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It is shown that in the problem of high-frequency electromagnetic field excitation of spin waves in an 
infinite ferromagnetic sample in a non-uniform stationary magnetic field, the high-frequency field 
cannot be regarded simply as a constant-amplitude driving force as inl 1J. The problem should be 
considered as that of interaction of mixed electromagnetic-spin spectrum branches. A parameter 
r defining the interaction is pointed out. The approach used inl1J is valid only for r « 1, when the 
coefficient (T/) of transformation of the electromagnetic wave into a spin wave is small. The value 
of 11 is calculated for r « 1 for two cases. If the electromagnetic wave is incident from the side of 
large stationary magnetic fields, then 11 R< 1. When it is incident from the opposite side, the electro­
magnetic wave is almost completely reflected and the coefficient T/ is exponentially small. 

1. QUALITATIVE CONSIDERATION 

A method of excitation of spin waves by the electro­
magnetic field in a nonuniform stationary magnetic field 
H was proposed by Schlomann. u,2 J The wave vector of 
the spin wave with frequency w is 

kc2 = D-1[wly- H(r)] (1) 

(Dis the nonuniform-exchange constant) and depends on 
the coordinate z, while the spin wave is excited by the 
electromagnetic field at the point z = 0 (see Fig. 1, 
dotted curve), where k~ = k~ = (w/c)2 ~ 0. The expres­
sion obtained inl 1J for the energy flux of the excited spin 
wave has the form 

wM 
Sc=:rt-h2 

Da3 ' 
a'= I dkc2' . 

dz z~o 
(2) 

Here M is the saturation magnetization, h the ampli­
tude of the exciting high-frequency magnetic wave of 
circular polarization. It is not difficult to see, however, 
that Eq. (2) leads to an absurdity under certain condi­
tions. Actually, if S refers to the energy flux in the 
incident electromagnetic wave, then the transformation 
coefficient TJ thus obtained is equal to 

11 =:rtf, r = k.q2 I a', q2 = 4:rrMD-•. (3) 

The only approximation used in l1J in the derivation 
of (2) lies in the applicability of the WKB method for the 
characteristic values of k~. Here, however, 11 can be 
both smaller and greater than unity-the latter being 
quite meaningless. In the present work, we shall show 
that this paradox is associated with the fact that the ex­
citing electromagnetic field is regarded as the driving 
force with fixed amplitude. Meanwhile, it is clear that 
because of the pumping of energy of the electromagnetic 
field into the spin system, the amplitude of the electro­
magnetic wave should change as it propagates, and the 
process of excitation of the spin wave should therefore 
be treated in terms of the transformation of waves from 
one mode to another in the propagation process. It is 
also clear from what has been said that the result (2) 
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FIG. I. 

FIG. I. Spatial variation of the wave vectors of two branches of the 
electromagnetic-spin spectrum. The dashed lines show the branches of 
the non-interacting spin and electromagnetic waves. The WKB approxi­
mation is valid only for the branch with k 2 = kf in the regions Li, and 
for both branches in the regions L12 • 

obtained by Schlomann is valid only for a small trans­
formation coefficient, i.e. for r « 1. In the present 
work, we set up the problem so that it is valid for all 
values of r and make clear the physical meaning of this 
parameter and compute the transformation coefficient 
in the other limiting case r :::'> 1. As in l1J , an infinite 
ferromagnetic sample is considered, in which the mag­
netization and the stationary magnetic field are directed 
along the z axis and H increases in the direction of posi­
tive z. The incident and the excited waves propagate 
along the z axis. 

Our approach is based on the simultaneous solution 
of the equations of Maxwell and those of Landau­
Lifshitz, which gives two modes of coupled electro­
magnetic-spin waves k2 = ki,2 (w, H). In the nonuniform 
magnetic field for a fixed frequency, k2 depends on the 
coordinates and the form of this dependence is shown 
qualitatively in Fig. 1. These modes most closely ap­
proach one another and most strongly interact with one 
another at the point of intersection of the noninteracting 
branches (z = 0), where k~(z) = k~ f"' 0. Here ki(O) 
= -k~(O) = qke· In all real cases, 

fl = a3 I a3 ~ 1, a= (qk3 ) •r., (4) 
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i.e., at the point of intersection, the condition of appli­
cability of the WKB method is not satisfied, which gen­
erally makes possible the transition between the bran­
ches at this point, which we shall call the interaction 
point. For example, we consider an electromagnetic 
wave incident (along the branch k2 ) from z = -oo. In 
order to go over to the upper branch, the wave must 
reach the point of interaction. However, the branch k2 

has a turning point (z = -d), after which the incident 
wave penetrates a distance 

