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Eddy currents arise in a conductor in which a temperature gradient or sound beam exists and which 
is located in an external magnetic field perpendicular to these vectors. The eddy currents flow in 
this case in a plane perpendicular to the magnetic field. The currents produce an additional mag
netic field whose strength may be of the same order of magnitude or in some cases even larger than 
that of the external field. 1n a plane perpendicular to the magnetic field, the conductor is divided 
into domains arranged in the VT direction, the eddy-current magnetic field being oppositely 
directed in neighboring domains. 

IT is shown in the present paper that electric eddy 
current with magnetic fields comparable with or larger 
than the external magnetic field are produced in anum
ber of metals and semimetals in the presence of an ex
ternal magnetic field Ho and a temperature gradient 
VT or an acoustic flux of density S. The Nernst coef
ficient a 1 measured in such conditions, or the analo
gous transverse acousto-electric coefficient {h, de
pends strongly on VT or S. 

The reason for the eddy currents lies in the follow
ing. If Ho (the z axis) and VT (the x axis) are 
mutually perpendicular, then the thermomagnetic part 
a 1 VT x Ho of the electric field* 

E = aVT + a 1[VTH0] 

is not potential if 

!_ (a,!!..._) = x (!!'_)'a ( at/x) + 0 
ax ax ax aT 

( K is the thermal conductivity). The condition that the 
electric field must be potential leads to the necessity 
for the occurrence of eddy currents, such that 

rot (lJi + a,[VTH]) = 0 (1) 

( rt is the resistivity). On the boundary of the conduc
tor, the current component normal to the boundary 
vanishes and therefore the current paths are closed 
inside the conductor. To obtain the eddy- current part 
of the acoustoelectric field it is sufficient to take into 
account the dependence of S on the coordinates, due to 
the absorption of the sound S =S0e-x/l (l-absorption 
length of the sound). 

We carry out the calculation assuming a weak mag
netic field Hj of the eddy currents, c-1J..L=t=Hj « 1 ( J..L=t=
mobilities of the electrons and holes), and a small 
relative temperature drop or a relative change of the 
acoustic flux. 1n this case we can disregard the de
pendence of the kinetic coefficients on Hj. The calcula
tion is the same for the cases of the thermoelectric and 
acoustoelectric fields; a 18T/ax and {'hS will be de
noted by J. Let the crystal be a rectangular parallele
piped, and let its dimension in the z direction be much 

larger than the other dimensions 2Lx and 2Ly. Then 
the eddy currents flow in the xy plane, and their mag
netic field Hj is parallel to the z axis. From (1) we 
obtain an equation determining the distribution of the 
field Hj inside the conductor: 

where 

!::J.H; + aaH; I ax+ b(H; + Ho) = 0, 

a = _ ~( at] + 4n/) 
1] ax c 

4n aJ 
b=--

Cl] ax 

On the boundaries of the conductor, the normal com
ponent of the current is equal to zero, meaning that 

(2) 

the magnetic field is constant along the boundary; from 
this it follows in turn that outside the conductor Hj = 0; 
consequently, Hj = 0 at x = ± Lx and arbitrary y and 
at y = ± Ly and arbitrary x. The x axis is directed 
in such a way as to make a> 0. 

Let us expand the field H· and the inhomogeneous 
term bHo in (2) in terms of lhe eigenfunctions Hmn of 
the operator t:J.. +aajax satisfying the zero boundary 
conditions. It can be readily shown that 

and the eigenvalues of the operator t:J.. + aajax are 
equal to 

Amn'=-~ _n~[~:2 +(2n~21 )'l, m,n=0,1,2, ... (3) 

Since the eigenfunctions are not orthogonal, the expan
sion of the inhomogeneity bH0 can be obtained by 
starting from the equality 

1 = ~e-"x;z ~ (-1)" cos [(n + 1/z)ny/Ly] 
rt' n~o n + '/z 

m={l 

here 
- ilzm sh(aLx/2) sin(mnx/Lx)}; 

A - 1 
'- k[1 +(aLx/kn) 2] 

If 

m,n m,n 

then 
Cmn 

'\'mn = - l,mn + b ' 

Cmn = Sn-2( -1)m+n (n + '/z)-'Am[eaL,/2 + ( -1)m+le-aLxf2JbHc. 
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The weak dependence of a and b on the coordinates 
is insignificant if the functions Hmn depend on the 
coordinates more strongly than a and b, i.e., if aL 
» 1 ( L is the characteristic scale of the inhomo
geneity; L = T/ I VT I in the case of the temperature 
gradient, and L = l in the case of the acoustic flux). 
The inequality aL » 1 will be assumed satisfied. In 
order of magnitude, b i'::J a/L « a 2 • 

The average magnetic field of the currents is 

1 (' (' bH0 "" 1 
ll;=--JJ ll;dxdy=-16- ~ 

4LxLy n' m, n~0 (n + 1/2) 2 

2 2 

{ Azm+tCh2 (aLx/2) A2msh2 (aLx/2)} 
X b + A2m+t, n b + Amn 

The experimentally measured coefficients Ci1 and /31 
will differ from their true values a1 and {31 because 
of the eddy currents: 

d1 = a1(1 + ll; I Ho), ~~ = ~~(1 + ll; i Ho). 

