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The problem of calculating the effective cross sections for inelastic collisions between highly excited 
atoms and electrons can be reduced in the quasiclassical approximation to the determination of the 
action-function increment in the collisions, i.e., to integration of the classical Hamilton-Jacobi equa
tion. This approach removes the known difficulties connected with the determination of cross sections 
by the classical method and enables one to obtain these cross sections as a limiting case, an alter
native to perturbation theory. An interpolation formula is proposed for the general case. The nature 
of the approximation is illustrated in the case of the dipole approximation. 

1 Approximate methods of calculating effective cross 
sections of inelastic collisions of atoms with charged 
particles, based on classical mechanics (see, for exam
ple, ll-4l ) 1>, have recently become widespread. The 
interest in such a method results mainly from the possi
bility of taking into account more naturally perturbation 
effects of the motion of the atomic electrons during the 
collisions. This effect plays a primary role in inelastic 
collisions; however, allowance for it within the ordinary 
approximations of quantum mechanical methods is ex
tremely difficult. 

quantities appearing in it. It also becomes possible to 
establish applicability conditions for equations like (1) 
and to obtain a fuller expression when those conditions 
are not fulfilled. 

In what follows we will have in mind transitions be
tween levels with large values of the principal quantum 
number n. It is exactly for these states that classical 
methods are most naturally applicable. 

2. We start from the quasiclassical approximation 
for atomic wave functions >Itn = exp(iSn/11). Then- n' 
transition probability equals 

In concrete calculations within the classical method, 
the effective transition cross section is usually defined 
in the following manner: 

w •.• = )~~ l<'¥.·0 (t) l'¥n(t))l 2 = )~~,\ ( exp(~s •. •)l exp(~s.)) I' 
.. d 

cJ= I _5!_de, (1) 
J de ,, 

where da/dt is the differential cross section of energy 
transfer from the incident particle to the atom, t 1 is the 
energy threshold of the reaction channel under consid
eration, and £2 is the energy threshold of the following 
channel. The various approximate methods differ in the 
means of calculating t as a function of the collision 
parameters and of averaging da /dt over those param
et~rs. 

However, such methods of determining the transition 
cross section (1) include an essential element of arbi
trariness. The difficulties in the determination of tran
sition cross sections between stationary states from the 
classical energy transfer cross section da/dt are due 
to the fact that a trajectory description of the motion of 
an atomic electron is used in calculating da/dt. At the 
same time it is well known that there is no transition 
into a trajectory motion on going to the limit of the 
classical stationary state. 

It is therefore more consistent to consider the whole 
set of classical trajectories and to formulate the prob
lem of the classical calculation as the problem of 
evaluating the action-function increment during colli
sions. As shown below, such an approach enables one to 
retain the quantum mechanical definition of a cross sec
tion, using classical mechanics only to approximate the 

1>Detailed references are contained in [4 ]. 
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(2) 

Here the index 0 corresponds to the unperturbed atom, 
and 'l!n(t)- 'I!~ when t --00 • In the quasiclassical ap
proximation S is the action function, determined by the 
Hamilton-Jacobi equations and by the initial conditions 
Sn(-oo) = S~. The unperturbed quantities S~ obey the 
Bohr quantization rules. 

In case of a discrete spectrum it is convenient to ex
press the function S in terms of canonical variables for 
the isolated atom, the action I, and the conjugate phase 
variable w. In these variables the Hamilton equations 
for the isolated atom, the action function S0 , and the 
quantization condition are of the form (see, for exam
ple, lsJ) 

iJHo=O fJllo=~ S•=Iw-Et 1=2nnh (3) 
Ow ' OJ 2n n' ' 

where w = w(n) is the classical frequency of motion of 
an electron in an orbit of energy E = En2 >. 