'I 
6;::;; (dk."/dzf;~'-d;::;; a-1 (q/k.)'''· 

The ratio of this penetration depth to the distance d from 
the turning point to the point of interaction (d R! q2 01-3 ) 

is r-213 • 
If r « 1, then the incident wave reaches the point of 

interaction and departs practically completely to z = +00 

along the upper branch. Therefore, in such a situation, 
the result (3) obtained by Schlomann for the transforma­
tion coefficient must be valid; in our scheme, this is the 
reflection coefficient on the upper branch. In the oppo­
site case r :::'P 1, the electromagnetic wave is virtually 
entirely reflected from the turning point and only an ex­
ponentially small part of it reaches the point of inter­
action and proceeds on the upper branch, partially pass­
ing through and being partially reflected, i.e., trans­
forming into a spin wave. Thus, for r :::'P 1, the coeffi­
cient of transformation of the electromagnetic wave 
(incident from z = - 00 ) into a spin wave is exponentially 
small. In this same situation, the electromagnetic wave 
incident from z = + 00 (along the branch k 1) remains prac· 
tically completely on the upper branch (as is shown 
below), transforming itself into a spin wave. 

Finally, we note the following. For an estimate of the 
penetration depth o, we have neglected the presence of 
the upper branch. This is possible, inasmuch as for 
z = -d(k~(-d) = q2 ) the WKB condition is satisfied for 
the upper branch by a large margin, since we always 
have 

(5) 

By formulating the inequalities (4) and (5), we have 
assumed that 41TM = 2 x 103 g, dH/dz R! 103 Oe/cm, 
DR! 5 x 10-9 Oe-cm2 , so that q3/013 = 106 , ke = 1 cm-I, 
{3 = 103 • Here r = 2, and therefore, in view of the esti­
mate character of this equality, both the case r « 1 
and the case r :::'P 1 can be regarded as real. 

2. BASIC EQUATIONS AND THEIR SOLUTION 

Let. the waves be polaJ?ized circularly (mx- imy 
= me-Iwt, hx- ihy = he-Iwt). For the problem formula-

ted above, the set of equations of Maxwell and Landau­
Lifshitz has the form (after elimination of the electric 
field) 1 > 

Tt'' + ka27i + a2fii = 0, 

m" + kc2fii + a27i = 0. 
(6) 

!)We note that the equation considered in [ 1] is the second equation 
of the set ( 6) with h = canst. 

(6) and below denotes differentiation with respect to z. 
In such variables, the energy flux is 

s = Im ('h*Tz' + m·m'). (7) 

We reduce the set (6) to a single equation of fourth 
order: 

Ji!V + [kc2 (z) + ka2]7i" + ka2[kc2(z) - q2]7i = 0. (8) 

In the WKB approximation, the four linearly independent 
solutions of this equation have the form 

Normalization in (9) is performed so that the flux (7) is 
equal to unity. We shall explain in what regions the 
WKB solution is valid. For the branch with the larger 
value of lk2 1 (i.e., k1 for z > 0 and k~ for z < 0) the 
ratio {k2 )' /k3 « 1 for lz I :::'P 01-1 = lmin• i.e., fork~ 
:::'P 01 2 • We note that, by virtue of (5), the WKB solution 
for the larger of k 2 is suitable when k~ << q2 , i.e., for 
lz I « d. For the branch with the smaller value of lk2 l, 
the situation is more complicated. For lz I >> lmin• the 
solutions corresponding to it are slowly changing and 
are solutions of an equation of second order, which is 
obtained if we discard the term in Eq. (8) with the fourth 
derivative, i.e.,2 > 

n" + k"(z)n = 0, kZ(z) = ka2[1- q2 / kc2 (z)]. (10) 

Equation (10) is of standard typel3 ' 4J with one turning 
point (for z =-d). The WKB approximation for it is 
suitable at a distance from the turning point much grea­
ter than the penetration depth o. In the vicinity of the 
point of interaction, as follows from (10), for k~ « q2 , 

we have (k2)'/k3 f';:! 01 312 (a2z 112r 1• Therefore, the WKB for 
the smaller of the lk2 1 is valid for lz I :::'P 01 3a- 4 = lmax 
= lmin01 4a- 4 >> lmin· The ratio lmaxd-1 = r-2 , and 
od-1 = r-312 • Consequently, for r « 1, the WKB approxi­
mation on these portions of the branches is suitable 
only fork~ » q2 (i.e., for k2 f';:! k~, see (10)). In par­
ticular, it is not applicable on the lower branch any­
where between the turning point and the point of inter­
action. 

