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For slow electrons ("E < w) in a weakly ionized molecular plasma, we evaluate the distribution func­
tion, the average energy, the average energy losses, the mobility, and the heat conductivity, taking 
inelastic processes into account. We use the correlation function method to take into account vibra­
tional and rotational transitions of the molecules when they collide with electrons. We obtain the 
quasi-classical rotational correlation functions for linear molecules and symmetric top type mole­
cules. 

1. INTRODUCTION 

THE correlation function method (or the temperature­
time Green function method) has been extensively ap­
plied in the kinetics of condensed media. To describe 
non-equilibrium processes one uses in the first approx­
imation in the density the normal method for evaluating 
distribution functions and kinetic coefficients which is 
based upon solving a Boltzmann equation with a colli­
sion integral in the traditional form. All the same, 
even for rarefied systems (gaseous plasma, molecular 
mixtures) there are problems for the solution of which 
one must use the correlation function formalism. 

In particular, the correlation function method makes 
it appreciably easier to take into account the contribu­
tion of inelastic collisions to kinetic coefficients 
(mobility, relaxation time tensor, and so on) and to the 
distribution function. One can obtain a simple expres­
sion for the inelastic collision integral if we restrict 
ourselves to the first (Born) approximation in the inte­
gral equation for the two-particle temperature-time 
Green function G12 

(1.1) 

We shall assume that G2 is the propagator of simple 
structureless particles, and G1 the propagator of par­
ticles which are "dressed" by an internal potential. 
The integral equation (1.1) describes a two-component 
non-equilibrium mixture of simple and compound par­
ticles. To linearize the problem we consider the sim­
plest case when we may consider a small non-equili­
brium admixture of simple particles in a thermostat of 
compound particles which is in local equilibrium with 
respect to the internal degrees of freedom (tempera­
ture T) and the translational degrees of freedom (tem­
perature T1). 

Substituting G12 into the equation of motion for G2 
and using the standard technique (for instance, [ll) we 
find for the integral for the collisions of the simple 
(mass m and distribution function f( p)) and compound 
(mass M, density n0 ) particles (everywhere in the 
following n = k = e = 1) 

~ 

lt.J(p)=no \ dt \ d3p'[V(q)f 2$r,(q,t)$r(!J,l) 
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X te''(P''-p')/2mJ (p')- eil(p'-p'')/2mf(p )]. (1.2) 

Here q = p'- p, and the Fourier transform <I>T(q, t) 
of the correlation function (two-particle Green function 
with pairwise identical spatial arguments) is equal to 

$r(q, t) = ~"" exp{- .!!::.._+ it(En- En•) ~ f (eiqr)nn•[ 2 
Z ~ T • 

n n' 

= ~ s d3ri. d3r,eiq(r,-r,)c( ft ., - t- _!___) c· (rj. f·· - l) z - . - 1' / -· ' 

Z= ~e-E:, 1T, G(r1,r2,t)= ~o-ifEnlJln'(rt)IJln(r,). (1.3) 

~ ~ 

Using the Heisenberg representation eitHeiqr e -itH 

= eiqr(t) (His the internal Hamiltonian of the compound 
particles) we find instead of (1.3) 

(1.4) 

The correlation function <I>T 1(q, t) describing the 

translational motion of the compound particles (momen­
tum P1, position operator R 1(t) = R 1(0) + (t/M)p1 ) is 
similarly defined: 

((> 1 , (q, t) = (eiqR,(!)e-iqR,(OJ)T, 

= cxp {-q2 (it + t'TI) I 2M}. 

Substituting (1.3) to (1.5) into (1.2) we obtain the 
linearized collision integral in the usual form 

(1.5) 

id{P) = ~ ~ d'p'{w;:;f(p')- w~~; f(p)]. (1.2a) 
n, n' 

Correlation functions such as (1.4) were introduced 
by Van Hove[ 2J but have as yet apparently not been 
used to solve actual gas-kinetic problems. Meanwhile 
the collision integral in the form (1.2) has appreciable 
advantages as compared to the collision integral (1.2a) 
as it enables us to manage without evaluating the in­
elastic rate constants for different transitions and the 
subsequent summation over all channels. 