For the transition probability n - n' we have 

I 1 [ i J I' w •.• = lim S dwexp - 2nikw +-S'(w, t) . 
t--+'XJ 0 1i 

(4) 

Here S' = Sn- S~ is the action increment as the result 
of the perturbation, and k = n - n'. In what follows we 
use the notation s' (w' 00 ) = s' (w). It is easy to verify 
that (4) satisfies the normalization condition. Since in 
the interval 0 < w < 1 

2>For simplicity we confine ourselves to one pair of variables I and 
w, corresponding to the principal quantum number n. 
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~ e2cih(w-w') = 6 ( w - w')' 

we have 

i 1 { . } ~Wn•n= S S dwdw'B(w-w')exp -1,--[S'(w)-S'(w')] =1. (5) 
n' 0 0 

The transition probability between stationary states of 
the atom is determined, by Eqs. (2) and (4), in terms of 
the classical action functionS. This function, and conse
quently also its increment due to the perturbation S', 
are found by integrating the Hamilton-Jacobi equation. 

3. Consider first the case of a sufficiently strong 
interaction, when s' is large compared with li. We as
sume also that the function S' jn satisfies the well known 
conditions, permitting the use of the steepest-descent 
method in calculating (4). Then 

~ dwexp[ -2nikw+ ~ S'(w) J 
0 

;:::;~exp{i[-2nkwi+S'(wi) +~-]}·1-i_ii~S~~-'h , (6) 
. n 4 2nn i)w w~w 
J J 

The summation is over the points of stationary phase 
wj, determined by the equation as' jaw = 27TI'ik. Since 

S' jh ~ 1, interference terms can be neglected in calcu
lating the square of the absolute value of Eq. (6)3 >. 
Hence 

"'I oil ~-1 i!S' W n'n = 2nn LJ ~-- , il = -- = I - 2nnn. 
j aw h-='l.n1ik aw (7) 

The transition probability is determined by Eq. (7) 
as a function of the collision parameters, particularly 
the impact parameter p. We therefore have for the 
transition cross section O"n'n 

00 001 oil r-1 
On·n = 2n ~ Wn·n (p) pdp= 4n'n ~ ~-[J- pdp, 

o o W I D.='21thk 
(8) 

It is easy to show that this equation is similar in struc
ture to Eq. (1). We proceed to integrate (8) over w. 
Taking into account, that the variables p and w are con
nected by the equation t.(p, w) = 27TI'ik, we obtain 

On·n=4n'n~dwp(Ll,w)l dp~~w) l.;~z,M. (9) 

Introducing the notation E = E - En and using (3) and (7), 
we have 

I : I t>~2"nk= :x :~ IE~E,( cc W ~~)I ~~ I '~E,•-En. 
Since 

S dw 2np I dp I = da' 
de de 

where dajdt. is the classical differential cross section 
for energy transfer, averaged over the "initial phase" 
w, we obtain from (9) 

, ( da ) <1n•n = nw(n) - ' 
de e=En,-En 

(10) 

where w(n') is the classical frequency of motion with 
energy En', and hw(n');::::; En'- En' _1 ;::::; En'+ 1 - En'· 
The classical equation (1) follows from (10) by the 

3lWe note that in the collision problems of interest to us there is 
usually one stationary point. 

theorem of the mean after a proper choice of the limits 
E1 and £ 2 • The usual prescription for choosing £1 and t2 

in Eq. (1) secures the correct value of the difference 
£ 2 - £ 1 = l'iw(n'), but leads to somewhat different values 
of the cross sections an'n· The maximum difference 
occurs for k = 1. 

If (10) is summed over the group of levels n' con
tained in a finite energy interval .C.E, and the result ob
tained is extended to the continuous spectrum, we obtain 
the ionization cross section. The result coincides with 
the expression for the ionization cross section obtained 
from (1) (for £ 1 = En and £ 2 = 00 ). 

It follows from the given conclusions that Eqs. (1) 
and (10) are valid only if the following conditions are 
satisfied: 

1) The equation as' jaw = 27Tlik must be satisfied at 
least at one point wj in the interval 0 < w < 1. 

2) At the points wj the inequality lo 2S' jaw2 lwj ~ l'i 

must hold. 
Since S' is such a function of the impact parameter p 

that S'- 0 asp- co, it is evident that Eqs. (1) and (10) 
describe the contribution of collisions with sufficiently 
small p to the cross section, and by no means the total 
cross sections. 