As already noted, we shall consider the case r >> 1. 
From the estimates given above, it follows that the WKB 
approximation is satisfied on both branches of the spec­
trum when k~ « q2 (an exception is the vicinity of the 
turning point, where we can, however, use the standard 
procedure, l3 ' 4 J developed for second order equations of 
the type (10). We shall find a solution of Eq. (8) in the 
following way. We find its exact solution in the vicinity 
of z = 0; we continue the asymptotes of these equations 
then for lmax « lz I « d, which are superpositions of 
the WKB solutions (9), in this same region, into the ac­
cessible region for the lower branch (z < -d) with the 

2lA similar situation existed in [5] in the transition from Eq. (2.2) 
to (2.7). 
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FIG. 2. Integration con­
tours in the solutions ( 12). 
The contours C2- 4 can be 
deformed only in such a 
way that their ends do not 

c,, leave the corresponding 
shaded sector. The contours 
c2 3 should approach the 
polnt t = 0 from the right 
(from the side Re t > 0). 

aid of Eq. (10).3 > Inasmuch as we shall seek exact 
solutions of Eq. (8) for lz I « d, where k~ « q2 , then, 
with account of the fact that k~ « k~, expanding k~(z) 
near z = 0 (k~ =- a 3z), we can write (8) in the form 

"ftiV _ a3z"ft" - a4n = 0. (11) 

The four linearly independent solutions ui of Eq. (11), 
found by the method of Laplace, l3 ' 61 have the form 

( ~ )''· ( ~ )''• (' dt ( 1 t3 ) u1(z)= -- V;= -- ~ --exp xt----- (12) 
na na c; t 2 t 3~4 

where x = a 4za-3 = z/lmax· The factor before the integ­
ral in (12) is chosen for convenience and the contours 
Ci are drawn on Fig. 2. Calculation of the asymptote 
of these solutions (see the Appendix) leads to the follow­
ing result for lzl » lmax (i.e., lxl » 1): 

z>O, 

z<O, 

(13) 

For z > 0, u 4 ~ eWz and inasmuch as this is the only 
solution which increases without limit as z - + oo, it will 
not be needed by us below. 

It was taken into account in (13) that for r » 1 one 
can choose z so that k~ « q2 and simultaneously lz I 
» lmax· Then, for example, for z < 0, k~ f':j k~ f':j -a3z, 

k~ = a 4/ a 3z « ki, and k~- k~ f':j - k~. Inasmuch as the 
WKB is applicable on both branches for lz I » lmax' 
then Eqs. (13) are naturally expressed only in terms of 
the WKB solution (9). 

3. CALCULATION OF THE TRANSFORMATION 
COEFFICIENT OF THE WAVES 

Let us consider the solutions of Eq. (8) which corre­
spond to excitation of spin waves by the electromagnetic 
wave. 

A. The electromagnetic wave is incident from z = 
- 00 The general solution of (8) has the form 

n= ~ C;u;. (14) 
i=i 

The boundary conditions are the following: 1) the solu-

3>We note that for r ~ I one should find the asymptote of the exact 
solution for lzl ~/min and then join it with the WKB approximation on 
the upper branch and the exact solutions of Eq. (I 0). 

tion should be bounded as z - + oo; 2) as z --co, there 
should be no waves on the upper branch propagating in 
the direction of positive z; 3) as z- + 00 , there should 
be no waves on the upper branch propagating in the 
direction of negative z. Finally, condition 4) is the 
normalization. We normalize the incident wave so that 
the energy flux in it is equal to unity. From the first 
two conditions, it follows that C2 = C4 = 0. The third 
condition yields c3 = ch so that the solution (14) has the 
form 

(15) 

Far from the turning point, for negative z > -d, as fol­
lows from (13), 

1 • -
n ~ -ic,{ lk:!l'" exp( --~ lk2lds+r) 

+~expf-i(~ k1 ds- 3n)]} 
kt5/2 0 4 ' 