Solving the Boltzmann equation with the collision 
integral in the form (1.2) we can directly express the 
kinetic coefficients (mobility, viscosity, thermal con­
ductivity, average energy losses, and so on) taking in­
elastic collisions into account in terms of the interpar­
ticle collisional potentials and the internal potentials of 
the compound particles. 
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2. DISTRffiUTION FUNCTION AND KINETIC COEF­
FICIENTS FOR ELECTRONS IN A MOLECULAR 
PLASMA 

As an example of an application of the correlation 
function method to a description of transfer processes, 
taking inelastic collisions into account, we study the 
procedure of evaluating the distribution function, the 
mobility, and the average energy of slow electrons in a 
weakly ionized molecular plasma (electrons +homo­
nuclear molecules), where in the summation in (1.2a) 
over different inelastic channels we restrict ourselves 
to taking rotational transitions into account. In that 
case (seef3' 41 ) we can use for the transition probability 
in (1.2a) the Born approximation and consider in the 
multipole expansion of the interaction potential V(R, e) 
the terms 

a ( a' Q) ~ V,(R)P,(cos8)= --- -+- P 2 (cos(J), 
>~o 2R4 2R4 R 3 

a= 1/s(au+2a_!_), a'= 2/,(au-aj_); (2.1) 

here a11 and a 1 are the principal values of the polari­
zability tensor. 

As the Fourier transform of an isotropic polariza­
tion potential -a/2R4 diverges one must in one way or 
another introduce a cut-off of the polarization potential 
at small distances. Rotational transitions are de­
scribed by anisotropic terms in the expansion (2 .1) and 
we choose therefore for the short-range isotropic 
forces a rather rough approximation 

V0 (R) = -a/2(R2 +Ro2 ) 2, 

where the cut-off radius Ro will be determined below 
(the scattering length L =- 11a/ 4aoRo; a 0 is the Born 
radius). 

We show in the Appendix that one can use for the 
rotational correlator of homonuclear molecules the 
approximate expression ( B is the rotational constant) 

(eitiiV (q)e-•uiy• (q))T =I V0(q) 12 +I V2(q) 12 exp {- 24/,B(it+t'T)}, 

:rra2 7Q2 ( 3a' q )' 
I Vo(q) I'= 32Ro' e-2qR,, I V,(q) I'= 90n 1 + 32Q . (2 .2) 

Expanding the collision integral in terms of harmonics, 

f(p)=~ fz(p)P,(cos8), 
-l=O 

Id(P) = ~ S,(p) (I+ 1/z)P,(cos e) 
Z=O 

and changing in Eqs. (2.4)-(2.10) to dimensionless 
variables t- t/T, p2 - 2mTp2, we find 

00 +1 00 

S1(p) = 4nnom12mT S dp'p'2 S dx S dt 
0 -1 -00 

X exp{- q' ,: (it+ t' ~1 ) }[ IVo(q) 12 +I V,(q) I' 

(2 .3) 

xexp {- 2; %(it+ t2) }] [eit{p'Lp'lft(p')P1(x)- eH<P'-p"lft(p)]. (2 .4) 

We write down the first two equations of the set of 
kinetic equations for the fz ( p ), neglecting terms con­
taining f 2, f 3 , and so on, and terms of second and 
higher order in the small parameters m/M and B/T. 
We have (the spatial variables are in units v'2/mT): 

. 1 iJ/! 2 Eo a 2 o { [ 12 B !o+-1e-+--=--(ej1)=4n'y-=- e --
3 i)z 3 fe oe Ye oe 7 T 

Here 

_E_~ 2e+1 )+a(!!!_). 
7 T e2 At 

y = 7Q2n0m v 2m , 
45::t T 

E 
Eo= . , 

T12mT 

i 

/) (e) = 4/lo s du u'e-Bull,ie, 
0 

(2.4a) 

(2 .4b) 

bo=~( 3naVmT )'. (2 _5) 
7 412 QRo 

When changing from (2 .3) to (2 .4) we put T = T 1 as 
under the usual conditions the exchange of energy be­
tween translational and rotational degrees of freedom 
takes place fast and we may assume that the subsystem 
of the molecules is completely in equilibrium. We 
neglected the contribution of the polarization forces in 
V2(q) as 3a'v'2mT/32Q « 1. 

