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Some features of photon echo on atomic transitions involving total momentum changes Y2 +::!: ?'2, 1 - 1 
and 1 ~ 2 in the presence of an external magnetic field H are investigated. The intensity and polar
ization of a photon echo produced in a gas by the passage of two linearly polarized light pulses are 
determined. It is shown that a magnetic field affects the photon-echo intensity and leads to a specific 
rotation of its polarization. This rotation of polarization differs from Faraday rotation since the 
angle of rotation does not depend on the distance travelled by the light but on H and on the time be
tween the last two pulses. The angle of rotation of polarization of the photon echo also depends on 
the type of the atomic transition. It is suggested that the g-factors of the energy levels be measured 
on basis of the polarization rotation angle and variation of photon echo intensity. The specific polar
ization properties of the photon echo can be used for experimental identification of atomic transitions. 

THE photon-echo method is a very sensitive tool for 
the experimental investigation of relaxation processes 
in solids[l-JJ and in gasesC 4 ' 51 • The method consists of 
successively passing through the investigated medium 
two exciting light pulses, separated in time by an 
amount r. The photon echo is produced in the medium 
at the time 2r following the passage of the first pulse. 
The relaxation time is determined from the attenuation 
of the photon-echo intensity as a function of r. 

This, however, does not exhaust all the possibilities 
of the photon-echo method. An experimental investiga
tion of the polarization effects of the photon echo in a 
gas makes it also possible to determine other physical 
characteristics of the gas molecules. The polarization 
properties of the photon echo are of particular interest 
in the presence of an external magnetic field[ 6l. 

The rotation of the polarization of the photon echo 
in a magnetic field was recently observed experi
mentally without detailed quantitative measurementsC 5 l. 
The observed rotation of the polarization was interpre
ted in[sJ as ordinary Faraday rotation. Such an inter
pretation cannot be regarded as valid. The Faraday 
effect is due to the interaction between the transmitted 
wave and a medium placed in a magnetic field. There
fore the rotation angle in the case of Faraday rotation 
is proportional to the excess population of the working 
levels and to the path traversed by the lightC 7 l. In a 
gas, the Faraday angles of the transmitted pulses and 
of the photon echo are relatively small. This is due to 
the small value of the overpopulation, since in a gas 
both working levels are usually excited and their ex
cess population is due to the Boltzmann distribution 
(see the Appendix). 

If the Faraday effect is neglected, then there is no 
rotation of the polarization of the photon echo at all as 
the pulse passes through the medium. The photon echo 
in a gas is induced in the presence of a magnetic field 
at a definite instant when the polarization is already 
rotated, even if the polarizations of both excited pulses 
coincide. The direction of this rotation opposes the 
Faraday rotation in a monochromatic wave passing 
through the same medium. The angle of rotation of the 
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photon-echo polarization relative to the polarization of 
the transmitted pulses does not depend on the excess 
level population and on the linear dimensions of the 
medium, but is determined by the quantities r and H, 
and by the gyromagnetic factors of the levels and the 
type of atomic transition. The physical cause of the 
indicated rotation is the precession of the polarization 
current around H after the passage of the exciting 
light pulses. It follows from the foregoing that when 
there is no Faraday rotation, the rotation of the photon
echo polarization vector in a magnetic field relative to 
the polarization of the transmitted pulses is a new 
physical effect. This effect was predicted by one of the 
authors in[6 J, where photon echo in the atomic transi
tions 1 :;:: 0 and Y2 - Y2 was observed in the presence 
of a magnetic field. 

In the general case, it is necessary to add to the 
aforementioned specific rotation of the photon-echo 
polarization also the contribution from the Faraday 
rotation. 

In the absence of an external magnetic field, the 
polarization properties of the photon echo in different 
atomic transitions are quite distinct. If the exciting 
pulses move in the same direction and are polarized 
at an angle 1/J to each other, then the polarization of the 
photon echo in the atomic transitions 7'2 +!: 7'2 at H = 0 
makes an angle larger than If! with the polarization of 
the first pulse. At the same time, the polarization of 
the photon echo in the atomic transitions 1 = 2 does 
not obey this rule and depends on a very complicated 
manner on If! and on the other parameters of the prob
lem. 

