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The superconductivity equations for an imperfect crystal is obtained on the basis of the complete 
electron-ion Hamiltonian. It is shown that the critical temperature Tc for a superconductor of this 
type can be expressed by means of the correlation scattering function S(q, w) previously employed for 
calculating the resistance of a normal metal. The change in T c due to impurities and disordering is 
calculated. The relation between changes in Tc and changes in the linear resistivity coefficient of a 
metal at high temperature is established. 

1. INTRODUCTION 

AS is well known, crystal lattice defects influence 
very strongly most physical properties of a crystal. 
The presence of defects in the crystal, particularly in 
the presence of local or quasilocal oscillations connec
ted with impurities or extended defects (dislocations, 
boundaries of the sample, etc.), leads to an appreciable 
change in the dynamics of the lattice, and this in turn 
greatly influences the specific heat of the crystal, the 
probability of the Mossbauer effect, and the scattering 
of x-rays and slow neutrons, and leads to violation of 
the Matthiessen rules for the residual resistance of 
metal ll-sl . 

It is also known that the presence of impurities or 
other static defects in the crystal leads to an apprecia
ble change of the electromagnetic properties of super
conductors, particularly to an appreciable increase of 
the critical magnetic fieldslaJ. As shown by the calcula
tionls-sJ, the influence of the static nonmagnetic impuri
ties on the thermodynamic characteristics of supercon
ductors is exceedingly small, and reduces to a certain 
decrease of the critical temperature T c, owing to the 
isotropization of the energy gap. Calculations of the 
thermodynamic characteristics of superconductors, 
based on a Hamiltonian with electron-phonon interac
tion, has shownr9- 12 J that these characteristics depend 
significantly on the lattice dynamics, particularly on the 
density of the phonon states. However, the calculations 
performed inr9- 12 J actually pertain only to ideal crystals, 
and a consistent account of the dynamic properties of 
defects within the framework of the formalism devel
oped there is quite difficult. This is connected, if with 
nothing else, with the fact that inr 9- 12 J the ion displace
ment operator is expanded in terms of plane phonons, 
which is rather ineffective in non-ideal crystalsl 1J. 

It is of considerable interest to generalize the results 
ofr9- 12 J and to write the complete equations of super
conductivity with the aid of the correlation functions of 
the displacements of the ions, which are widely used in 
investigations of the properties of non-ideal crystals. 
Such a reformulation of the equations of superconductiv
ity makes it possible, first, to take consistent account 
of the influence of the dynamic character of the defects 
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on the properties of the superconductor and, second, to 
relate the change of the superconducting characteristics 
of the metals with the changes of a number of other ex
perimentally observed quantities, particularly with the 
change of the resistance at high temperaturesl 13J. 

This is all the more interesting because recently a 
number of experiments have been reported, indicating 
the possibility of an appreciable change of the thermo
dynamic characteristics of superconductors, particu
larly T c, resulting apparently from structural realign
ment of the lattice or from the appearance of extended 
defects in the lattice. The most considerable change of 
T c is observed in thin amorphous films of metal ll4-17l, 
where a significant change takes place in the entire 
dynamics of the crystal lattice. A less radical but 
noticeable change of T c is observed in bulky samples 
following the appearance in them of dislocations and 
other extended defectsllsl. A change was observed also 
in the energy gap, owing to the appearance of local im
purity oscillations in the latticel 19 •20J. 

It should be noted that the superconductivity equation 
obtained in this paper, and also the concrete estimates 
of the change of Tc, are applicable only to non-transi
tion metals and their alloys, while the electron-ion 
interaction can be described by a small pseudopoten
tial l2 ll. 

