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Multiphoton transitions in the discrete spectrum of atoms and multiphoton ionization processes, caused 
by a change in the frequency spectrum of the photons due to the electron-photon interaction, are con­
sidered. The problem of the absorption of light of frequency n by an atom in the presence of non­
resonance laser radiation of frequency w << n is solved. An expression is obtained for the probability 
of multiphoton ionization of an atom, and its dependence on the statistical properties of the radiation 
is investigated. 

THE idea of the possibility of many-quantum processes 
associated with the transition of an electron from one 
energy state to another because of a change of the fre­
quencies of the Bose (phonon) subsystem which interacts 
with the electron, was first expressed in well-known 
articles by Ya. I. Frenkel'. llJ The inclusion of part of 
the interaction in the zero-order approximation for the 
Hamiltonian is achieved at the expense of the adiabatic 
approximation. The mathematical basis which guaran­
tees the many-quantum character of the transition con­
sists in the fact that it is impossible to diagonalize, by 
a single unitary transformation, two quadratic forms in 
the boson amplitudes which refer to different electron 
states. l2 J 

In the case of the electron-photon system, the utiliza­
tion of the method of successive diagonalization of the 
Hamiltonian by unitary transformation is a convenient 
scheme of calculation. Both multiphoton transitions in 
the discrete spectrum of atoms and the problem of 
multiphoton ionization will be investi~ated below. In the 
latter case, in contrast to articlesl3- 6 basic attention 
will be given to the dependence of the probability for an 
ionization process on the statistical properties of the 
incident electromagnetic radiation. 

1. TRANSFORMATION OF THE HAMILTONIAN OF 
THE ELECTRON-PHOTON SYSTEM 

Let us consider the Hamiltonian of the electron­
photon system for a hydrogen-like atom interacting with 
radiation (the case of the l-degeneracy of hydrogen is 
investigated separatelyl7J): 

!r = il• +if'+ if", 

flo = .2; E;a;-tai + ~ nCX (b~J.bxl. + 1/,), 

i · xA 

V ineo , / 2nnc L-'f, (' * ( ) . .., ) d 
iix> = --,;zc- V lXf J \jl1 r e'"'e,., v \jl; (r v, 
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A (ii) = neo'li e,.,,,e,..,,, \ •'•·' (r) •"· (r) ei(><,±x,) r dv (7) 
"'''· ±x,l., meL" VI x,ll "•I J "'' 'YJ 

(eo, m, and c respectively denote the electron's charge, 
its mass, and the velocity of light). In formulas (3)-(7) 
the following notation is used: Ei and l/Ji are the energy 
eigenvalue and the wave function of the atom in state i 
(i includes the necessary set of quantum numbers); 
a{ and ai are Fermi operators for the creation and 
annihilation of electrons; b~ A and bK A are Bose opera­
tors for a photon with wave vector K and polarization A 
(A takes two values; eK A is the unit polarization vector); 
L3 is the volume of quantization; E' and E" are formal 
parameters of smallness1 > (E' == 1, E" == 1'). 

Let us use the method of successive diagonalization 
of the Hamiltonian by unitary transformation:lsJ 

- s· s · ·· 1 •• • H=e- He' =H+[HS]-I-2T[[l1S]SJ+ ... , 

[AHJ ==.Ail- i1A.. 

The operatorS should be chosen from the condition that 
the terms of first order (~ E') should vanish. Since the 
term H" is much smaller than the term H', it may be 
assigned to the terms of second order of smallness: 
E11 ~ (E') 2 • We obtain . • . 

H' + [H"SJ = 0, 

(8) 

The transformed Hamiltonian has the form 

H = H"+- fl" + W' +It". 

Here the following notation is used: 

jj;' = 1/,[h'SJ, IV"= 1/2 [S' [S'H']] +[If'S] + .... (9) 

It is convenient to split the operators w' and w" into 
parts wd_ and wJ which are diagonal with x;.,espect tq_ the 
Fermi amplitudes, and nondiagonal parts W~ and W~d· 
In this connection 

(i I w~ I i) + o, <il Ti)·~d I i) = o, <i I IV~ I i) + o, <WV~,I i) = o. 

The operators w~d and w~d mix different electron 
states and may be regarded as perturbations which 

')The introduction of these parameters corresponds to the usual 
approach of quantum electrodynamics. 
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generate multi-quantum ionization. {For simplicity we 
shall omit the small "anharmonic" term wc:t 1.) 

Let us write out the Hamiltonian for the photon sub­
system in the i-th electron state: 

Here 

- _ + ( ')' ~ 1 vi.i"' I' , "~A<ii) ei = ei E L! t; -,- e LJ xl.; -x}. .• 
jxh ei - Ej - nWx xA 

The coefficients of the quadratic form satisfy the follow­
ing relations: 

For simplicity, we shall investigate the multiphoton 
transitions of an electron from the ground 1s- state of 
the atom. To within terms ~ ( £ 1 ) 2 and E", the initial 
Hamiltonian Hs can be diagonalized[9J with the aid of a 
canonical transformation to new variables ~~A and ~ K A. 
We find: 

(13) 

The photon Hamiltonian Hp corresponding to the p-th 
excited state of the electron is determined by formula 
(1 0). Let us transform it to the variables ~~A and ~ K A 
and retain the terms -(€')2 and E 11

• We obtain 

ii v = J v + l: liw,,.\;~"s"'· + ~ { 1 I, B ~;;~~.>.,s:,,.,s;,,., 
xA XtAtX2A? 