If aLx/7r « 1 « aL/7T, then 
28 bHo 

ll;= rr• Lx-Z+Ly_2 [1+0(aLx/n)]. 

When Lx i'::! Ly i'::! Lo we have 

ll; ~ 0,1llobLo2 ~ 0,1lloJaLoJLo / L""{ flo. 

(4) 

This result coincides with the order-of-magnitude es
timate that can be obtained from (1) by replacing there 
H by H0 in the term with the vector product. 

Let us consider now the case when aLx >> 1r; in this 
case it is impossible to iterate in (2 ). Replacing in (4) 
summation over m by integration over m1r/aLx, which 
introduces in the result an error of the order of 1r/ aLx 
« 1, we obtain (when Ly 2:: Lx) 

fl; = ~ bLx2 e"Lx, 
(5) 

flo n2 (aLx)' 

Within the limits of applicability of this formula, Hj 
increases monotonically with increasing VT and S. 
The sign of Hj coincides with the sign of a (ad K)/8T 
in the case of VT; in the case of the acoustic flux, Hj 
is opposite to Ho. 

Let us investigate the geometry of the eddy currents 
when aLx/ 7T >> 1, Ly ;:::: Lx. In this case rmn has a 
rather sharp maximum at n = 0 and m = aLx/7T. 
Therefore the expression for the magnetic field can be 
reduced to the form 

!I 16 , 00 

_ 1 = ~eaL:rJ2e-ax;Z ~ (-1)m 
Ho :rt4 m"=--"'0 

The number of essential terms in the first factor is of 
the order of aLx/7T. The function q;(y) is approxi-

mately constant inside the crystal and vanishes on its 
boundary. The function f ( x) oscillates, reversing sign 
approximately aLx / 1r times. The magnetic field is 
constant along the current line j = ( c/ 47T) curl Hj, 
since the scalar product Hrcurl Hj vanishes when the 
direction of Hj is constant. Consequently, the current 
lines Hj = const have a nearly rectangular form 
(since Hj ~ f(x) q;(y)); the crystal is subdivided into 
aLx/ 7T domains in the x direction. In neighboring 
domains, the field Hj has opposite signs and its abso
lute value increases from zero on the boundary of the 
domain to a maximum at its center. These maximum 
values decrease in the positive direction (i.e., in the 
direction in which a> 0) like exp ( -axn/2) (xn is the 
coordinate at the center of the n-th domain). 

In the presence of VT, the foregoing effects can be 
realized in a number of metals and semimetals at 
temperatures on the order of lOoK and below. If Ly 
;:::: Lx, then the effect is determined by the parameter 
aLx/7T = 4c- 1 aazAT (T-temperature drop). In Bi 
with a4,2/a3oo = 200 at T = 4°K, the coefficient is a 1 

= 10-5 V/Oe-deg[ll; therefore when AT= lowe have 
aLx/7T i'::! 10 and according to (5) we have Hj i'::! 3Ho. In 
Bi at Jl.'f H/ c » 1, the resistivity 11 increases with in
creasing magnetic field; therefore the effect is realiz
able only if Jl.+Ho/c;::; 1. This also imposes a limita
tion on the possible values of Hj, the order of magni
tude of which cannot exceed c/ Jl+• 

In Cu with small admixture of Fe at T = 4°K, the 
thermal emf is anomalously large and equals 
a= 2JLV/deg (the Kondo effect), and a =1021 sec-1f2 l. 
Estimating az i'::! aJL/c and taking AT =1°, we obtain 
aLx/7T i'::! 1 and Hj i'::! O.lHo. The field Ho should be 
smaller than c/ J1. i'::J 500 Oe. 

The effect under consideration is realizable in semi
metals in the presence of acoustic flux. We shall esti
mate the acousto-electric coefficients by starting from 
the Weinreich relationf 31 ; then 

aL, ~ 4 f.t2S Lx 
1T ('("2 l 

(s is the speed of sound). If the acoustic flux in Bi at 
helium temperature is S =1 W/cm 2 , then at a sound 
frequency ws i'::! 3 x 107 Hz, with l =5 cm[ 4l, we get 
aLx/7T i'::! 4 and Hj f'::J0,3Ho. 
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