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The resonant acceleration of a beam of oscillators generated by a relativistic electron beam moving 
along an external magnetic field in a medium with a population inversion is considered. It is shown 
that the beam acceleration time is of the same order as the emission time of the medium. The energy 
acquired by the beam during that time is determined. The acceleration method under consideration is 
sufficiently effective if the beam density is small in comparison with the density of the active mole
cules of the medium. 

IT is shown in [ lJ that the Cerenkov field of a particle 
moving in a nonequilibrium medium can stimulate co
herent emission of the active molecules. Since the 
phase velocity of the oscillations excited by the parti
cle is close to the velocity of the particle the reaction 
of the field changes the Cerenkov deceleration of the 
particle into acceleration.1 ) 

The present paper deals with the acceleration of a 
beam of oscillators generated by a relativistic beam of 
charged particles moving along a de magnetic field in a 
medium with population inversion. The beam is acted 
upon by a transverse wave field generated by the me
dium under normal Doppler-effect conditions, i.e., when 
the frequency of the accelerating field in the beam's co
ordinate system is equal to the gyrofrequency. Such an 
acceleration mechanism is of a particular interest be
cause the synchronization between the accelerating field 
and the oscillator is not destroyed by the relativistic 
mass increase of the beam particles. [ 2 ' 3 l We show be
low that acceleration does occur and is sufficiently ef
fective if a paramagnet is used as the active material. 
The solution of the nonlinear equations of motion of the 
beam and the equations of state of the medium deter
mines the maximum energy acquired by the beam, and 
yields the accelerating time, which has the same order 
of magnitude as the emission time of the medium. 

The initial system of equations consists of the equa
tions of motion of the beam and the continuity equations, 
the equations of the magnetic moment M of the medium, 
and Maxwell's equations for the field: 

{) e e y--(1-lve212)-'h., -yv+(vgrad)yv=-E+-[v,H+Ho], 
{)t m me 

on 
7ii + div nv = 0; 

( 1)"' 
oM=- gll[M H+HJ· 
at li ' •' 

1 au 1 aE 4n 
rotE=---; rotH=--+4nrotM+-env; 

e at e at c 

where v is the velocity and n the density of the beam; 
M is the magnetic moment per unit volume; E and H 

1) The possibility of direct conversion of energy stored in the active 
medium into kinetic energy of an accelerated particle beam was noted 
by Ya. B. Fai'nberg, and the use of an inverted paramagnet for acceldea
tion was suggested by E. K. Zavolskii. 

*[v,H+Hol =vx (H+Ho). 

are the electric and magnetic components of the self
consistent field; flo is the de magnetic field and g is 
the Lande factor; JJ. is the elementary magnetic mo
ment of an atom (Bohr magneton), and ti is Planck's 
constant. 

We consider a one-dimensional problem, assuming 
that all quantities depend only on the z coordinate 
parallel to the magnetic field H0 and seek the solution 
of (1) in the form of plane waves with circular polari
zation: 

Ex+ iEv = Hy- iHx = E(t)exp[itD + i¢(t)]; 
Mx + iMy = b (t)exp[ilD + il') (t)]; {2) 
Vx +ivy= u.L(t)exp[icD + ii'J(t)], 

where <I> = w(z/c - t). Furthermore, assuming that 
Vz(t, z) = v rr{t) and n(t, z) = no (the continuity equation 
is satisfied automatically[ 4l), and substituting {2) into 
(1), we obtain a system of ordinary differential equa
tions 

.!!_yu.L = _!.._(1- ..!:'!L)E cos(I'J-Ijl); 
dt m c 

d e 
dtyu 11 =me u.LE cos (1'1-ljl); 

db gil 
-dt= -T(N~Il2-b2)'hEcos(1')-¢); 

dE 
- =- 2nQb cos ('1 -ljJ)-- 2nen0u.L cos (1'1- ¢); 
dt 

y de= Q (1-_':'ll_)v- wu-~( 1- ~)_!_sin(I'J-lj:); 
dt e m e.z·.L 

dl'J gil E dt= -h(JV21l2- b2)'f,bsin ('1 -¢); 

d¢ b V.L dt = 2nQ E sin(!')-$)- 2nen0 --ysin(I'J- ¢). 

{3) 

{4) 

(5) 

(6) 

{7) 

(8) 

{9) 

In the derivation of {3)-{9) we assumed that the am
plitudes and phases of the velocity, magnetic moment, 
and electromagnetic field are slowly varying functions 
of time. In addition, putting w = Q = gJJ.ffo/ll (where Q 

is the resonance frequency of the medium, equal to the 
angular precession frequency of the magnetic moment), 
and using the law of conservation of total momentum we 
eliminate the z-component of the vector M, namely 
Mz = -{N2 JJ.2 - M~- M2 ) 112 (where N is the density of 
active molecules and the minus sign in front of the 
square root means that the magnetic-moment vector is 
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directed against the magnetic field at the beginning of 
acceleration, i.e., the paramagnet is inverted[ 51 ). 

A formula determining the beam energy can be ob
tained from (3) and (4): 

d dt mc'y = eEu.L cos (tt -ljl). (10) 

Subtracting (4) and (10) term by term we find that 
the quantity 

(1-~)v=(1-_1111_)(1-~-~)-'''==q, (11) 
c c c2 c2 

representing the difference between the energy and the 
longitudinal momentum of the beam is conserved and is 
an integral of motion/ 2• 31 The system (3)-(9) can be 
simplified by using (11) and assuming that q = WH/Q 
(w H = eHo /me is the gyrofrequency). It can be readily 
seen that a resonant solution exists and yields J. = 1f! 
= 71 = 0 satisfying (3)-(9) for any values of the functions 
V 1(t), v11 (t), b(t) and E(t). 

