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We obtain and analyze expressions for the particle concentration and current densities in the vicinity 
of a charged spherical body moving in a rarefied plasma. We also write down equations for the electric 
field. We assume that the dimensions of the body are small compared with the particle mean free path 
and that its speed is small compared with the thermal velocity of the ions. 

WE consider a spherical body of radius Ro moving 
wlth a velocity Vo in a rarefied plasma. We assume the 
dimensions of the body to be small compared to the 
particle mean free path. Let the surface of the sphere 
have a potential rpo. The plasma close to the sphere is 
then, of course, perturbed. We must determine the total 
field in the plasma produced by the body and the space 
charge and also the particle distribution in the per
turbed region. 

We perform all our calculations in a spherical sys
tem of coordinates with the origin at the center of the 
sphere and the z axis in the direction of its velocity. 
The sphere is, of course, not moving in this system of 
coordinates and a particle current with average veloc
ity- Vo is incident upon it. 

The distribution functions of the ions, fi, and the 
electrons, fe, and the potential of the electric field rp 
are determined by stationary kinetic equations and the 
Poisson equation: 

of; e of; Ofe e Dfe 
v-,---Vrp-c-=0, v-+-Vrp-c-=0, (1) 

or m; av or me av 

V2 rp = -4ne{ S f;d3v- ~ fed3v), (2) 

where e is the charge of the ions (the electron charge is 
equal to -e), mi the ion mass, me the electron mass, 
v the velocity, and r the radius vector. 

We must solve Eqs. (1) and (2) taking into account the 
boundary conditions at the surface of the body (r = Ro) 
and at infinity: 

q>(Ro, '(}) = <po, <p(r, '(})Hoo = 0 (3) 

(.9 is the polar angle). We have here taken into account 
that the field possesses axial symmetry around the 
direction of motion. 

The distribution functions at infinity are Maxwellian: 

(4) 

where No is the unperturbed ion (electron) concentration 
and T the plasma temperature in energy units. 

If all ions are neutralized and the electrons are ab
sorbed when colliding with the sphere, we have at the 
surface of the sphere for the functions 

(/;, e)r~R, = 0. (5) 

As we consider particles which can have infinite speeds, 
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Eq. (5) need be satisfied only for Vr > 0 where Vr is 
the velocity component along the radius vector. 

A. v. Gurevich (see, for instance, lll) has solved the 
set of Eqs. (1) and (2) with the boundary conditions (3) 
to (5) for a sphere at rest (Vo = 0). 

Let now Vo «Vi> where Vi= (2T/mi) 112 is the ion 
thermal velocity. We expand the particle distribution 
functions and the electrical field potential in a power 
series in the small parameter Vo/vi, restricting our
selves to the first order terms. Then 

(O) Vo (I) 
/;, e = /;, e(r; v) + -f;. e(r, '(}; v), 

V; 

Vo 
<p= q:<Ol(r)+-<p(l)(r,'i}). 

Vi 

(6) 

(7) 

When writing down Eqs. (6) and (7) we took into account 
that the field of the body at rest is spherically symme
tric and that ft' and f~o> depend only on r and v because 
of the spherical symmetry. 

Substituting these expressions into Eq. (1) we get for 
the zeroth and first approximations, respectively, 

and 

(O) (0) 
0/;.e_ e V (O)Of;,e_ 0 v-+-- <p ----
or m;. e ov 

(!) - (i) (0) 
of .. i. e _ e v (O) Of;. e _ + e V (f) 0/;. e v--+-- <p ----- rp -,-, 
or mi,e av mi,e av 

(8) 

(9) 

where the upper (lower) sign refers to ions (electrons). 
We note that the field of the sphere at rest, rp 0 , oc

curs in the left-hand sides of Eqs. (8) and (9). This 
means that when we change from a sphere at rest to one 
which is moving slowly the particle trajectories in the 
(r, v)-phase space are unchanged. Hence, in the method 
used by us to solve the problem the phase volume occu
pied by the particles remains unchanged and only the 
particle density in phase space is changed. We shall use 
this fact in what follows. 

We now shall consider the Eqs. (8) and (9) for the 
ions. Instead of the ion velocity components we intro
duce new variables E, M, and 1/1, where 

E = m;v2 / 2 + e<]J<0l, M = m;v j_r (10) 

(here v 1 is the ion velocity component at right angles to 
its radius vector), while 1/! is the angle between the pro
jections onto a plane through the origin and at right 
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angles to the ion radius vector of the ion velocity vector 
and the vector- V0 • It is reckoned from the projection 
of the vector- Vo counterclockwise (the angle cp inl2 J ). 

We note that for an ion in the field of a sphere at rest 
E, M, and 1/! are integrals of motion. 