Since the polarization of electromagnetic waves is 
characterized by a vector, the polarization features of 
the photon echo must be described with allowance for 
the degeneracy of the resident energy levels. We as
sume henceforth that the degeneracy of the levels is 
due to the different orientations of the total angular 
momentum. 

1. FUNDAMENTAL EQUATIONS 

We consider an atom (molecule) in a homogeneous 
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magnetic field H. The Zeeman splitting of the degener
ate level, characterized by the aggregrate of quantum 
numbers n and the total angular momentum J, is 
given in the approximation linear in H by 

(1) 

where J.i.o is the Bohr magneton and M is the projec
tion of the total angular momentum. In the case of an 
arbitrary type of coupling, the gyromagnetic factor 
gnJ is a certain coefficient (g-factor) characterizing 
the given term. 

We write the equation for the density matrix 
PnJm n'J'M' of a group of atoms moving with velocity 
v in ~ form in which definite values are possessed by 
the quantum numbers n, J, and M as well as by the 
energy EnJM: 

i/t (! + vV) PnJM, n'J'M' = (EnJM- En'J'M') PnJM, n'J'M' 

1 +- ( PnJM, n-'J"M'' dn"J"M", n'J'M' c 

- dnJM, n"J"M'' Pn"J"M", n'J'M') (A+ A"), 
EnJM = EnJ + J.tcgnJHM, 

where dnJM n'J'M' is the dipole moment of the transi
tion, and A is the vector potential of the electromag
netic pulse1 >. 

We consider only two groups of sublevels with 
energies EnoJaM and EnoJ1 M· In the absence of a mag
netic field, they merge to form two degenerate levels 
EnoJ 2 and EnoJ 1 , which are in resonance with the fre
quency of the transmitted electromagnetic pulses: 

Here J 2 and J 1 are the total angular momenta of the 
upper and lower degenerate levels, respectively. 

For simplicity, we assume that the Zeeman splitting 
(1) is small compared with nw. We denote by 

the density matrix describing the transitions between 
the Zeeman sublevels of the upper level. Analogously, 

is the density matrix of the Zeeman sublevels of the 
lower level. The transitions between the Zeeman sub
levels of the upper and lower levels are described by 
the density matrix 

The vector potential 

Aa = aa cxp [i(kr- ffit +<D)] 

of the transmitted electromagnetic pulse satisfies the 
d' Alambert equation 

4n 1 
DAa= -- J dvSp/a, 

c 

(2) 

(3) 

in which the polarization current Ia is connected with 
the density matrix RJ.i.m in the following manner: 

(4) 

I) Summation over the repeated matrix and tensor indices is implied 
throughout. 

where the dot over the dipole moment of the transition 
dmJ.i. denotes the operator of the derivative of this 
quantity. It is convenient to separate in the current (4) 
the slowly-varying amplitude 

la = iaexp [i(kr-wt+<D)]. (5) 

In (2) and (5 ), the phase <I> is real and constant. The 
alternating phase difference between the current and 
the vector potential, which appears in the problem, 
will be assigned to ja. Then the equations for the slow 
functions take the form 

( :t + cV )aoo = i·2rrX ~ dv Spja, 

( D r ·k)· +.Bz ( J~) .. "Q 751 T l V Ia l T n z Ia- lBl]a aa 

+ 3 / 4i (212 + 1) yc1; (p,T.,- p1".l) a,,= 0, 

D . e2 [ ( 1~ ) ( J, ) ] . 1 ( • . . +) () 751 P2 - l T Pz n 2 - n 2 P2 + l fi:C aa ]a - aa]a ·~o , 

where 

Q.) ~~ {2!1 + 1) a~m (nJ1lmm' a;,..~· In 1 a~: !2 • 

T af3 = dv.:HP.dmwrx / / dJ/2 / 2, 

PiaB = d!m Pm111' d~,,!-1-,jj dJ/2 / 2, 

P2 = P~w, n = H I II, X = c I ''' = 1 I k, 

(6) 

(7) 