0 

r=,~ lk21ds ~ r~1. (16) 
-d 

Upon the continuation of (16) beyond the turning point in 
the accessible region (z <-d), the expression 

transforms into•> l•l 

2cos(- ~k2ds- :). 
-d 

so that the fourth boundary condition gives cl = e-r. 
Since the WKB solutions of (9) are normalized to unit 
flux, it follows that IC112 , in accord with (16) gives the 
reflection coefficient along the upper branch. Inasmuch 
as for z > 0 this branch is a spin one, the coefficient of 
transformation of the electromagnetic wave into a spin 
wave is 

(17) 

By considering the solution (15) for z > 0, it can be 
verified that the transmission coefficient of the electro­
magnetic wave beyond the point of interaction is equal to 
IC1I2 [Eq. (17)]. 

B. The electromagnetic wave is incident from z = 
+oo. In this case, the two boundary conditions coincide 
with the first two boundary conditions in case A, so that 
C2 = C4 = 0 again. Normalizing the incident wave to unit 
flux, we obtain C3 - C1 = 1. One boundary condition 
should consist in the absence of a wave traveling along 
the lower branch in the direction of positive z as 
z - -oo. However, if we are not interested in the ex-

ponentially small (order of e-f') amplitude of the previ­
ous (at z = - 00 ) electromagnetic wave, then we can avoid 
the joining of the solutions at the turning point, proceed­
ing in the following way. We "forget" that the solutions 
of (13) are valid only to the right of the turning point 
and then require the boundedness of the solution as 

4JCorrections of the order of e-2r to the amplitude of the reflected 
electromagnetic wave in such a procedure do not arise because of the 
asymptotic character of the expressions used for the cylindrical func­
tions, which do not take into account the exponentially small terms. 
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z- - 00 • This gives C1 = 0, so that C3 = 1. Therefore, 
as is seen from the structure of the solution u3, the wave 
as a whole goes into the region of negative z along the 
upper branch, i.e., in this case the electromagnetic 
wave, its completely transformed into a spin wave. 

In conclusion, we note that in a bounded sample, the 
spectrum shown in Fig. 1 cannot be fully realized. For 
example, there can be a boundary of the sample between 
the point of interaction and the turning point. In this 
case, instead of the conditions as z - ± oo, we have the 
boundary conditions on the surface of the sample, on 
which the transformation coefficient can depend mater­
ially. 

APPENDIX 

We calculate vi (12) for the conditions (4) and 

lzl~lm;n, i. e.lxl 3~4 ~1. (A.1) 

1. Calculation of v2 = v:. a) x > 0. Inasmuch as we 
have Ret < 0, the integral converges for It I ~x-I, so 
that for the condition (A.1) we can assume 

In the latter integral, the contour C3 can be 
"straightened" on the positive imaginary semiaxis 
(for E > 0, there is no longer a divergence as t- 0). 
Then we have (l7J, p. 970) 

(A.2) 

b) x < 0. The exponential in (12) has a saddle point 
at t = it 0 = iJ32 Ixl 112 , and under the condition (A.1) close 
to this point we apply the saddle-point method. For the 
calculation of v2 , we deform the contour C2 so that it 
consists of the dotted line in Fig. 2 and the cut of the 
positive real axis from 0 to tc. The integral over the 
cut of the real axis converges for t ~ lx rl and therefore 
can be extended to infinity, simultaneously neglecting 
the term t3/3J3 4 in the exponent. We then have 

Vzlx<o ~ -nlxi'I•H\1)(2Ixl'f,einf2) 

+ n'l·~4xl-'1• exp [-i(2/3~2 lx 1'/, + rr/4)]. (A.3) 

al 1 t . f d. -e/3!34. . 2. C cu a 10n o v1• Expan mg e m a ser1es, 
we can limit ourselves in (A.1) to the zero order term 
in this series. Then [7 J 

v1 ~ x ~ d£ es-xs-' = 2nix'hlt (2x'f,). (A.4) 
c, £2 

3. Calculation of v4 for x > 0. In this case, v4 is 
calculated by the saddle point method, which gives 

For x < 0, v4 is identical with the first term in (A.3), 
as follows from the procedure of calculation of (A.3). 

It can be verified that (A.1)- (A.4) are superpositions 
of the WKB solutions at the "largest" of the branches 
and solutions of Eq. (10) for the condition k~ =-liz 
« q2 • Equations (13) are the asymptotes of Eqs. 
(A.1)-(A.4) for lxl ::?> 1. 
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