Expressing v 11 (t) in terms of v1 (t) from (11): 

uu 1 ,- ( 1 + q' u .L2 )'''] -=-- 1-q2 1----
c 1 + q2 L I q2 C2 ' 

(12) 

and substituting the variables 

_c:_.L= q sinx; b=iY[!siny, (13) 
c yi + q2 

we can reduce (3)-(9) to the form 

dx e q 
dt me (1 + q'f" (1 + cosx)ZE; 

'!!_=-~E-
dt n ' 

(14) 

dE q 
- = - 2rrQ.Y f1 sin y - 2rrenoe-=- sin x. 
dt 11 + q2 

We consider the solution of (14) assuming that at the 
initial time t = 0 the transverse beam velocity is zero 
(x(O) = 0) and the magnetic moment is directed against 
the magnetic field (b(O) = 0). For these initial condi
tions, the integrals of motion of (14) can be represented 
in the following form: 

x 1 x 2en q 
tg-+-tg3-=- y; 

2 3 2 meg[!(1+q2)'• 

(15) 

E 2 - Srr,YilQ sin2 ~ + 2rrn0mc2 (1 + q2)tg2~ = 0. 

Eliminating E and y from the second equation in 
(15) by means of the first equation in (14) and the first 
equation in (15) we obtain an equation for the motion of 
the beam: 

( dw )'= S:t~ q' 1 ( ~1VftQ sin2 [meg[! (1 + q'J''' 
dt m 2c2 (1 + q') 3 (1 + w2J'l g 4en q 

X ( w + ~ w3 )]- n0mc2 (1 + q2 )w' }, (16) 

where w = tan %x. 
We assume below that the total angular momentum 

of the active atoms is determined by the spin angular 
momentum (g = 2, n = WH) and the beam velocity at the 
initial time is zero: q = 1. In this case (16) assumes 
the form 

dw 1/ 2N[!2WH 1 { . [ 1 ( 1 )] nome2 }''' -=2 v------ sm2 --=- lL'+-w' ---w2 (17) 
rlt .li 1 + w2 l'2 3 NftwH 

In the absence of the beam (no= 0), Eq. (17) de
scribes the natural oscillations of a paramagnet that is 
in inverted state at the initial time. The transverse 
amplitude of the magnetic moment y(t) varies like a 
nonlinear pendulum with the equilibrium position at the 
upper point and a period of oscillations T 
= % (ti/NJ.L 2wH)112, [ 61 while the magnetic-moment vec
tor that was directed against Ha at the initial time ro
tates and becomes parallel to the magnetic field in one
half of a period. At the same time, the entire energy 
stored in the medium is transformed into the electro
magnetic field energy. This is followed by the process 
of field absorption by the medium, returning the system 
to the initial state (y = 2rr). The process is then re
peated, although the value of y(t) decreases to zero and 
the field phase is shifted by rr. If the beam density is 
different from zero the absorption of part of the energy 
by the beam gives rise to a maximum oscillation ampli
tude Ym different from 2rr. We obtain the equation for 
the function Wm by setting W(Wm) = 0 in (17): 

(18) 

In a general case this equation can be solved numer
ically, although when ~ << 1 the solution can be ob
tained by the method of successive approximations: 

- roo 1 -
Wm = Wo- Y2L'.---; Wo + -- Wo3 = l'2rt. (19) 

1 + wo2 3 

In the first approximation we find: Wm ::::l w0 ::::l 2.4. 
Using (19) we can determine the maximum energy 

acquired by the beam: 

(20) 

Thus a low-density beam initially at rest, no 
<< NliwH/mc2, can be accelerated up to the energy of 
.$ 3.5 MeV in time T ~ 1/2(ti/Nf.L2WH)1/ 2 and the energy 
acquired by the beam is weakly dependent on the beam 
density. As beam density increases the maximum en
ergy decreases and when ~ > 1 acceleration does not 
occur.2 > 

The above theory does not take into account the lon
gitudinal field E 11 (t) generated by the z-component of 
the accelerated beam; it is therefore necessary to de
termine the conditions under which this approximation 
is valid. As shown in [ 41 the main effect obtained by in
cluding E II is a phase shift of the beam relative to the 
accelerating field, which stops the acceleration. 

Assuming that v 11 = c, we find the longitudinal field 
generated by current enoc: E 11 (t) = -41Tenoct. The quan
tity q, defined by (11), varies in time according to 

(21) 

Substituting (21) into (7) we determine the time depend
ence of the beam phase shift 

(22) 

The acceleration process obviously terminates at J. ~ 1. 

2l The interaction of a high-density charged-particle beam with an 
active dielectric in the absence of magnetic field was considered in [ 7 ]. 

In this case the energy stored in the medium can be converted into the 
energy of a longitudinal wave and the beam acts as a slow-wave wave
guide. 



RESONANT ACCELERATION OF A BEAM OF OSCILLATORS 953 

The time T determined by this condition turns out to be 
equal toT~ 7w~2/ 3 w'HI 3• Comparing T with the char-

acteristic acceleration time T we find that the longitu
dinal field can be neglected with T << T: 

(23) 

In conclusion we evaluate the maximum density in 
the accelerated beam for a given value of the magnetic 
field. For WH ~ 2 x 1011 (wavelength of the order of a 
em) and N ~ 1020 we find 11o ;S 1010 and T"" 5 x 10-5 • 

With increasing emission frequency the particle density 
Ilo can be increased: WH ~ 1015 (optical frequency 
range), 11o ;S 1014 and T ~ 5 x 10-12• Consequently the 
above effect can be used in the design of heavy-current 
accelerators with moderate energy. 
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