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Starting from the hydrodynamic equations and the Maxwell equations, a system of equations is derived, 
which describes the linear oscillations of a bounded plasma in the presence of an external HF field. 
The dispersion relation for potential surface oscillations of both a plane layer and a cylinder is ob­
tained from this system. It is shown that new branches arise in the spectrum of plasma surface os­
cillations when an external HF field is present. The surface oscillations are unstable over a vast range 
of frequencies of the external field. 

THE extremely interesting properties of plasma loca­
ted in a strong high frequency (HF) electric field have 
stimulated a broad range of theoretical investigations in 
this promising field of physics. A broad class of insta­
bilities was predicted to accompany the processes taking 
place in a plasma placed in a HF field. On the other 
hand, for a number of cases the stabilizing effect of an 
HF field on unstable plasma states was pointed out. A 
detailed review of the theory of the plasma-HF field 
interaction was given inl 1J. However, in the mentioned 
investigations the plasma was assumed infinite and 
homogeneous. This restriction limits to a certain extent 
the possibilities of comparison of the theory with experi­
ment, in which the plasma is always bounded. It is well 
known that a bounded plasma, even in the absence of an 
HF field, has an oscillation spectrum that differs from 
the oscillation spectrum of an infinite plasma. For ex­
ample, in a plane layer of plasma, beside the usual 
plasma oscillations with the frequency near the Lang­
muir frequency wLe' there also exist surface oscilla­
tions whose frequency is near wLe/../2. The appearance 
of new types of oscillations should necessarily be reflec­
ted in the stability analysis of the bounded plasma in an 
HF field. 

The present paper is concerned with the investigation 
of the oscillations and stability of a plasma layer in a 
strong HF field. For this purpose we derive equations 
for the electromagnetic fields of plasma perturbations, 
together with boundary conditions on the free plasma­
vacuum interface. Using the derived equations, the po­
tential surface oscillations of a plasma layer are con­
sidered. It is shown that the HF field changes the known 
surface-oscillation spectrum and results in the appear­
ance of a new low-frequency spectrum. When the fre­
quencies of the external HF field are close to or less 
than WLe/v'2, the surface perturbations of the plasma 
grow exponentially. Their growth rate can be substan­
tially higher than that of the volume oscillations, which 
are also unstable under these conditions. This fact 
should be taken into account in experiments on the inter­
action of nontransparent plasma objects with HF fields. 
Similar results are obtained for a plasma cylinder 
placed in an HF field. 

1. We consider a bounded plasma in a strong HF 

877 

field. Neglecting the thermal motion of the particles, 
we assume the plasma boundary to be sharp. The vector 
of the homogeneous electric field E (Eo sin w 0t, 0, 0) is 
aligned tangent to the boundary. The density is assumed 
to be uniform, n~0 J = nt> = const. Under the influence of 
the HF field, the particles acquire the velocities 

v~0)= ~s E(t')dt'. 
ma_co 

(1) 

Linearizing the equations describing the plasma state 
for small perturbations, we obtain 

dna (O) dna d' ( (O) ) 
Dt+va --;;;=- lV "« Va, (2)* 

iiva+ v~OJ iiva = e_a_(E + !._ [v~J BJ), 
ot ox ma c 

4:n 1 iJE 1 DB 
rotB=-i+--, rotE=---, 

c c at c at 
where 

a=e,i 

na and v a are the perturbed density and velocity, 
respectively, of the particles of type a, and E and B are 
the perturbed fields. The coefficients of the system (2) 
are periodic in time, and thus we can assume for the 
time dependence of the solutions of (2) 

etc. The dependence of the solutions on space coordin­
ates both inside and outside the plasma shall be repre­
sented in the following form: 

E<n>(r)= ~E<n>(k)eikr. 
k 

We obtain then the following system of homogeneous 
equations, which describes the spectrum of eigenvalues 
of the wave vectors ki (kx, ky, kxi) inside the plasma: 

( 1+ WL2) (k B'')-k B('))-~"' J,_nfm-,.ww' (k B(m)_k .J:f.ml) 
C-2kx2 lJ z Zl "b c2kx'2 LJ Wn y z Zl 1J 

nt, n, a 

_ k/- "' (w,-wn)WLa'J'' l" E(m) -O 
k 2 ~ 2 s-n m-n x - , 

C x Wn 
rn,n,rx 

(3) 
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where Jg is the Bessel function of order n of the argu­
ment aa = kxeaEolmaw~; ea and ma are the charge and 
mass of the plasma particles of type a; 

WLa2 = 4nrr ~>ea2 l ma; WL2 

= wLe" + wLi'; w, = w + swo; s = 0, ±1, ±2, .... 