(8) 

(10) 

e, = flogtH I It, e, = [tog,H I tz, y = itfdJ/'1' I 3(2!, + 1)fzX". 
(11) 

Here d~ 2 is the reduced dipole moment of the transi-
1 

tion, y is the probability of spontaneous emission, and 
J 1 and g1 are respectively the operator of the total 
angular momentum and the gyromagnetic factor of the 
lower level. J 2 and g2 are the analogous quantities for 
the upper level. The term k · v takes into account the 
Doppler frequency shift occurring when an atom moves 
with velocity v. The derivatives v'V of the slow func
tions have been omitted from Eqs. (7 )- (9 ), since in 
the approximation considered below they make a 
negligibly small contribution, of the order of v/ c. 

For the different atomic transitions we obtain: 

for I.= J-+ lt = l 

Q.~ = J.(nJ)J~ I l(J + 1 )tz', Tap= l~loo I l (J + 1) (2! + 1)/t'; 
for J, = J-+ J, = J + 1 

Qa~ = {2(/ + 1)2(nJ)6oop + (J + 1) [(J:Jp + lpla) (nJ) + 

+ (nJ) (J:f~ + J;Ja)J- (2J + 3) [foo(nJ)l~ + /r.(nJ)fa]-
- i(J + 2) [ (J + 1)eaprnv + Capy(l~nJ + nJ/1 )]} I 2(1 + 1) (2! + 1)/P, 

i(2! + 3)ne.~,~ + 2(/ + 1) 2lt26a~- ).]p- J~). 
Tap= 2(/ + 1) (2J + 1) (2/ + 3)fz~ , 

The transformation (4 ), (10 ), and (11) effects the 
transition to the matrix indices of the projection oper
ator of the total angular momentum of the upper level. 
This is a very convenient factor in the analysis of the 
atomic transitions J 2 = J - J 1 = J + 1 and also J 2 = J 
- J 1 = J. In the case J 2 = J + 1 - J 1 = J, to the con
trary, it is convenient to change over to the matrix 
indices of the projected operator of the total angular 
momentum of the lower level, introducing the notation 

ia. = Rm~ a:m' exp [i (kr - (J)t + <D)], 

Pi= Pmm', P2ai3 = d~IJ.l Pu~-t' a:'m'/! dJI.J~ /2. 
The equation for these quantities and for a~ are ob-
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tained from (6 )- (9) by renumbering the indices of the 
density matrices ( 1 ";:!: 2 ), the g factors, and the total 
angular momentum operators. The amplitude a is re
placed everywhere by its complex conjugate a*, and 
vice-versa: a ";:!: a*, and minus signs appear in the 
right side of (6) and in front of the wave vector k in 
(7). The quantities Qa{3 and Taf3 for the atomic transi
tion J 2 = J + 1 - J 1 = J coincide formally with the ex
pressions obtained above for the atomic transition J 2 
=J-J1=J+l. 

We note that the photon echo in a gas is formed 
most frequently in atomic transitions between two ex
cited levels, whose total angular momenta can assume 
arbitrary values. The transition to the matrices of the 
smaller angular momentum is particularly useful in the 
consideration of the atomic transitions Y2 ~ 7'z and 
1 ~ 2, since the basic matrices in the space of 2 x 2 
and 3 x 3 matrices are quite simple. 

The initial conditions for Eqs. (6 )- (9) are written 
in the following form: 

nd 
aa(r.O)=ia(r,O)=O. P2(r,0)= Zh+ 1 , 

where n2 and n1 are the densities of the atoms at the 
sublevels of the upper and lower levels, respectively, 
at the initial instant t = 0. The numerical value of n2 
or n1 is determined by the Boltzmann distribution of 
the atoms over the levels. The function f describes 
the velocity distribution of the atoms: 

f = ( 1 I n'1•u3) exp (-I? I n2), 

where u is the thermal velocity of the atom. We have 
neglected Boltzmann distribution of the atoms over the 
Zeeman sublevels at the initial instant t = 0, assuming 
the distribution over the sublevels in (12) to be equally 
probable. In all formulas, the unit matrix is not 
written out in explicit form. 