2. DERIVATION OF GENERAL EQUATIONS OF SUPER
CONDUCTIVITY THEORY FOR CRYSTALS WITH 
DEFECTS 

Let us consider a system of interacting electrons 
and ions in a metal. We assume for simplicity that the 
crystal lattice is monoatomic and cubic, that the inter
action between the electron and the ion in simple metals 
is described with the aid of a pseudopotential vn(r). 
Then it is convenient to use for our purposes the follow
ing Hamiltonian of this system: 

k k,k' 

(1) 

(2) 
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We have introduced here standard symbols for the 
momenta and coordinates, <1> 01 1"\ is the dynamic ion 
interaction matrix in a noni~l crystal, for which 
concrete expressions, with account taken of the pres
ence of disordering or impurities, will be presented 
later. We have retained the coordinate representation 
for the ion system, the electron system is written in the 
second-quantization representation, and for convenience 
in the calculations of the superconducting properties the 
electron Hamiltonian is written with the aid of the two
component spinor 

t!Jk = I a~ \ , 'Ilk+ = I ak + a_k I , 
a_k 

(4) 

,, ~ I~ ~I· ,, = I~ -~I' T3 =I~ -~I, 
The second term in (3) corresponds to the interaction 

of the electrons with static deviation of the potential of 
the non- ideal lattice from the periodic potential of the 
ideal crystal. As will be shown later, we shall not need 
a concrete expression for .6.v(k'- k), and we shall there
fore not write it out. 

The third term in (3) is the interaction of the elec
trons with the dynamic vibrations of the atoms: 

V,"(k'-k)= ~(k'-k)"vn(k'-k)exp{i(k1 --k)Rn}. (6) 

where V is the volume of the system, Vn is the pseudo
potential of the interaction of the electron with the ion, 
Rn = ~ + oRo is the position of the mass center of the 
ion in the non-ideal lattice, ~is the position of the ion 
in the ideal lattice. The fourth term is the direct 
Coulomb repulsion of the electrons. 

It is assumed that all the interactions that enter in 
the Hamiltonian (1) have been calculated with allowance 
for the static screening. A Hamiltonian similar to ours 
but without allowance for the interaction with the static 
deviation from the ideal conductivity, and using the 
phonon representation for ions, was already employed 
inlloJ. The possibility of using such a Hamiltonian with 
screened interaction is justified in that reference, and 
will not be discussed here. 

To derive equations describing the superconductor 
properties of an electron-ion system, we shall use the 
technique of temperature Green's function l6 J • To this 
end, we introduce the following Green's functions des
cribing the behavior of the electron and ion systems: 

Gkk•(<) = -(T,(th(•)¢k•+(O))), (7) 

D,~!·(T) =- (T,(un"(;) Un•B(O)). (8) 
For the spatially homogeneous distribution of the 

defects the Fourier component of the Green's function 
(7) can be written, after averaging over these defects, 
in the form 

(9) 

In the Born approximation, accurate to 1/pF l, where 
PF is the Fermi momentum of the electron and l is the 
mean free path, the function G(k, iwn) takes the forml6 ,aJ 

G-'(k, iw,.) =Go-1 (k, iw,) --L:(k, iwn), (10) 
where 

The self-energy part L(k, iwn) is determined by the 
diagrams shown in the figure. This leads us to the fol
lowing integral equation, which determines the thermo
dynamic characteristics of the superconductor 

L:(k, i,o,) =- .:6 l~v(k'- k) f 2 ;,G(k1, iw,)T,- T .:6 ~ T,G(k', i 1u, 1 )T·; 
k' ul' k' 

x[ ~ V,"(k'- k) v,.B(k- k1 )D,"!.(iw,- iw,') + V, (k1 - k) J . 
n n' (12) 

A superior bar denotes averaging over the position 
of the defect or the disorder. The need for such aver
aging and its meaning are discussed in detail inl 1 ' 2 ' 6 J, 

and some examples of such mean values will be consid
ered in the succeeding sections in the calculation of the 
critical temperature of concrete systems. 