For a non-equilibrium stationary uniform system 
(a molecular plasma in a constant electrical field) we 
get by substituting (2 .4b) to (2 .4a) the equation 

A e _ 12BM 
(e+X+A)fo+(e+A)fo'=O, ( )- 7mT(i+b) 

2M 
X ( 8 ) = --,3-m-,.b.,.-2 (""1_+_1\_)_2 

b = 4n2 __L = 56nQ2m2n0T (2 _6 ) 
Eo 45E . 

In the limiting cases X- 0, A- 0, and X - co we 
find from (2.6) the Maxwell, Davydov, and Druyvesteyn 
distributions, respectively. When A;" 0 Eq. (2 .6) de­
scribes the spherically symmetric part of the non­
equilibrium electron distribution function in a molecu­
lar plasma, taking inelastic collisions into account. 
We can find the cut-off factor R0 by comparing the 
kinetic coefficients calculated from (2 .4) to (2 .6) with 
experiment. 

Thus, for the mobility 

VJ = .f dvv3f1 (v) /3 S dvv2fo(v) 
0 0 

assuming that the dependence o = o ( ~) in (2. 5) is weak 
and that we can put 

ll(e) ~ 6o[1- 32/sRot'e], 
we find 

41 (2T /m) { 1 24 l'n Robo 

31n b(1 + 6o)1'1 + x + 5(1 + llo)l'1 + x 

X r 1 +x(~-~)]}, 
L . 2 3rt 

x = X(O) / A(O) (1 + ilo). (2 .7) 
For the electron average energy we have 

e 3 128/loRo --
-=-(1+x)+ x11+x. (2.8) 
T 2 5'\"n(1+1lo) 

In the case of H 2 molecules (Q = 0.464 at. un., 
a= 0.79 x 10-24 cm 3, B =7.6 x 10-3 eV) if we put Ro 
= 0.5 A, the disagreement* of Eq. (2.7) with experiment 

'lThis disagreement can be explained by the fact that in the case 
considered the quasi-classical calculation of the rotational correlator 
(see Appendix) is a too rough approximation, as the condition B/T ~ 
I is not satisfied. 
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(for instance,[ 5l) when E/n0 changes by three orders of 
magnitude ( 10-20 V cm 2 s E/n0 s 10-17 V cm 2 ) does not 
exceed ~20%. When E/no > 10-17 V cm 2, K > 1 and the 
second term in (2.7) is large so that it is impossible to 
use the expansion for o( E). Moreover, when the fields 
are large the approximation that the molecules are 
rigid rotators is no longer applicable as ~ is close to 
the rotational threshold (f" s w). We can use Eq. (2.8) 
only for sufficiently small values of E/ no (already for 
E/n0 = 5 x 10-18 V cm 2 the second term in (2.8) is equal 
to ~1) for which the experimental data on "[ are very 
unreliable. 

In the approximation o(E) ~ Oo the spherically sym­
metric distribution function is equal to fo( E) 

= Ce -E/ (1 + K)' i.e., the molecular plasma is a two-tem­
perature medium with an effective electron tempera­
ture Te ~ T( 1 + K). This qualitative conclusion is the 
same as the result reached in [GJ by a numerical inte­
gration of the kinetic equation taking into account rota­
tional transitions for electrons in a nitrogen plasma. A 
numerical integration of the kinetic equation with the 
inelastic collision integral in the usual form (1.2a) was 
also carried out in a series of papers by Phelps et al. 
(see the review[71 ). In contrast to numerical meth­
ods[6'7l the integration of the kinetic equation using ro­
tational correlators gives us the distribution function 
(in principle to any order in B/T and m/M) in explicit 
form, which enables us after appropriate normalization 
(choice of the cut-off factor R0 ) to obtain the different 
kinetic coefficients without limiting ourselves to the 
first approximation in the corresponding gradients. 
The polyatomic molecules of different kinds (linear 
molecules, symmetric tops, spherical tops) differ then 
only in the form of the collisional potential and the ro­
tational correlator (see the Appendix) so that the results 
of calculations can easily be transferred to the case of 
a multicomponent molecular plasma. 