If we set the density equal to zero in the system of 
equations (3), (4), and (5), then we obtain a system of 
homogeneous equations for the vacuum fields. Equating 
to zero the determinant of this system, we obtain the 
spectrum of eigenvalues of the wave vectors 
ke (kx, ky, kze) outside the plasma. It is necessary to 
supplement the resulting system of equations with the 
boundary conditions: 

~ E~) I, = ~ E~) li, ~ B~') I, = ~ B~s) I;, 

Simultaneous solution of Eqs. (4)- (6) yields the spec­
trum of eigenfrequencies of the bounded plasma in a 
strong HF field. 

We now consider the case of the surface oscillations. 
In the short wave limit (ky + ki)c 2 » w2 , wi,. w~, w_hen 
the oscillations can be assumed to be nearly potential, 
we obtain from (3) and (4) 

k·' (E(s) _ "" 'Wu2 1 -, J a E(m)) _ O 
t x ~ Wn2 s-n m-n x - • 

n,m,a 

(7) 

By equating to zero the second factor in (7), we deter­
mine the spectrum of the volume potential oscillations 
of plasma in a strong HF field. This spectrum was 
studied in rz '3 J • 

We consider now the second solution of (7): 

Hence we find the possible eigenvalues of the wave vec­
tor kzi: 

k,; = ±i(kx" + ki)''• = ±ikn. 

In the same approximation, we obtain for the wave vec­
tor kze outside the plasma: 

k, = ±ikn. 

Consider a plasma layer of thickness d. For the field 
inside the layer, we assume 

(0 < z <d). (8) 

In the region outside the plasma, using the fact that the 
fields must be finite at z = ± oo, we obtain 

E~> = E~l ( kn) e"11' 
E~> = E~~ (-ku)e-•11' 

(z < 0). 
(z >d) 

(9) 

Substituting the expressions (8) and (9) for the fields in 

the boundary conditions (6), we obtain the following dis­
persion equation for the surface oscillations of a plasma 
layer in a strong HF field 1 >: 

Det IIAmnll = 0, (10) 

Comparing the derived system of equations with the 
dispersion relation for the volume oscillationsr31 , we 
note that the presence of plasma boundaries results in 
a renormalization of the Langmuir frequencies: 

WLa.2 
WLa2 -+ iilv,2 = - 2-(1 ± e-k11d). 

This fact enables us to use the method developed inr3 J to 
solve the infinite system of equations (10). For the case 
of high-frequency surface oscillations, we obtain: 

(11) 

In the limit of an infinitely thick layer (k11d » 1), the 
oscillation interaction occurring on each of the boun­
daries becomes negligible, and we obtain the spectrum 
of the surface oscillations for a semi-infinite plasma: 

2{ ~ 2 } 
W 2 = ~ 1 + ~ J,2 WLi • (12) 

2 ' ~~-oo ( lwoJI2 + WLe) 2 

In the opposite limiting case (k 11d « 1), we get from (11) 
an oscillation spectrum similar to that of the volume 
oscillations of an infinite plasma located in an external 
HF fieldr3 J and also an oscillation spectrum that de­
pends substantially on the thickness of the layer 

kud { oo wL·' } 
w2 = - WLe2 1 + k11d ~ J,2 ' - . 

2 l~-oo [ lwo i2 + "'Le "jl kudl" 
(13) 

When the frequency of the external field is much higher 
than the ion Langmuir frequency, we obtain from the 
dispersion relation (10) the following simpler equation: 

~e;(w) ~ l12~e,(w,) 
1 ~---

= 1 + ~E;(m), __ 001 + ~e,(wt) · 
(14) 

If the frequency of the external field and its higher 
harmonics differ substantially from WLe• we obtain from 
this equation the spectrum of the low-frequency surface 
oscillations, which exist only in the presence of an ex­
ternal HF field: 

2- (J)Li2 -k d { - -h d ; WLe2fl2 } 

w --z(i±e 11) 1 (1±e II ) 1:=""wd(1 ±e-•!1d)- 2 (lwo)' ·(15) 

When a harmonic of the external field becomes close to 
WLe• it follows from this relation that the square of the 
eigenfrequency w 2 becomes negative, and an aperiodic 
growth of the surface oscillations takes place. 