For a normal metal at T > T c, the approximation 
used by us for L (k, iwn) leads directly to the result ob
tained in l6J , namely that the analytic continuation of the 
self- energy part L (k, w), connected with scattering by 
the impurities, is of the form 

2: (k, w) = -il;-1 sign w, (13) 

where 
1 5 dQ -=:rr.nN{O\ l~v(k1 -k)l 2-, 
.. " ' 4n (14) 

n is the impurity concentration N(O) is the density of 
states of the electrons on the Fermi surface, and U is 
the solid angle made up by the vectors k and k'. For a 
superconducting metal, the expression for L (k, iwn) in 
the form (12) signifies, besides neglecting the correc
tions of order 1/pFZ, which result from the crossing 
diagrams, also that there is no spatial correlation be
tween the changes of the energy gap. Allowance for 
such correlations is essential in the calculation of T c 
if the average distance between the impurities is 
smaller than the correlation length ~ 0 • Taking ~ 0 

= 10-4 em, we find that the corresponding impurity con
centration amounts to a fraction of one per cent, and 
calculations of their influence at lower concentrations 
are of no practical interest. 

For the function D011"\(iv) we can write the spectral 
representation nn 

a~ . 
00~ a~ 1 [ 1 1 ] d 1 D,,.(!v)= Pnn•(w) -.--,--;---+ 1 W, 

~v- w lV w (15) 

H,lm) = Emlm). 

Using this spectral representation for D01 ~(iv), and also nn 
the analytic properties of the functions G(k, iwn), we can 
go over in Eq. (12) from summation over the discrete 
frequencies to integration with respect to the complex 
frequency w. Then, continuing analytically the functions 
G(k, iwn) and L (k, iwn) to real frequencies, we can 
change over to an integral equation for the function 
L (k, w). These calculations are perfectly analogous to 
those given inla,10J, so that we shall write down immed
iately the resultant integral equation for L (k, w): 
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l:(k, w) =c- ~ l~v(k'- k) 12-r•G(k', w)1:3 
k' 

-too oo 

- ~ -\ ~ ' dw' Imh3G(k', w'),;•] { S dw"S(k, k', ID") 
rr V k' _'oo o 

x[/(-w') +N(w") + /(w') +,N(w:) J +_!_V,(k'-k)th~} (17) 
w - w' + w" w - w - w 2 2T 

where 
f(w) = (ewT + 1)-1, N(w) = (ewr -1)-', 

S(k, k', w) = ~ L; exp {i(k'- k) (Rn- Rn} Vna(k'- k) 
n,n' 

XVn,ll(k-k')p~~·(ID). (18) 

Recognizing that in the summation over k' the sig
nificant region is near the Fermi surface and has a 
thickness of the order of the De bye energy, we can make 
the substitution 

__!__ ~-+N(O) S dQ ~ d~, 
v k' 4:rt 

where !; is the deviation of the energy from the Fermi 
surface. We write~ (k, w) and G(k, w) in the form 

l: (k, w) = [1- Z(k w)] w,;4 + Z(k, ro)Mk, w )T, + x(k, w)T,,(19) 

wZ(k, w),;4 + e(k, w),;3 + Z(k, w)~(k, ro)T1 
G(k, w)= • , 

w2Z2 (k, w) -r2 (k, w)- Z2 (k, w)A2 (k, w) (20) 

where 

e(k, <•>) = ek + x(k, w), 

and x(k, w) are the Hartree-Fock corrections to the 
particle energy of the results of the interaction with the 
static potential, Z(k, w) is the renormalization due to the 
interaction with the dynamic oscillations of the ions, 
and A(k, w) is the energy gap in the spectrum of excita
tions of the superconductor. 