The solution of the homogeneous Eq. (9) satisfying 
condition (4) was obtained in l2 J. Expanding this solution 
in a power series in V 0/vi, we get 

(i) (i)- ~i)+ 

/ihom=hhom+ lihom• 

(i)'l' ( m; )''• ( E )''• f;hom= 2No TY e-E/T - (cos~ cos~+ sin C"' sin~ cos~t). 
n T (ll) 

Here fi (fi) corresponds to values vr < 0 (vr > 0). The 
angles c- and c+ are defined as follows: 

where 

"' M 
c- = ~ x2F(x) dx, 

r 
(' M 
J x 2F (x) dx + 

rmin 

~~· M 
--dx 
x 2F (x) ' 

rmin 

F (x) =={2m; [E- erp<0l (x)] - (M / x)2} '1•, 

(12) 

(13) 

(14) 

while rmin is the positive root of the equation F(r) = 0. 
If the ion distribution function in the field cp <OJ de

pends only on the ion energy, i.e., f.<oJ = f.< 0J(E) we can 
transform in the stationary case th~ righl- hand side of 
Eq. (9) for ions to the form 

, t<•J aftl of'"! d 
_e_Vq;<ll~= e-'-vVq;<tl= e-'---qill. 
m; ov iJE iJE dt 

As the quantity ofi 0l/&E is an integral of motion along 
the trajectory in the field cp<0 J of the sphere at rest, 
this expression can be written in the form 

e atfl d' ( iJf~0l - V q;<1J __ =- -- e<p<tl ), 
m; iJv dt iJE 

where now already the time derivative is taken along 
the trajectory in the field cp <OJ (which is indicated by a 
prime). Taking this into consideration we get from 
Eq. (9) 

d' (i) "(),' iJflO) 
-/1 = -(-eq;<tl) dt dt6E . 

The time derivatives are here taken along the phase 
trajectory in the field cp <OJ. 

(15) 

It is clear from Eq. (15) that the functions fi 1J and 
ecp<1laf<0 l/&E can differ only by an arbitrary function of 
the integrals of motion of the ion in the field cp <OJ. Hence 
we have 

t?) = tli)- + t\!)+ ' 
'j(O)T 

/ ~!)'!'-~ (I)+ /(l)T 
' - iJE eqo 'hom· (16) 

As the ion distribution functions ftl+ are Maxwellian, 
i.e., ftr;: = N0(mi/21TT)312e-E/T, the functions ft+ are 
equal to 

/ \1) + = N (_!!'2_)''· -EfT[- e<p(l) + 2 (!!_ \;''· 
' 0 2nT e T T 

X (cos c+ cos~+ sin c+ sin it cos \jJ)]. (17) 
The functions f~1 l+ are determined in a similar way: 

iJj(O)'f 
/~'l+ =- OE erp<ll. (18) 

If the electron distribution functions f~oJ:; are 

Maxwellian, i.e., ft~ = N0(me/21TT)312 E/T, we have 

(IJ:r ( m. )"' eq;<tJ /e =No -- e-E/T_. 
2nT T 

(19) 

In the same approximation in V0/vi we have for the 
particle concentrations 

(O) Vo (1) 
N;,e= N;,e(r)+-N;,e(r,{}), (20) 

V; 

Here NtJ and N~0 J are, respectively, the ion and elec
tron concentrations close to the body at rest. 

When integrating the ion and electron distribution 
functions it is convenient as in [3 • 4J to change to the 
variables E, M2 , and 1/!. For instance, in the case of 
ions 

d•v = d¢dEdM2 ' (21) 
2m{r2F(r) 

where F(r) was defined in (14). 
As the field cp<0 J occurs on the left-hand sides of Eqs. 

(8) and (9) the region of integration when we wish to find 
the moments of the functions fi and fe is determined by 
the field in the vicinity of the body at rest. After inte
grating the functions (17) and (19) we get thus 

(1) eq;<'> (OJ cos~ [ s s e-EIT (E/T) 't. cos C- . 
N· = ---N· +No dEdM 2 

' 1' 1 r2(2nm;T3 ) 't. F(r) s, 
r s e-E!T (E/T) 't. cos C+ ] + J dEdM2 

s, F(r) ' 
(22) 

N~'l = eq;<'> r~;,•> . 
T 

(23) 

The regions of inte~ration S1 and S2 can be found, for 
instance, in the bookl1 , but only in (vr, v 1)-space. In 
the particular case of a sphere with Ro » D and lcpol 
« (T/e)(R0/D) 413 , where D = (T/41Te2No) 112 is the Debye 
radius of the unperturbed plasma the integration do
mains in (E, M2)- space were determined in ref. l3 J • 

Some information about integration domains is given 
inlsl. 

The expressions for the components of the ion and 
electron current densities along the inward normal to 
the spherical surface of radius r have the following 
form in the approximation which is linear in Yo/vi: 

• . .(OJ Vo .(!) 
];, e = ]i, e(r) + -];, e(r, ~). (24) 

V; 

Here jtJ and j~0 J are, respectively, the components of 
the ion and electron current densities along the inward 
normal to the spherical surface of radius r in the vicin
ity of the sphere at rest while the complete expressions 
for jt and j~1 J based upon (17), (19), and (21) are equal 
to 

(!J ~ ( E)''• j/'J= _..!!!i_j;'0>+No cos . s s e-EtT - cosC-dEdM2, (25) 
T r,2(2nm;3T3)'" s, T 

,(IJ eq;{lJ .(o) 

,. =rJ• (26) 

After the ion and electron concentrations are deter
mined the problem is reduced to solving Eq. (2) for the 
potential of the field. Substituting expansions (7) and 
(20) into this equation we have 

V2q/.O) = -4ne (N\0) - N~O) ) ' (27) 

V'q;<1> = 4ne (N\1) - J~;,il ) . 

We get the boundary conditions for the last equation 
from Eq. (3): 

(28) 
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<p<'l(Ro, -&) = 0, qP>(r, -&) ,_., = 0. (29) 

In conclusion the author expresses his gratitude to 
A. V. Gurevich for discussions of the results of this 
paper. 
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