I) Given a plasma cylinder of radius R, placed in a HF field with the 
electric field vector along the x axis, we seek all quantities as functions 
of exp(ikxx + im I{J). In that case 

w2 k R 
• (n) L> x K (k R)l '(k R) m=O, + __ 1,±2, ... , 
uea = (w+nroo)~ m x m x ' 

where Im is the Bessel function of imaginary argument, Km is the Mac­
donald function, and the derivative is taken with respect to the argu­
ment. 
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In the immediate proximity of a resonance, formula 
(15) can not be applied. In this case we obtain from (14) 
the following frequency spectrum: 

(16) 

where 2 

~ -~-1 
n- (nWo) 2 • 

When the plus sign is taken, growth of the oscillations 
is possible, if 

-21 4Jn2 (a)~ < ~n < 0. 
I w .2] 'h 

l WLi' 

This means that when the n-th harmonic of the external 
field approaches wLe(1 + e-kud)/,12 from the high­
frequency side, the surface oscillations grow, provided 

WLe , ( [ WLi2 ]'/,) nw0 = ---=(1 + e--"'ud) h 1 + 4ln2(a)--2 • 

f2 · UlLe 
(17) 

After the threshold is reached, the growth rate of the 
surface oscillations increases, and when 

nwo = wi.e_11 + e-kud) 'h (1 + [ ~ln'(a) WLi' ]'h) 
f2 4 WLe2 

(18) 

it reaches its maximum value 

y= Ul~(1+e-k,,d)'"('¥27ln'(a)wLi')'J.. (19) 
f2 32 WLe2 

At positive values of the quantity tn, formula (16) 
describes the growth of the oscillations when the minus 
sign is taken. We have then the following expression for 
the growth rate of the oscillations 

(20) 

This quantity reaches its maximum value 

·UlLe [ 1 (!)L·2 ]'/, y=-=(1+e-kud)'/, -ln2(a)-'-
Y2 2 WLe2 

(21) 

when 
UlLe { [ 1 WL .2 ~'/,} nwo=---=(1+e-kud)'f, 1- -ln2(af-' I . 
f2 2 «lLe2 

(22) 

When the harmonic of the external frequency moves far­
ther from the value wLe(1 + e-k11d)/v'2, formula (15) 
becomes applicable. Finally, when the harmonic of the 
external field approaches wLe(1- e-k11d)/v'2, it is 
necessary to use formulas (17)- (22), in which, however, 
the quantity (1 + e-k11d) must be replaced by (1- e-k11d). 

Thus, a bounded plasma placed in a strong HF field 
is unstable against excitation of surface oscillations. 

The short-wave surface oscillations (k 11 d >> 1) are un­
stable to external field frequencies wo that are close to 
or lower than WLelv'2. In the same range of frequencies 
Wo, as previously notedl3 J, the volume oscillations are 
also unstable. However the growth rate of the volume 
oscillations is then of the order of the ion Langmuir 
frequency. It follows from the formulas derived above 
that when the external field frequency approaches 
wL/.../2, only short wavelength (k 11 d » 1) surface os­
cillations will be excited, with a growth rate 

~ UlLe( m.e)'j, 'J, 
- -- Jl • 

12 mi 

When the external field frequencies are much lower 
than the electron Langmuir frequency, then the long­
wave (k 11 d «:: 1) surface oscillations are also unstable. 
The fastest to grow, with a growth rate 

~ k11d ( m. ) 'I• .,, 
__ WLe - ] 1 

V2 mi 

are the oscillations with the wave vector 

'YZwo 
krr=--d-1• 

WLe 

Over a wide range of frequencies of the external field, 
the growth rate of such oscillations is also higher than 
that of the volume oscillations. 

Therefore it can be concluded that in a nontranspar­
ent plasma (w 0 :S WLe/.../2) the most dangerous type of 
instability caused by the presence of an external HF 
field will be the excitation of surface oscillations. 
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