Substituting (19) and (20) in (17) and integrating with 
respect to !; , we obtain the following integral equations 
for the energy gap A(O, w) and for the renormalization 
Z(O, w): 

where 

[1-Z(Q, w)]w 

S dQ' , k I' w 
=irrN'(O) t;;-l~v(k- ) [w'-~'(Q',w)]''• 

"'" dQ' ro' ) 
+N'(O) ~ dw' S -:;;;:;-Re((w''-~'(Q',w')]'" 

x{ I do/'S(k,k',w")[(f(- w')+N(u/'))K-(w,o/,w") (21) 
0 

+(f(w') + N(w") )K-(w,- w', w")J}, 
Z(Q,w)~(Q,w)= 

. , dQ' , 2 ~(Q',ro) 
= -mN (0) S 4,. I Av(k - k) I [w'- L'.'(Q', w)]'h 

"'• dQ' ( ~(n', ro') ) 
+N'(O) S dw' St;;-Re [ro''-A'(Q',w')]'l•' · 

0 

x{ f dw"S(k, k', w")((f(-o/)+ N(w"))K+(w, w', w") 
0 

-(f(w')+ N(w") )K+(w,- w', ro")]- Ucth 2~}, (22) 

K ( ' ") 1 ± w, (t) ' co = + --:------,,--
w' + w + c~.l"~' + i6 w'- (•) + w"- iO ' 

N' (0) is the density of states of the electrons, renormal
ized as a result of the interaction with the static poten
tial. It can be determined by writing the equation for 
x (0, w), but in simple metals all the corrections for the 
crystal field are small and will henceforth be disregar
ded. 

In the derivation of (21) and (22) we have used the fact 
that in a narrow layer near the Fermi surface, of the 
order of the Debye energy, A(k, w) and Z(k, w) do not 
depend on the modulus of the vector k, but only on its 
direction. We have also introduced in the usual manner 
(seel 10J ), in place of the Coulomb potential Vc(k'- k), 
the pseudopotential Uc 

U = N(O)V, 
" 1+N(O)V,ln(eF/wo) 

It is seen from (21) and (22) that in the isotropic 
case, when A and Z do not depend on the angle, substitu
tion of the expression for Z from (21) in (22) leads to a 
cancellation of the terms connected with the static inter
action. However, if defects are present in the crystals, 
the dynamic interaction connected with the function 
S(k, k', w) also changes. The influence of the anisotropy 
can be accounted for in complete analogy withlal, but 
for simplicity we confine ourselves to the case of an 
isotropic superconductor, and this enables us to separ
ate more clearly the influence of the dynamic properties 
of the defect on Tc· 

In view of the formal similarity of our Eqs. (21) and 
(22) with the equations ofl 11 ' 12J, we can use the results 
obtained there and write the expressions for T c of 
superconductors with weak coupling in the form 

T, = oJoexp{- A~ U,} (23) 

where 

(24) 

1-
S(q, <•l.) ~ !T .\ dt eiwt :8 exp {iq(R,- R,,)} a,(q). a,.(q)(qun(t)qu,.(O)). 

-oo n,n' (25) 

In writing down (24) and (25), we have introduced, in 
place of the pseudopotential vn(g), the scattering ampli
tudes in the Born approximation 

m 
an(q) = 2,;" Vn(q), 

where m is the electron mass; we have also rewritten 
the spectral density p 01~(w) in terms of the Fourier 
component of the dispPacement correlator. Since we 
confine ourselves to the case of superconductors with 
weak coupling, we have neglected the quantity e-w/T 
compared with unity, which introduces a small error of 
the order of T clwo[9 J. 

For an ideal crystal, our formulas coincide com
pletely with the usual formulas for the electron-phonon 
coupling constant, obtained inl 12 J, with 'A expressed in 
terms of the density of states of the phonons and the 
matrix element of the electron-phonon interaction, while 
the structure factor 

1 
S(k'- k- <J) = N L; exp {i(k'- k- q) (Rn- Rn•)} = A(k'-k-q) 

n,r1' 

leads to the presence of momentum conservation laws 
accurate to the reciprocal-lattice vector 
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k' -k-q= Kn. 

On the other hand, for a non-ideal crystal, the form
ulas obtained by us are more general, since they include 
the changes connected with the density of states of the 
phonons, as well as the changes of Tc due to structural 
realignment of the lattice. The change of the structure 
factor can lead to violation of the momentum conserva
tion laws and to the appearance of diffused scattering of 
the electrons, something not taken into account in the 
previously obtained resultsr 12 J. Moreover, since the 
correlation function can be sufficiently well measured 
with the aid of scattering of slow neutrons, the formulas 
(23)- (25) obtained by us make it possible, in principle, 
to estimate more accurately, for a single- component 
metal, the value of the Coulomb pseudopotential. 