4. We turn now to consider the other limiting case of 
small s', when perturbation theory can be used. We 
note that in this case two stages are involved in passing 
to perturbation theory: when s' << S0 classical pertur
bation theory can be used, and when the stronger condi
tion s' « li is satisfied additional simplifications are 
reached, following which the nature of the approxima
tion becomes similar to quantum perturbation theory. 

When S' « S0 we have from the Hamilton-Jacobi 
equation for s the following equation for s' [5 ] : 

S'(w, t--+ -oo) = 0, 

(11) 

where V is the interaction of the atomic electron with 
the perturbing particle. We expand V in a Fourier series 
in w and look for s' in the form 

Then 

S'(w,t)= ~ am(t)eim(2.cw+wt). 

t 

am(t)= ~ Vm(t')e-imwt'dr, 

j i!S0 

Vm(t)= Sv(w,t, aw)e-2cimwaw. 
0 

At the same time 

W n'n = I ~ dw exp [- 2nikw + ~- ~ a,,ehimw J I' , 
" m 

Om::::::= (lm(oo). 

(12) 

(13) 

(14) 

When s' << li this equation is considerably simplified. 
Expanding the exponential in a series and retaining the 
first non-vanishing terms, we obtain for k"' 0, the case 
of interest to us, 

. 2 1 00 2 

TVn•n= ~~-a:,, =t215 Vh(t)eihwtatj 
I,, 

(15) 

It is well known that as n - co the matrix element 
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Vn+k,n changes into the Fourier component Vk· Conse
quently, Eq. (15) coincides with the quantum expression 
for Wn'n in the first approximation of perturbation 
theory. 

Since the applicability condition of (15) s' « ti is an 
alternative to the applicability condition of (10) s' » ti, 
we can use for the total cross section On'n the approxi
mate expression41 

c1 r,a,, 2 

<1n•n = <1n'n + 2n .\ h pdp, (16) 
P, 

(16a) 

(16b) 

The quantities S~ax and S~in in Eq. (16b), which deter
mines Po, are the largest and smallest values of s' in 
the interval 0 < w < 1. The second term in (16) gives 
the correction to the contribution of the region of large 
p, not taken account of in (1) and (10). As will be seen 
later, in several cases this term may become dominant. 

From the applicability condition of (10) it follows 
that the first term in (11) describes the region p < Pk, 
where Pk is the maximum value of p for which the equa
tion as' /ow = 21111 k has a solution. As a rule Pk < Po· 
For this reason the contribution of the region Pk < p 
<Po was not taken into account in Eq. (16). We return 
to this problem below, when we consider the dipole po
tential. 

Concluding this section we note that for highly excited 
levels n » 1 the applicability region of the classical 
perturbation-theory equation (14) s' « 8° ~ nti is much 
wider than the applicability region of (15) and can, 
therefore, significantly overlap also the applicability 
regions of (1), (10), and (16). One can therefore expect 
good results when calculating a by numerical integration 
of Eq. (11). 

5. We consider now the concrete example of a dipole 
interaction, in which case it is possible to perform the 
calculation analytically. Let the perturbing particle of 
charge e' move in a straight-line trajectory with veloc
ity v. In the approximation of the rotating quantization 
axis (the z-axis being directed at the perturbing parti
cle) we have 

v- iee'i z(w) 
- 02 + "212, 

(17) 

where z(w) is the component of the radius-vector of an 
atomic electron. Using the well known parametric de
pendence of z on w, expanding z (w) in a Fourier series 
in w and limiting ourselves to the Kramers approxima
tion (seelsl ), it is easy to obtain 

V (t)= ie'elaon2 m<{n, (18) 
m 3'i•n'hZ;m'(r' + z;'t') ' 

where Zie is the charge of the atomic core (for a neu
tral atom Zi = 1). From (13) and (12) we also find 51 

4>For simplicity we write down from here on the inequality for S' 
instead of S'max=S' min (see (16b)). We note that in the example con
sidered below S' min= 0 (see (20)). 

s) In obtaining (20), the summation over m was extended to infinity. 
This imposes the additional condition p > vw/n, which is not important 
for what follows. 