2. PHOTON ECHO IN THE ATOMIC TRANSITION 
Y2- ?'2 

By virtue of the specific properties of the Pauli 
matrices a a, Eqs. (6 )- (9) for the atomic transition 
Y2- ?'2 simplify noticeably, inasmuch as the quantities 
Qa{3 and T af3 assume a relatively simple form: 

Oa~ = [ 4 (na) /\"~- n"a~- a"n~- 5ie"~vnv] I 6, 
T"~ = (/\"~ + a"a~) I 12. 

Let the exciting pulses propagate in the direction of 
the magnetic field H, which we choose to be the Z 
axis. The first pulse, which is linearly polarized along 
the X axis, falls on the boundary of the medium z = 0 
at the instant of time t = 0. 

We shall henceforth assume that the time interval T 

between two transmitted pulses is large compared with 
the durations of the pulses themselves and of the pho
ton echo. Let the Faraday rotation be insignificant and 
let the influence of the magnetic field during the time 
of passage of the light pulses be negligible. We seek an 
approximate solution of the problem, neglecting the 
reaction of the medium on the transmitted light pulse. 
To this end it is necessary to have[aJ 

(13) 

where No is the excess population of the working 

levels, l the linear dimension of the medium, and ti/To 
the Doppler width of the spectral line. 

We emphasize that the polarization effects of the 
photon echo in a magnetic field do not depend on the 
inequality (13) and do not change when the reaction of 
the medium on the transmitted light pulses is taken 
rigorously into account. This is connected with the 
fact that the polarization current induced by the passing 
pulse serves only as an initial condition for the subse
quent solution of Eq. (7) with a= 0 in the time interval 
following the passage of the indicated pulse. The pho
ton echo is the result of phase synchronization of indi
vidual emitters precisely in the time interval when 
there is no electromagnetic field (a= 0), and the 
equation for the current with allowance for H can be 
solved exactly. 

The solution of Eqs. (7 )- (9) during the time of 
passage of the first pulse of duration T 1 is written in 
the form 

ia.= (6,,. + a,.a1)j, 

j (t-!_) =- '/C'f..a Not{~[ 1- cosQ,(t-.:_l] 
c 8Q, Q, c / 

+ i sin Q, ( t - ~)} , 

Q 12=(kv) 2 +y"Aa2 lli, N0 =(n2 -n1 12)12. (14) 

We need no explicit expression for the density 
matrices. 

After the passage of the first pulse T 1 :s t - z/ c, 
the polarization current (5) takes the form 

I a= J"aj(T,) exp {i [ffi(Z I c- t) - kv(t- T,- z I c)+ cD!]}, (15) 

where j( T 1 ) is the current (14) taken at the instant 
t = T1 + z/c; <1>1 is the constant phase of the first pulse 
of the type (2 ), and I~ is the matrix vector: 

I=-a 1 (3e'"+e-ir 
t 2 0 

12 - " . , 13 ·= 
a _ i (e-<~ - 3eia 0 ) a ( 0 e-if,) 

2 0 3e-1" - e1il - e1 ~ 0 ' 

a= (3e, - Ez) (t- T, - z I c) I 2, ~ = (e, + e2) (t- T1 - z I c) I 2, 

It is easy to see that the trace of ~ is equal to the 
sum of two vectors, which rotate at each point z with 
angular velocities (3€1- £ 2)/2 and (E 1 + E 2)/2. If the 
g-factors of the levels are the same, E 1 = £ 2 = E, then 
the aforementioned two vectors merge into a single 
vector rotating with angular velocity E. 

Assume that at the instant t = T, there is sent along 
the Z axis a second pulse with amplitude b, time dura
tion T2, and a polarization vector that makes an angle 
1/J with the polarization of the first pulse: 

A"= b" exp [i (kz - ffit + cD2)], cD 2 = const. 

We rotate the coordinate system in such a way that X 
the axis coincides with the direction of polarization of 
the second pulse. This does not change Eqs. (6 )- (9 ). 
The initial conditions for the current 

I a= ia exp Li(kz- ffit + cD2)] (16) 

are determined from (15) by transforming the rotation 
to the instant t = T + z/ c. All the formulas in the region 
T :s t - z/ c will be sought henceforth in the rotated 
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coordinate system with the X axis along the polariza
tion vector of the second pulse. 