3. CHANGE OF CRITICAL TEMPERATURE. INFLU
ENCE OF IMPURITIES 

Using the formulas (23)- (25) obtained in the preced
ing section, we can calculate the critical-temperature 
change resulting from the presence of impurities in the 
crystal. When impurities are added to the crystal, 
generally speaking, the critical temperature changes as 
a result of isotropization of the energy gap, of changes 
in the density of states of the electrons of the Fermi 
surface, and of the change of the Coulomb pseudopoten
tial. For an exact comparison with the experimental 
data it is necessary to calculate all these effects. In 
simple metals, however, all these effects are 
small ll2,2ll, whereas the change of the lattice dynamics 
resulting from the appearance of local and quasilocal 
impurity oscillations may be much strongerr2 ' 4 ' 5 J. 
Therefore, in order to estimate qualitatively the influ
ence of the changes in the lattice dynamics on the mag
nitude of the critical temperature, we confine ourselves 
to the simplest assumptions. We consider the free
electron approximation and neglect the influence of the 
Coulomb pseudopotential. Since the presence of impuri
ties leads to a change of the constant A in the argument 
of the exponential, we shall henceforth disregard the 
change of the pre-exponential factor wo. 

In first order in the concentration of the impurities, 
we can write 

S(q, w) =So(q, w) +-"S(q, w), ~,=!.o+llt., (26) 

where Ao is the electron-phonon coupling constant in the 
ideal crystal, and o A are the changes connected with 
the presence of the impurity 

2kF oo 

ll'A= N(0)(2n) 2 ~ qdq ~ ~S(q,w) dw. (27) 
mz o kF2 o w 

The calculation of the averaged correlation function 
S(q, w) in the presence of impurities was carried out 
inr 4• 5 J, where it was shown that corrections of three 
types appear in S(q, w): 

~S(q, w) = M 1(q, w) + M2(q, w) + ASa(q, w), 

where Ll.S1(q, w) is connected with the scattering of the 
electrons by the modified phonon spectrum, Ll.~(q, w) 
with diffuse scattering directly by the impurity atoms, 
and Ll.S:J(q, w) with the interference of the first two cor
rections. It is important that all these corrections, 
generally speaking, are of the same order, and there-

fore the change of Tc following the occurrence of local 
and quasilocal oscillations in the crystals is not connec
ted with the change of the density of states of the phonons 
only, as was assumed in r22 J. An even greater difference 
between our results and those ofr22 J is that in accord
ance with the calculations ofl22 J the presence of local 
and quasilocal oscillations leads to a change of the con
stant A regardless of the cause of these oscillations, 
simply as a result of the change of the density of states 
of the phonons. In particular, this change would result 
from the presence in the crystal of oscillations connec
ted with an isotopic impurity, thereby contradicting the 
existence of the isotopic effect in superconductors. In 
fact, however, as shown inr 4 ' 5J, for the isotopic impurity 
we have 

r M(q, w) 
M(q)=.J w dw=O, 

0 

and consequently o A = 0. Moreover, even if the impur
ity is not isotopic, and there exists a change in the scat
tering amplitude and of the force constants, then the 
value of the impurity mass does not enter at all in the 
expression for Ll.S(q), and consequently also in o A. 

In the simplest model of a metal with nearest- neigh
bor interaction Ll.S(q) was calculated inrsJ and can be 
written in the form 

[ qza0 (q) ~a(q) -rq2a0 (q)ai(q) ..L -r:q2ao2 (q) l 
~S(q) = n J1w02(q) I Mw1} ' MWD2 

(28) 

where M is the mass of the ion of the ideal crystal, 
wo(q) is the spectrum of the oscillations of the ideal 
crystal, wn is the Debye frequency of the ideal crystal, 
ao(q) and a1(q) is the amplitude of scattering of the elec
tron by the main crystal and by the impurity respec
tively, Ll.a(q) = a1(q)- ao(q), Tis the relative change of 
the force constants, and n is the impurity concentration. 