Using the expansion (2.3) of the collision integral 
and Eqs. (2 .4) and (2. 5) we can easily obtain the heat 
conductivity, viscosity, and other kinetic coefficients. 
It follows from (2 .4b) that in the first approximation in 
the gradients (under conditions of weak non-isothermal­
ity) we can neglect the contribution of rotational transi­
tions to the transfer processes as B/T( 1 + 60 ) « 1. 
We find, for instance, for the heat conductivity in the 
approximation o (E) ~ Oo 

lie r dxx'(x- 5/,)e-X ( 5 ) 
3cri•my :: "f-t-6-=-t2f:(B/T)(2x+1)/2x' ::::::xo i-2a1 ' 

6B 

7T(1 + llo) ' 

15ne v T 
Xo = hn0 (1 + 6o)m2Q2 2crm · (2.9) 

Similarly, for the electrical conductivity in a weak field 
(the Euler constant C =0.577) 

ne 00 dx xe-x 'Ko .., 

'JnhmyT S 1 + 6- 1'h(B/T) (2x + 1)/2x'::::; --y-[i- at(C + ln at)]. 
0 (2.10) 

The correction term to the generalized Wiedemann­
Franz law which takes into account rotational transi­
tions is thus equal to a1( '72 - C - ln a1) « 1. As the 
molecular thermal conductivity ~ a-1 ,; T/m) it follows 

from (2 .9) that the contribution from collisions with 
electrons to the thermal conductivity dominates at a 
degree of ionization 

3. EVALUATION OF THE AVERAGE ELECTRON 
ENERGY LOSSES 

We evaluate the average speed with which energy is 
transferred between the translational degrees of free­
dom of the electrons (energy operator K, temperature 
Te) and the translational (K1, T1) and internal (H, T) 
degrees of freedom of the heavy particles. We have 

- ~o d:: = l dt([K, C (t)]Tf'(O)), 

V(t) = eit(K•K,,li) ve-i(K,K,+l{). (3.1) 

Changing to the Fourier transform of the collisional 
potential and using (1.5) we find 

_ J__ r!K ·=- i \ d"q ~ exp fl _ _£__(it -1 tzr,)) 
n0 dt J _•t, 2 ~1 

X (c' 11 V (q)e-i ilv (q))rd cxll{- (j,~, (it +t'T.'\· (3.2) 
Similarly, we can consider the relaxation of sub­

systems in local equilibrium with different tempera­
tures as an effective damping of a spatially uniform 
monochromatic beam of particles in a thermostat. 
Averaging in (3.1) over the distribution 

_, ( ) !' (n l' ) , [ (p- Po) 2 J u p-po = nn ~Jtm e -J 2 eXp ----~ 
r.~o 2mTe 

(3.3) 

and for the sake of simplicity restricting ourselves to 
taking only elastic collisions into account (H = 0) we 
get 

1 dK ( 2nJ1 )'h"'f ( Te- Tt 
---:-= -_-_ \dqq2 JV(q)J 2 q---:-::--

n0 tit T ' 0 mM 

[ ft(po/m+q/2ft)'l 
Xexp - ~T 

11 = --'!!'!! 'f = _!'_:_ -l- !_.__ . ( 3 .4 ) 
m+M 11 m M 

The limit Te - 0 corresponds to the effective damp­
ing of the beam in (3.4); the case p0 = 0 describes the 
elastic relaxation of two subsystems with temperatures 
T e and T 1. In particular, for a Coulomb relaxation we 
get from (3.4) the usual result 

~= 4noJ1i2n!l In~, nno ( 1 1) (3.5) 
't 3mMT'1• Xo Xo = 2112'f r; + ft 

In order to take inelastic processes into account for 
the relaxation of electrons in a molecular plasma we 
must substitute into (3.1) the rotational correlator from 
(2 .2 ). The total electron energy losses are equal to 

