.)- :1 \ , 
a ch(lzwo/ko1)+2} 

(11) 

where n<1> is the carrier concentration in ellipsoid 1, 
and mi is the mass of the carriers in the direction i. 

The deviation of the Lorentz number from the 
Sommerfeld value in inelastic scattering is connected 
with the fact that the relaxation time (5) changes rapidly 
with E in the region E - EF ~ koT, so that it is not possi
ble to replace T(t:F) for T(E) in the calculation of the 
electrical conductivity and heat conductivity. 

For hwo/koT » 1 we have L/Lo = 1- 6/JT2; with in
crease in temperature, L slowly approaches L0• If we 
take hw 0 = 43°K,ll6l then the (isotropic) values of L 
computed from (11) will be sufficiently close to the 
values observed by us experimentally (Fig. 4). Thus 
our experimental results can be explained by inter
valley scattering. In order to explain whether this 
scattering mechanism is actually decisive, it is neces
sary to establish what its contribution is to the electri
cal resistivity (heat resistivity). If we calculate 
aii (1- 2) from (10), using the constant W froml 16J for 
transitions from the electron to the hole ellipsoid, then 
it is shown that the total resistivity (summed over all 
ellipsoids) determined by this mechanism is much less 
than the experimental one. Thus the computed resistiv
ity along the trigonal axis is equal to 7 x 10-8 ohm-em 
forT= l0°K and 10-6 ohm-em for T = 30°, while ex
perimentl14J gives 1.2 x 10-6 and lo-s ohm-em, respec
tively. 

I)We have not m~de clear what hindrances the symmetry conditions 
impose on this process. 
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In the same way, using the corresponding constant 
from l161 , we can establish the fact that the intervalley 
scattering with participation of optical phonons also 
gives a small contribution to the resistivity for 
T < 30° K. However, it is not possible to consider the 
value of the constants froml 16 , used by us, as solidly 
established. Moreover, the contribution to the resistivity 
of the transitions between the electron ellipsoids is not 
known. Therefore, it is not excluded that the intervalley 
scattering in Bi is important in the temperature region 
considered. 

3. So far as we know, there are no data at the pres
ent time on impurity levels in bismuth which can cause 
inelastic scattering; therefore, a detailed analysis of 
the third of the mechanisms indicated above is impossi
ble. We note only that the departure from the Sommer
feld value is observed at temperatures at which the im
purity scattering does not play any significant role {if 
we evaluate it from the temperature dependence of 
p(T)). Therefore, this mechanism can scarcely be the 
reason for inelastic scattering of the carriers. 

4. Finally, we consider the scattering of the car
riers by carriers, which, as is known, give the experi
mentally observed quadratic dependence of p on T. 

In bismuth, the electron-electron scattering cannot 
give a contribution to the electrical resistivity since 
there is no transport process. The source of electrical 
resistance can be electron-electron scattering, since 
the electrons and holes move in opposite directions in 
the electric field. We initially estimate the value of this 
resistance by using the formula for resistance in the 
scattering of s- electrons by the heavy d- electrons in 
the transition metals ([51 , p. 373): 

(12) 

Here Xo is the dielectric constant, n the concentration 
of electrons, r 0 = v'EFXo/61Te2n the screening radius, and 
mh_ the mass of the density of states of the holes. For 
bismuth, xo = 100[71 , r(/::::: 5 x 105 em-\ PF/n = (31T2n) 113 

::::: 2 x 106 em-\ so that for T = 10°K, we have 
p ::::: 10-5 ohm-em, which is almost an order of magni
tude greater than the experimental value of p. 

In order to verify whether there is significant error 
in the application to bismuth of the formula obtained for 
the isotropic spectrum of the carriers, we studied the 
anisotropy of the spectrum of holes and electrons, where 
we used the previously described simplified spectrum 
for electrons. For simplicity, it was assumed that the 
holes were in equilibrium and made no appreciable con
tribution to the current. This is valid for the resistance 
in the direction of the trigonal axis, since m~ » m;. 
Here we obtained 

e2(111h") 2 · m'")''• ru ~( T )' o ;::::· -·-·----1- -:-y2m,•eF• - ~ • . nz.-,'h3 \ lnJ~ /t eF' 
(13) 

""'2-10-6 ohm-em forT= lOoK 

which is in satisfactory agreement with the experimen
tal value. l141 

In addition to electron- hole scattering, the scattering 
of electrons by electrons and holes by holes also make 
contributions to the heat resistance. For this reason, 
the Lorentz number can be less than the Sommerfeld 
value. However, the complicated character of the spec-

trum makes any reliable estimate of the Lorentz num
ber difficult in this case. 

Thus a comparison of the experimental data with the 
theory allows us to conclude that the scattering of the 
current carriers in pure Bi at low temperatures 
{T < 30°K) has an inelastic character. It seems that 
the reason for this inelasticity can be either intervalley 
scattering of carriers by phonons, or the scattering of 
carriers by carriers, or by the simultaneous action of 
both mechanisms. 

In conclusion, the authors express their gratitude to 
A. S. Skal for help in the computer calculations, to v. I. 
Pol'shin for help in the measurements, to Yu. M. Kagan 
for a number of valuable critical remarks, L. L. 
Kornblit, and Yu. I. Tavich for the discussion of certain 
theoretical questions, and to I. E. Galkina and L. B. 
Bezymenskii for preparation of the single crystals of 
bismuth. 

APPENDIX 

From the phenomenological expressions for the elec
tric field and heat flow 

aT 
q;=C;k(H)E•--'\'ik(II)-8-. (A.l) 

x, 

and the Onsager relations, it follows that the heat con
ductivity, which is determined by the relation qi · 
= -Kik(H)DT/axk, at j = 0 is expressed by the kinetic 
coefficients entering into (A.l) in the following way: 

Y.iw (II) = )'kn (II) - Tau, (-H) <11m (H) Umn (H), (A.2) 

where the thermal emf azk{H) = -p li (H)dik(H), Pli {H) is 
the electrical resistivity tensor, Ykn(H) an additive 
quantity. As H - oo, the electron and hole contributions 
to Ykn vanish and the second component in (A.2) gener
ally does not approach zero. If H II C3 , then 

nz,(-11) = a,z(ll), a,(II) = a,3(1l) = 0 

and asH- 00 , au= const, a12H'""' H, au c-.o H-2 , a12 ~ H-3 , 

so that the formula (2) reduced to basic form, follows 
from (A.2). For H II Cz(Ox), as a consequence of rota
tion of the electron ellipsoids relative to the Ox axis, 
the asymptotes aik and aik are as follows:l 9 ' 191 

U23 =II, a" oo ll,no an(H) of= Usz(-11), CL33 co H, cr23 (ll)= o32 (H) oo JI- 2• 

Equation (1) follows from (A.2) in this case. 
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