Experimental studies of the Mossbauer effect and of 
the resistance of metals showslsl that in metals the 
change of the scattering amplitudes and of the force 
constants is small. This explains the experimentally 
observed fact that the change of T c following the intro
duction of the impurities is small, although the impurity 
itself can lead to an appreciable change of the specific 
heat of the crystal or of the Mossbauer-effect probabil
ity, owing to the considerable difference between the 
mass of the impurity and the mass of the ions of the 
host lattice. Using (28), we can calculate OA and find 
the change of T c resulting from the influence of the im
purities; the results are in qualitative agreement with 
experiment, in particular, T c increases if the impurity 
has a larger valence Ll.a > 0. It must be recognized, 
however, that the changes of the electron state density 
and of the Coulomb pseudopotential are in this case of 
the same order, and they must be taken into account in 
order to obtain quantitative agreement with the experi
mental data. 

It should be noted that by writing the expressions for 
Tc and A in the form (23)- (25) we can establish a sig
nificant correlation between the change of T c due to the 
presence of defects in the crystal and the change of the 
linear coefficients of resistance at high temperatures 
due to the same defects. Indeed, the resistance of the 
metal at high temperatures, due to single-phonon scat
tering, can be written in the form 
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2;, 

p=YJT ~ q3 dd 
S(q, w)dw 

(U 

(29) 

where 

Y]=c:r 
3rr 

2e2vp2kp4 • 

Using (26), this can be written in the form 

P =Po+ llp, 

where 2k, 

llp=YJT.\ q3 dq/I.S(q). 
0 

Concrete calculations with ~S(q) in the form (28) show 
that there exists a relation 

Ill. f l.o <::::: ll p I Po. (30) 

The presence of such a connection between the changes 
of the constant )1. and of the resistance make it possible 
to measure the change of T c, even without resorting to 
the low-temperature technique, using the fact that ex
pression (23) for Tc leads to 

llT <:::::~ln~<:::::~ln~. 
Tc0 l.o T,0 Po Tc0 

Of course, relation (30) may turn out to be incorrect 
for such defects that lead to the appearance in ~S(q) 
of a sharp peak at certain values of q, owing to the pres
ence in (29) of the factor q\ as against q in formula (24). 
It would therefore be extremely interesting to verify 
the presence of the connection noted by us between Tc 
and the resistance experimentally for different defects. 

4. SINGLE-COMPONENT METAL. INFLUENCE OF 
DISORDER ON T c 

As already noted in the Introduction, the greatest 
change of the critical temperature in comparison with 
its value in the ideal bulky sample is observed in thin 
amorphous metal films. This phenomenon is apparently 
connected with the appreciable change of the lattice 
dynamics in such a system, and also with a change of the 
character of the electron-ion interaction-the increase 
of the contribution of the diffuse scattering of the elec
trons. Estimates of the change of the critical tempera
ture of superconductors of small dimensions, based on 
an allowance for changes of only on the phonon spec
trum, were presented inl23 ' 241 ; they lead to a reasonable 
qualitative agreement with the experimental datal 14' 151 • 

It should be noted that in these calculations the influ
ence of the structural changes on the character of the 
electron-ion interaction is patently underestimated. In 
this section we confine ourselves to calculation of the 
corrections to the critical temperature of a bulky sam
ple, resulting from its structural disordering, while the 
influence of the finite dimensions of the sample will be 
considered somewhere else. As in the preceding sec
tion, we confine ourselves to the approximation of the 
isotropic superconductor, and will disregard the influ
ence of the small Coulomb pseudopotential, which is 
practically independent of the structure of the crystal. 
Then the correlation function S(q, w) can be written in 
the following form: 

a2 (k) 
S(k,w)=-y;;-- ~ exp{ik(Rn°-RnP) 

n,n' (31) 

where we have introduced the following notation: ~ is 
the position of the ion in an ideal lattice and oRu is the 
static deviation of the ion from its position in the ideal 
lattice. 