In the region 

t ~ t- z I c ~ t + T, (17) 

we are interested only in that part of the current which 
makes a contribution to the photon echo. The terms of 
the current that are proportional to the initial values of 
the density matrices P2 and p~f3, taken at the instant 
t = r +z/c, make no contribution to the photon echo. 
Therefore Eqs. (6 )- (9) must be solved in the region 
(1 7) with zero initial conditions for the density 
matrices. The final expression of the sought part of 
the current (16 ), making a contribution to the photon 
echo, takes the form 

I a= 2-3j' (T,) [1- cos Q,(t- t- z I c) ]Jab 
X exp {i[w(z I c- t) + kv(t- T,) - <D 1 + 2<D,]}, 

J1b = (2.r + iyu,), 12" = y- ixu,, 13" = i(ycr, + xcry), 

x = cos(rr, + '¢) + 3 cos(rp, + '1'), y =sin({!'!+'¢)- 3 sin(rp2 + '¢). 

rp, = (r, + e,)t I 2, ere= (3e1- r2)t I 2, Q,2 = yr.b2 I ft. (18) 

In order to simplify formula (18 ), we have carried 
out an expansion in terms of the parameter 

11 (Q,7'0 ) 2 ~ 1, (19) 

retaining the first term of the expansion. 
The value of the current (18) at the instant t = r 

+ T2 + z/c is the initial condition in the solution of (7) 
with a= 0 in the region after the passage of the sec
ond pulse: 

't + T, ~ t- z I c. (20) 

We write out immediately the trace of the current (4) 
that enters in equation (3): 

Sp la(t- 't- T2- Z I c) = 2-3j*(T!) (1- cos Q,T,)lae 

Xexp {i[w(z/ c- t) -kv(t-2't + T 1-T2 -z/ c)- $ 1 + 2<D2]},(21) 
J,e =cos '¢1 + 3 cos '¢2 + 3 cos '¢3 + !l cos 1)•4, 

f 2e = -sin ¢ 1 + 3 sin '¢2 + 3 sin ¢ 3- !l sin'¢4, 

/3e= 0, 

¢1 = rp, + 1jJ- (e, + e,) (t- 1:- T,- z I c) I 2, 

'¢2 = rp, + 1jJ + (3e,- e,) (t- 1:- T,- z I c) I 2, 

'¢3=rp2 +'1fJ + (e1 + e2) (t- 't- T2 - zl c) 12, 
~-, = rp2 + '¢- (3e,- e2l (t- 1:- T,- z I c)/ 2. 

Owing to the Maxwellian distribution function that en
ters in j(TI), the integration of (21) with respect to 
the velocity causes the photon echo in the medium to 
occur at the instant t = 2r - T1 + T2 - z/ c. The terms 
T h T 2, and z/ c can usually be neglected in compari
son with 2r, so that the instant of occurrence of the 
photon echo is approximately equal to t = 2r. The 
order of magnitude of the duration of the photon echo 
pulse is T0 = 1/ku. The direction of the polarization 
current (21) at the instant of occurrence of the photon 
echo, t = 2r- T1 + T 2 + z/c, is determined by the 
vector I~(r): 

(22) 

/,e(-r;) = -5 sin'¢+ 3 sin(¢+ 2e1't), J,<(r) = 0, (23) 

where we have neglected the term T1 compared with 
T, 

We write out the vector potential of the photon echo 
in the particular case 

with simultaneous satisfaction of the inequality (19 ): 
n 

Aa(z, t) =- 16 Iae 'Al(nf.y) 'f,N0 sin Q1T1(1- cos Q,T") 

(24) 

xexp{- (t- 2r+T1 -T,-zlc)' +i[<•l(.!....-t)-<D1 +21D,]\.(25) 
4To2 c } 

The photon-echo polarization vector at the point of the 
maximum intensity coincides with I~ ( r ). In the ab
sence of the magnetic field it makes an angle larger 
than 1/J with the polarization vector of the first pulse. 
The presence of a magnetic field leads to rotation of 
the polarization of the photon echo in a clockwise direc
tion, when viewed along the pulse propagation direction. 
It is easy to determine the g-factor of the lower level 
from the angle of this rotation. 