__ 1_ dK = 64112 v Zn11 B 2 T _ T [ i 21J 
no dt 15m T Q ( • ) + A(O)(i+bo) 

r.- Tt 21Jbo r. + Tt 1 - ](3 6) X---+ Jdxxexp\-x-8Roi1Jx} · 
T,- T A(O) (1 + bo) T,- T 0 

Here 1) = J-1. T/mT::::; 1 and R0 1 (2/mT) = 0.5 A (for H2 

molecules). 
The three terms in (3.6) describe, respectively, the 

electron energy losses through the excitation of rota-
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tions, the elastic losses due to the quadrupole interac­
tion, and the elastic polarizationallosses. For H2 

(at T = 300°K) 50 = 64, A( 0 )( 1 +50 ) = 1860 so that the 
inelastic collisions make the main contribution 
( ~97%) to the total energy losses of the electrons. 

We find similarly to (3.6) for the average losses of 
molecular rotational energy 

1 dH 64 v2:rt[! _ ---=-_ f! --o-BQ2(T-T). 
no dt icJ T 

(3.7) 

We can calculate the higher moments of energy 
transfer by analogy to (3.2) to (3.7). For instance, we 
have for the v-th order moment of transfer of internal 
energy 

d v 00 

2;,N" (E, -E,.)'Wnn' =(- i dJ I u~) dt ~ d3q 
n, n -= 

X exp{-.!.(it+t2'l')} ·(ei(t+uJHV(q)e-i(t+uJHV'(q)). (3.8) 
2[! 

Equations such as (3 .2) to (3 .8) are much simpler than 
the expressions for the average energy losses in a two­
temperature gas which are usually employed and which 
contain cumbersome multiple sums (for instance, raJ). 
If we put Jl ~ m and assume Te ~ T (as Te - T 
= (JJ./M)(Te- T1)~ 0) Eq. (3.7) for the first moment 
of the transfer of rotational energy goes over into the 
well-known result[ 9 l obtained by means of a direct ap­
proximate evaluation of the sum in (3.8) with v = 1. 

In conclusion we estimate the contribution of the 
vibrational transitions to the inelastic losses when 
T < w (i.e., when there is no resonance scattering so 
that we can neglect the mechanism of exciting vibra­
tional levels through electron collisions, which is con­
nected with the formation of an intermediate molecular 
complex). We can consider the quadrupole interaction 
as the first term in a multipole expansion of the inter­
action potential ( 2 p 0 is the equilibrium distance be­
tween the nuclei; 2 II. Po the equilibrium distance be­
tween the centers of the same kind of charges in the 
molecule): 

Q [ 2 
2(i.po) 2 R IR+ i.poj 

1 1 ] = _ _2_P2 (cos8)+ ... (3.9) 
jR- i.poj R3 

Taking the vibrational motion into account we get in­
stead of (3.9) 

V(R,8,x) ""=' _ _Q_P2 (cos8) (1 +__:_). (3.10) 
R 3 Po 

The time correlator for the coordinate, x, of a har­
monic oscillator, 

~ 1 A -iwf "+ iwt) 
x(t)=Mw(ae +ae, 

is equal to 

(3.11) 

here T0 is the vibrational temperature. 
Substituting (3.11) into the expression f~r th~ in­

elastic rotational-vibrational correlator ( H = Hrot 
+ Hvib) 

< e1t1'1 V ( q) e -itH V' ( q)) 

7 Q2 
{ 24 ') ( 1 - ' ) = 90:n: exp - 7 B (it+ t2T) 1 + Po• (x (t) x' (0)) (3 .12) 

and using, for instance, (3.8) with v = 1 we find for the 
rotational and vibrational losses 

1 dH 64 v 2:rtf! - 7 ----=-BQ2 [! -_-(T-T)+-wTA..F, 
n0 dt 15 · T 8 

+ B(T- T)A+FI + BTA-Fo, 

32Q2[! y2:rt[! e"'12T-Ko. 1 (w/27') { ( 1 1 .. )} 
F 0•1 = A± = 1 ± exp w ---= , 

15Mp02'f'h(ewf1',_1) ' To T 
(3.13) 

K0 (x) and K1(x) are MacDonald functions. The terms 
in (3.13) describe, respectively, purely rotational, 
purely vibrational, rotational-vibrational, and vibra­
tional-rotational inelastic losses. When To~ T « w 
the relative contributions of the last three terms in the 
inelastic losses are ex~on~ntially small ~ndl respec­
tively, equal to fW7Te w/To, '-' mT/Mwe w To, and 
v' mw/MTe-w/To. Under the conditions considered one 
can neglect the contribution from two-quanta vibra­
tional transitions to (3.10) to (3.13). Moreover, we 
assume (as in Sees. 1 and 2) that the collisional poten­
tial is independent of the degree of excitation of the 
internal degrees of freedom of the molecules. 