To obtain the corrections to the critical temperature 
we need to calculate the correlator (ug(t)u~'(O)) for the 
disordered crystal, and to average S(q, w) over the dis
order, assuming that the mean- squared deviation of the 
ion from its position in the ideal lattice, 15 Rh_ = 15 R2 , 

is specified, with 

bR' I R2 < 1, liR = 0. 

In calculating the displacement correlator we shall use 
the following form of the ionic Hamiltonian for the dis
ordered lattice, where account is taken of the presence 
of the effective anharmonicity: 

H _ "' Pn2 1 "' a~ a 1 "' a~v v 
i- LJ '2M + 2 LJ. !Dnn•Un Un•~ + 2 LJ <Dnn'n" IJRn"Un"Un•~, 

., n. n n, n'n" {32) 

where Cf>gg, are the force constants of the ideal lattice, 

and CI>~f,~, are the anharmonicity constants of the ideal 

lattice. Assuming the deviations OR of the atoms to be 
small, expanding them in terms of the static displace
ment waves: 

llRn = i ~Rk exp {ikRn°} R_k =- Rk-, (33) 
k 

and expanding the dynamic displacements of the ions in 
terms of plane phonons 

1 
Un = ~ (Nl'ri) ,1, eqi.Qq>. exp {iqRno}, (34) .. " 

where eq)l. is the polarization vector of the ions, we can 
write down, accurate to second order in 15 R, the follow
ing expression: 

S(k, w)=So(k, w)+/I.S1 (k, w)+M,(k, w)+/I.S3 (k, w) (35) 

Here -, (keq>.)' 
Mi(k, w) = a2(k) ~ ---1\Qq>.(t)Q-q>.(O))., -o (<L 2 - wq"2 )], 

" M 

/I.S2 (k, <U) = 2a•(k) ~ 
q'A', J, 

XRe [kR:w<Q •. ,_, (I) Qq>.(O))w], 

/I.S3(k, w) = a'(k) ~ (keq•d (keq""'') 
M 

q'A',q"~-n 

(36) 

(37) 

(38) 

In formulas (36)- (38), the vector q is determined 
from the condition of momentum conservation 

and the vectors q' and q" are arbitrary phonon vectors, 
over which the summation is carried out. The function 
~S1 is connected with the scattering of the electrons 
with the changes of the phonons spectrum, ~~(k, w) is 
connected with the diffuse scattering by the displace
ment fluctuations, and ~~ is the interference scattering. 

Since the initial Hamiltonian (32) is quadratic in the 
dynamic displacements of the ions, the calculation of 
the correlators is best carried out with the equal-time 
Green's function [251 : 

Dq"q'>.·(l) = -z8(t) <[Qq•>.•(t)Qq>.(O)]), (39) 

where the correlators needed for our calculations are 
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connected with the Fourier components DqAq 1 A1 (w} by 
the simple relation 

\Q,1.,..\t)Qq>.(O))w =- i _, [Dq•>.•q>.(w + io)-Dq•>.•q>.(w- io)]. 
1- e w,T (40} 

The calculation of the Green's functions and of the 
correlators is given in the Appendix. Substituting the 
expressions obtained there into (36)- (38) and averaging 
over J%:, which in the case of a random disorder can be 
represented in the form 

Rk 'Rk' = JRk J'okk' = N-•oR'okk'• (41) 

Rk 'Rk: = N-'.SR2ok, -k', ,(42) 

we obtain a final expression for the coupling constant 

'A= 'Ao + o/,, 

, _ N(0)(2n)'q( kdk a' k "'(keq>.)2r dw2 

.SA - 2 j 2k .z ( ) LJ M j w2 
m o -r 1.. o 

>< r~- Imllq>.(W) 2 -.S(w'-Wq>.')} 
I n [c•J'- Wq>.'- Re Ilq>.( w )]2 + [Im Ilq>.(w)] 