As seen from (22) and (2 3 ), the intensity of the pho
ton echo also depends on the angle of rotation of polar
ization of the photon echo in the magnetic field. For 
the particular case 1/J = 0, the intensity of the photon 
echo in a magnetic field is proportional to the factor 
17 + 15cos2€ 1T. Consequently, it is also possible to 
determine the gyromagnetic factor of the lower level 
from the change of intensity of the proton echo as a 
function of r and H. 

So far we have ignored the attenuation of the photon
echo amplitude as the result of the irreversible relax
ation. The latter is taken into account in (6) and (7), 
as usual, by introducing relaxation terms. As a result, 
the intensity of the photon echo acquires the charac
teristic factor 

exp [-f(2t- T 1 + T 2], 

where fir is the sum of the widths of the upper and 
lower working levels [91. 

In the case of the atomic transition J2 =%- J 1 

= Y2, the vector potential of the photon echo is obtained 
from (2 5) by the substitution 

3. PHOTON ECHO IN THE ATOMIC TRANSITION 
1- 1 

After passage of the first pulse, the magnetic field 
rotates the polarization current. Unlike the atomic 
transition Y2 - 7'2, the trace of the polarization cur
rent in the case of the 1 - 1 transition is equal to a 
sum of two vectors rotating with angular velocities €1 
and €2. 

The subsequent calculation procedure is similar to 
that considered above, although the calculations are 
much more complicated on changing over to the unity
angular-momentum matrices. The matrix structure of 
the polarization current becomes particularly compli
cated after the passage of the second pulse. However, 
the trace of the polarization current breaks up, as 
before, into a sum of two vectors rotating with angular 
velocities €1 and €2. Omitting the rather laborious 
calculations, we present the final result for the photon
echo vector potential in the approximation (19) and (24 ), 
which we express in a coordinate system with the X 
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axis along the polarization vector of the second exciting 
pulse; 

-n ( 2 \'f, 
Aa(z, t)= -gla0 'Al 3 nxy} (n,- n,)sin Q,T1(1- cos Q2T,) 

Xexp{- (t- 2,;+T,--;-T,-zjc)' +ifw(!___-t)-CD1 +2CD,]}, 
4T,- c 

I 1° = cos ( 1jl + E2't) cos e, ( t - 1: - 12 - z I c) 
+COS (1jl + Et't) COS Et(l -1:- T2- zlc), 

12° =cos (1Jl + EzT) sin e2 (t- 1:- T,- z I c) 
+c.os (1Jl + Et't) sin e,(t -1:-1 2 - z/c), 

J3e=O, Q12 =3y'Aa2 /2fl, Q22=3y'Ab2 /2fl. 

At the instant of the occurrence of the photon echo, 
its polarization is parallel to the vector I~ ( T ): 

/ 1°(T) =COS (1jl + e2T) COS e2T +COS (1Jl + Et't) COS BtT, (26) 
J,e(T) =cos (1l•+e2,;) sine2,;+cos ("ljl+et"r)sine 1,;, (27) 
U(T) =0. 

An experimental determination of the direction of 
the vector I~ ( T) makes it possible, with the aid of (2 6) 
and (27), to calculate the g factors of the upper and 
lower levels. The intensity of the photon echo is pro
portional to the square of the vector I~ ( T) and depends 
on H in more complicated manner than in the case of 
the Ya - 7'a transition. 

4. PHOTON ECHO IN THE ATOMIC TRANSITION 
1-2 

The distinguishing feature of the atomic transition 
1 - 2 becomes manifest already during the time of 
passage of the first exciting pulse. In particular, the 
general concept of the 90° pulse loses its meaning even 
when the inequality (24) is satisfied. In place of one 
characteristic factor sinQ1 (t- z/c), the amplitude of 
the polarization current breaks up into a sum of two 
terms, the first of which is proportional to 
sinG1(t- z/c) and the second to sin[2U1 (t- z/c)/[3], 
where of= 9y7t-aa/10ti. 