'" r 2n2ai 1- exp(- wp/v- 2niw) 
o = .l dw--ln . 

0 pv 1- exp(- wp/v + 2niw) 

Here and below the argument n of w(n) is omitted. 

(19) 

(20) 

When p > 2712 a/hv the inequality S' « h holds, which 
allows the use of perturbation theory. We then have 

( na ) 2 2n2 a W ' = -- e-2k"pfv p < Po=--
n n nv pk2 ' nv . (21) 

For sufficiently small p, when e-wp/v in (20) can be 
replaced by unity, 

2n3a 
S' = -- (w + w2), (22) 

vp 

ltvp 
Wn•n= 4n'a {[C(x+)-C(.r-)]2 +[S(x+)-S(x-)]"}, (23) 

where C and S are the Fresnel integrals laJ , and 

(24) 

Equations (22) and (23) are valid in the region p < v/wk. 
The condition p < v/w is insufficient, since according to 
(4} the transition probability is determined by the k-th 
Fourier component of the quantity eiS' /ti and, therefore, 
the approximate equality of the first k Fourier compon
ents of S' in (20) and (22) is required. 

If Po< v/wk the applicability regions of (21) and (23) 
overlap6 >. For this the condition 27T2awk/hv2 < 1 must 
be satisfied. In the case of excitations by electrons this 
condition may be written down in the form 10k Ry/nE 
< 1, where Ry = 13.6 ev and E is the electron energy. 
In the case of interest to us, n >> 1 and k << n, this con
dition is practically always satisfied. 

Thus, 
Po oo 

<1n•n = 2rc ~ W'(p) pdp+ 2:rt S W"(p) pdp, (25) 
Po 

where the transition probabilities W' and W" are deter
mined by Eqs. (23) and (21), respectively. 

We turn now to the approximate equation (16). We 
recall that its first term ac~ corresponds to the ordin
arily used classical appro.il£ation for the cross sec
tion. The nature of this approximation can be illustrated 
with the dipole potential as an example. Using (7), (8), 
and (22), it is not difficult to obtain 

W ( )-{p/2kp., p ~ p,, 
n'n p - 0, p > Ph, 

(26) 

(27) 

For sufficiently small p Eqs. (26) and (23) coincide. 
At the point p = pk, however, (26) gives an overestimate 
by a factor of four, since w' (Pk) = (8k)- 1• Thus, the 
contribution of the region p :::::: Pk to ocl is overestima
ted, while the contribution of the region p > Pk is gen
erally disregarded. 

It is natural to separate from the region p > Pk the 
applicability region of perturbation theory, p >Po, the 
contribution of which is determined by the second term 

6>1t is not difficult to verify that in the range p 0 < p < v/wk Eqs. 
(21) and (23) give practically the same result. 
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in (25). The contribution of the intermediate region 
Pk < p < Po is estimated below. It is easy to show that 
in this region W(P) :;::, W"(p). Taking this into account, 
the total cross section (25) can be approximately calcu
lated, using (26) for 0 < p < Pk and W" for p > Pk· We 
finally obtain 

n5 ( a )2 [ 6 flv2 J 
On•n=- ~ 1+-In--, 

3k3 nv n~k 2n2ywa 
(28) 

where y = 1.78. 
It is interesting to compare this equation with the re

sult of calculating acl for an excitation by an electron 
in the impulse approximation (see, for example, [1,2 J ). 

From the discussion in l 1 ' 2 J it follows that 

, =~ a02n• (-=-"--)2 
On n 3k3 Z;2 nv . (29) 

This expression differs from ac~ in the dipole approxi-nn 
mation (the first term in (28)) by the numerical factor 
7T3 /12v'3, but gives an identical dependence of the results 
on the parameters. This justifies the assumption that 

the ratio of both terms in the square brackets in (28) 
describes in fact the relative role of collisions with 
small (P < Pk) and large (P > Pk) impact parameters. 
The latter is particularly important for transitions to 
adjacent levels and for not too small velocities may give 
the main contribution to the cross section. 
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