+- iV(0)(2nC_ f kdk a'(k)k'oW_l:_~ (keq•>.')'~ d~'o(l•J'-wq>'). 
m' ~ 2kF2 N q'>.' M o w (43) 

(All the symbols are defined in the Appendix.) 
Accurate to second order in oR, the interference 

term LlS,(k, w) makes no contribution to the change of A, 
owing to the condition (42). Integration with respect to 
w in formula (43) is carried out directly with the aid of 
the method presented in l4 ' 5 J , and estimates using the 
Debye spectrum for the phonons show that in this case 
relation (30) holds between the change of the constants 
A and the resistance p, and in order of magnitude we 
have 

(44) 

where R is the average interatomic distance. 
It should be noted that a much more significant 

change in the critical temperature should be observed 
if extended defects are present in the crystal. These, 
first, lead to the appearance of static deviations of the 
atoms from their positions in the ideal lattice, and 
consequently to the appearance of diffuse scattering, 
and, second, they lead to the occurrence of one-dimen
sional (or two-dimensional) local and quasilocal oscilla
tions. The influence of these oscillations on the constant 
A. may turn out to be quite appreciable, f'or unlike in the 
case of impurities, the existence of these oscillations is 
not due to differences between the masses of the defect 
and the ideal lattice (the latter, as we have verified, 
does not influence A). The most effective in this case 
is the interaction with the "heavy" low-frequency 
phononsl23 ' 26 J that appear in such systems. 

In conclusion, it is my pleasant duty to thank D. A. 
Kirzhnits, L. v. Keldysh, and E. S. Fradkin for a dis
cussion of a number of problems touched upon in this 
article, and also to V. L. Ginzburg and the participants 
of his seminar for a discussion of the results. 

APPENDIX 

We calculate the correlators (Qq_1 A. 1 (t}Qq_A(O))o for a 
disordered crystal. To this end, we rewrite the Hamil
tonian (32) in terms of the variables Qq_: 

Hi=-~ ~[Qq>.Q-<[1. + (Wq>.0 ) 2Qqi,Q-I[I.] + ~ V(ql,, q''A')Qqi.Qq•),•, 
2 "' ql., '!'),' (A.1) 

where 
i "' a~y y {'kRo} V ( q'A, q'J.1 ) = 2 ~ LJ <Dnn'n"Rk exp ! n" 

k n, n'n" 

e >." eq~· 1 
x--q -exp{iqRn°} ---exp{iq Rn•}. 

(NM)'f, (NM)''' (A.2) 

The exact expression for V(q A, ql A 1 ) is very complica
ted but for our purposes we can use the simplest ap-

' , • I ' I) [2) , prox1matwn for V(qA, q IL • 

V(qJ., q'//) = ywqi,Ww>.•(q'- q)Rq'-•~o (A.3) 

where y is the Gruneisen constant. 
The Fourier component of the Green's function 

DqAq 1 A1 (w} (39) is determined in accordance with the 
Hamiltonian (A.1) by the following expression: 

q" 'A/' 

where 
D,,,.o(w) = 1/ (w2 - wq~,'J, (A.5) 

and with accuracy sufficient for our purposes we ob
tain from (A.4) 

D-q•>.•, q>.(w) = Dq~>.(w) V(q1J.',- qJ.)Dq>.0 ( w), (A.6) 

Dq>.,-q>.(ul)=[w2 - Wq>.2 -l1q>.(ul)]··l, (A.7) 

where 
IIq>.(w)= S ~ V(-qJ.,q"J.")V(-q"J.",qJ.)6(w''-wq"1.") /w' ,,. 

q"'),/ (l) - (!) 

(A.8) 
On the basis of formulas (A.6)- (A.8) it is easy to de
termine the correlators needed by us, using the relation 
(40). 
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