In view of the complexity of the formulas, we shall 
not write out the polarization current after the passage 
of the first pulse. We note only that the trace of the 
current breaks up into a sum of three vectors rotating 
with angular velocities E1, Ea, and 2E1 ·-Ea. These 
rotating vectors remain also after the passage of the 
second exciting pulse. In the region (20 ), the trace of 
the current is not proportional to usual factor 
1 - cos naTa, which gives rise to the customary con
cept of the 180° pulse. 

We leave out the cumbersome intermediate calcula
tions and present the final vector potential of the pho
ton echo at ljJ = 0, assuming the g-factors of the upper 
and lower level.s to be the same and equal to g: 

A . /e l { (t-2T+T1 -T2 -zjc)' 
o; = ~n a: -;exp - 4Trl 

+ i [ w ( ~- t) ~ co, + 2CD, 1}, (28) 

where 

J1e=ucose(t-,;-T,-zfc) -vsine(t-T-1'2 -z/c), (29) 

J,e= u sine(l- 1:- 1'2 - zlc) + ucose(t--T- 1'2 -zl c), / 33 = 0, 
(30) 

u ={ 2x[1- cos2 n cos Q,T2- sin2 ercos(2Q2T,/tiS)] + 

+ y [ 3 sin2 e-r(1- cos Q,T,) + (2-3 sin2 «) ( 1-cos 2~;!'.' ) ]} cos n, 

v =_..;_(cos w1T,- cos w2T2) [ x(1 + cos2 n) + ~ y(1-cos2 er) J sin n, 
~ 2 

cflQ1 cflQ1 2Q11't 
x= i--N0 sinQ,T1, y = i-=-Nosin-_-, 

4a 413a 13 

""' = (7 + 413) Q,' I 12, t•l22 = (7- 413) Ql/12, 

Q2' = 9y'Ab2 I 101!, IYo = n, I 3- n, /5. 

The remaining quantities have been defined above. If 
we make in (29) and (30) the formal substitutions 

e(t- T- T2 - z/c) -+0, e,;-+1jl, 

then formulas (28 )- (30) describe the photon echo ex
cited at H = 0 by two light pulses polarized at an angle 
ljJ to each other. We see therefore that in the absence 
of the magnetic field the polarization of the photon 
echo in the 1- 2 atomic transition can lie either be
tween the polarizations of the excited pulses or outside 
these polarizations, depending on the parameters of 
the experiment. 

The vector potential of the photon echo in the 
2 - 1 atomic transition is obtained from (28) by the 
substitutions 

y-+5y73, No-+n,l5-n,/3. 

The authors are grateful toN. G. Basov and V. M. 
Galitski1 for useful discussions. 

APPENDIX 

Let us find the Faraday angle of rotation e of the 
polarization over a path z in the case of the short 
pulse that is resonant with the atomic transition 
1 - 1 with identical E 1 = E a = E. Since we are inter
ested in the order of magnitude of the rotation angle, 
we discard the nonlinear terms in the calculation of 
the polarization current of the gaseous medium. The 
final result takes the form 

I) 

9=:rt(n2 -nt)l\2yT0ze-"' ~ e''dt, (31) 

where 1J ~ ET0 and it is assumed that the collision 
width of the level is small compared with the Doppler 
width. 

For the parameters of the experiment[ 4 l and for a 
field intensity H of the order of 1 Oe we have I e I « 1. 
At the same time, the specific angle of rotation of the 
polarization of the photon echo, due to the precession 
of the current around H after the passage of the light 
pulses, has an order of magnitude larger than unity, 
and the direction of this rotation is opposite to a Fara
day rotation (31) if na < n1. 

The experimental[sJ specific angle 2EaT of the rota
tion of the polarization of the photon echo in the atomic 
transition %- Ya is also large compared with the 
Faraday rotation. However, under the experimental 
conditions the Faraday angle of rotation can reach a 
value 21T and must be taken into account. 
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