The results given in this section can be generalized 
to the case of energy transfer in an external electro­
magnetic field. The correlators for electrons in uni­
form electrical and magnetic fields or in the field of a 
light wave can be obtained in closed form, and the ap­
propriate change in (3.4) to (3.13) enables us to take 
into account the influence of external fields on the 
collision integral and the rate of elastic and inelastic 
energy losses. 

APPENDIX 

CALCULATION OF THE ROTATIONAL CORRELATION 
FUNCTIONS 

In the case of a linear molecule, we can obtain in 
closed form an expression for rotational correlation 
functions such as <i>T(q, t) of (1.4) (in the following 
we write it for the sake of simplicity as <i>(t)): 

<D (f)= (eilii,c'q,e-itHe-iqr) 

c~ 1 - 'Ia q•r• + ~'r" <o'ui 1'1( cos e; e-' ''.t\ (cos e;) + . . . (A.l) 

Using the Eckart theorem (see, for instance,r 101 ) 

1 
(2l+1)(2t'+1) ~.j(e'q•·),m,L'm'l' 

( L ll')' = ~ (2£+1) 0 0 0 h 2 (qr), 
L 

(Lll')' 1+1 
=- ~dxPL(x)Pz(x)PL'(x); (A.2) 

0 0 0 ' 2 -1 

and the expansion[uJ 

sin(:iqrsin 1/29) = 2; (2£ + 1)PL(cosS)h2(qr), (A.3) 
2qr sin 1/2 9 r, 

we find easily for the real correlation function 
<i>(t- i/2T) 

+I 

( i ) 1 S sin(2qry(1 x)/2) jG( ")I' <D t-- =- dx x, 1, , 
2T 2Z_1 2qr)'(1-x)/2 

00 1 
G(x,B)=~ (2l+1)P1 (x)e-~~l+IJ, B=B(2T-it). (A.4) 

l=O 

Changing from a summation to an integration and 
applying in (A.4) the formula[l1J 

P1(cos8)""=' vsi:B lo[e(z+f)], 
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we get for the quasi-classical Green function of a 
rotator G(x, {3) 

IG(x, ~)I'~ ~-1 11 exp [-.!..(_!_+,_!,..)], x= cose. 
Sill 9 ~ ,' 4 ~ ~ 

If, for instance, we limit ourselves to the dipole 
term in the expansion in powers of qr: 

sin(2qrsin tj,e) 1 1 
2 . 1/,. 1--3 q'r'+-3 qt~cos9 + ... , 

qrsrn 2 u 

(A.5) 

we find for the rotational correlator from (A.l), (A.4), 
and (A.5) in the dipole approximation ( Z = T/B) 

• , 1 f ,r <eltHP1 (cos 9) e-iiH P.( cos 9)) = 3 J du e-u cos (2 .y BTut (t + i!T)). 

o (A.6) 

In a similar way we can obtain the rotational correlator 
for a linear molecule in the quadrupole approximation, 
and so on. 

It was shown in Sees. 2 and 3 that for the evaluation 
of the kinetic coefficients and the distribution function 
of the electrons in a molecular plasma we need know 
the rotational correlation functions of different kinds 
of polyatomic molecules, of both dipole (CO, NH3, and 
so on) and quadrupole ( N2, C02, and so on) molecules. 
We consider therefore the general case of symmetric 
top type molecules for which 

(ei-HV (q) e-iliiv· (q)) 

= _!__ 4 exp {- B;~ + it(EJK- En·)} 4 I V~~M'i'· (A.7) 
L J:K 1 MM' 

J'K' 

The collisional potential has the form 
d Q a 

V(R,9)= -RZP1(cos9)-RaP,(cos9)- 2(R'+Ro')' + ... (A.8) 

Writing the Fourier transform of (A.8) as 

V(q)= ~ ~ V,.(q)Y>.v(..!)y,_,·( .!.), 
>.,v 2/.. + 1 q q 

substituting this expansion into (A.7) and using the 
Eckart theorem we get in the dipole approximation 

lllt(t)=3:;·2 :z (21+1)(21'+1) 1( 1 _ 1' 1)!' 
q JK K KO 

J'K' 

xexp {- E;K + it(E1K- EJ'K') }. 

K=K', !J. =II' -II= 0,1. (A.9) 

By analogy with (A.9) the quadrupole part of the ro­
tational correlation function is equal to 

<!>,(!)= 4~~~ ~ (2/ + 1) (2/' + 1) I(~-~ ~)I' 
JK 

J'K' 

{ EJK } 
X exp ---;;;--- + it(EJK- EJ'K') , 

K = K', .!J. = jJ' --11 = 0, 1, 2 (A.10) 

and so on. 
We write 

E1x B A-B 
r=yl(J + 1)+-r-K'= rpJ(J+ 1J+rpgK', 

<r> =BIT, g = (A- B) I B. (A.ll) 

In the high-temperature limit cp - 0 we can consider 
the rotation of the molecules to be classical. Changing 
in (A.9) and (A.10) from a summation to an integration 

and using for J, J' >> 1 the asymptotic expression for 
the 3J -symbols from [wJ 

( J J'A.)I' 1 (A.-A)! . K 
K KO =!.J+i (t.+!J.)'IP...-.(x)l', x=J, 

- · (A.12) 
we find 

2d'i1+g ~~ dx r ( d) 
cD1(t)"'=' x'+(1-x2) 1+2B a·s 

3nq2 0 ( 1 + gx')"i· 

( BTt2 )] xexp ---- . 
1 +gx2 

(A.13) 

The limiting transition to a linear molecule corre­
sponds to A/T - oo and must be taken directly in (A.9 ): 

2a• r -
<l>t'(t);::;; -- 1 due-ucos(2Ttyq>u). 

3n q2 ~ 
(A.14) 

In the quadrupole approximation we have instead of 
(A.10) 

--~ 
2Q'i1 + g r dx { 1 1 3 2 2 

cD.(t)""" 45n J (1 + gx2)'h 4 ( - x ) 
0 

+3(1+2B~)[x2 (1-x2)exp(- BTt' ) 
dB 1 + gx2 

+~(1-x')'exp(- 4BTt' )]} 
4 1 + gx2 

(A.15) 

and for linear molecules 

<I>,'(t);::;; ZQ' ~ due-u[ 1 +~cos (4Tti<ru)]. 
45n ,. 4 

(A.16) 

In order to take terms of second and higher order 
in cp into account we must when changing from a sum­
mation to an integration introduce correction terms in 
accordance with the Euler-Maclaurin summation 
formulaY 21 We can obtain the correct analytical 
properties by the substitutionr 131 t- v't(t + i/T) in 
(A.14) to (A.16). Such a substitution changes, for in­
stance, (A.14) into (A.6) and guarantees the principle 
of detailed balancing. 

Finally, we get for the quasi-classical rotational 
correlators of symmetric top kind molecules and 
linear molecules in the quadrupole approximation up 
to terms of first order in B/T 

2Q' 
cD2= 45n exp[-6B(it+t'T)], (A.15a) 

I 7Q2 l 24 l <l>z = - exp --B (it + t'T) . 
90:n: 7 

(A.16a) 

In first approximation in B/T the correlators <I> 2 

for a symmetrical top and a spherical top are thus the 
same, while the correlator <I>~ for a linear molecule 
can be obtained from <I> 2 by the substitution Q2 - /'4 Q2 , 

B -%B. Under this substitution BQ2 remains un­
changed so that, for instant, the inelastic rotational 
energy losses of quadrupole origin (3.7) are the same 
for different kinds of molecules. 
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