+ 1/2 B~~~x1 A2 ~x1 A,~x).2 -f-- D~~.~x2 A2£~,,.1£xlA2 }. (14) 
Here 

(15) 

2. MULTIPHOTON SPECTROSCOPY OF ATOMS 

Let us consider multiphoton transitions in the dis­
crete spectrum of atoms associated with the interaction 
with steady- state laser radiation of a given frequency w, 
intensity .P(w) and polarization A0• Since the resonance 
condition for a given electron transition and a fixed fre­
quency is usually not satisfied, it is convenient to intro­
duce an additional source of radiation with an adjustable 

2>This approximation (for a two-level model) limits the admissible 
value of the intensity F of the light wave's field by the condition (x 12 

denotes the matrix element of the coordinate): le02x 122F 2/h2(w 1l­
w2)1 < I. Additional restrictions due to the presence of a continuous 
spectrum do not arise since the matrix element (k I W" d I k) is rigo­
rously equal to zero. 

frequency 0 of generation. In this connection the law of 
energy conservation for the absorption of laser photons 
and of the photon n is always satisfied owing to the ap­
propriate choice of n. Let us denote the spectral inten­
sity of the light 0 by .Z(O), and for definiteness let us 
assume z-polarization for it. 

The probability dW of absorption per unit time of a 
quantum of frequency n' lying in the interval between 
0 and 0 + d 0, is determined by the Fourier transform 
of the correlation function Kg of the dipole moment 
operators d:[wJ 

4:rt2 
dW=-Ii .P(Q)./todQ, 2c 

1-
./t o =- ) .7t (t) e-''" dt, 

2:rt_oo 

~A ~ {ilft}· { iHt} :Jt (t) = Av (d (0) d (t}}, d (t} = exp --r,:- d exp - T ; (16) 

Av{ ... } denotes the operation of statistical averaging. 
Let the frequency 0 be chosen so that a resonance elec­
tron transition from the ground state s to a given dis­
crete level p is realized. The formula for .7t(t) can be 
transformed to the form l2 J 

.7t(t) = d,p2 Sp {exp (iHpt/li) exp (-iH,t/li)pp}. (17) 

Here dsp is the matrix eleme~t of th~ z- component of 
the dipole moment operator, Hp and Hs are determined 
by formulas (14) and (13),31 and PF is the statistical 
operator for the electromagnetic field of the laser radia­
tion. 

Let us introduce ordering into formula (17) with the 
aid of a change to theT-ordered exponential: 

. I 

.7t(t)=dsp2 Sp{ppTexp( --7d V(t1)dt,)}. (18) 

V(t 1) = exp (iH,t, /!i) (Rp -H,) exp (-i!l,t 1 I li). (19) 

In order to evaluate the average in formula (18), we 
shall use the 9- representation of the density operator 
PF considered by GlauberluJ 

Pp = ~.~({~,.}) IT1~,.><~,.1a•~,.. (20) 
" 

Here the f3K denote the eigenvalues of the annihilation 
operator ~ K for the mode K: 

s,.l ~"> = ~" 1 ~,.>. 

.9'({f3K}) is a weight function whose form is determined 
by GlauberUlJ for certain models of a light beam. In 
the st.eady- state case P = P({ I f3K I}), so that if f3K 
= rKe1(}K then integration over the phases of the ampli­
tudes is not directly related to the form of the function 
9. 

Below we confine our attention to a single-mode ap­
proximation for a laser beam propagating in the direc­
tion K = K 0 and having a polarization A 0 • 

Let us carry out the operation of averaging in form­
ula (18) with the aid of the density operator (20). As a 
preliminary it is necessary to expand the T-ordered 
exponential appearing in Eq. (18) in a series. In the 
case of sufficiently intense radiation, the average num­
ber of photons in the mode is large and one can neglect 
the noncommutativity of the field operators. Upon aver-

3>It is obvious that Js ~ Es, Jp ~ Ep. 
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aging, due to the integration over the phases, only those 
terms of the series survive for which the number of 
creation operators is equal to the number of annihila­
tion operators. We find: 

where 

(22) 

" 
For a stably oscillating laser the weight function which 
describes the radiation has a o-shape:ruJ 

1 -· 
.9'(rx)= 6(Jilx,J-l'nx,>-,). (23) 

2:rt l'ilx0A0 

Here nKo Ao is the average number of photons in the 
mode. With the aid of Eq. (23) we find 

(24) 

Let us perform the necessary summation in formula 
(21). Let us utilize the dipole approximation for the 
constants of the theory. Finally we obtain 

.Jt(t) = d,p2 exp {it(Qp, + 2p1oo)}J0 (2p1 sin o.>t), (25) 

(26) 

P1 = p/TI.w, and Jo(x) is the Bessel function of real argu­
ment. The constant p may be expressed in a simple way 
in terms of the matrix elements of the coordinates:l 12 l 
P = Pp- Ps, where Pp and Ps are given by the formula 
(i = s, p; ei-unit polarization vector) 

·-2 2• - L-•~ (e;-e;)(i!redj)(jJre;Ji) p, - ne0 ~toon...,l.o LJ 
i (e;- e;) 2 - fz2w.2 

(27) 

To within a factor, the structure of pi coincides with the 
Stark shift of the level in a high-frequency field. ll3l 

Let us determine dWsp· We perform the necessary 
integration over t by using the expansion 

n=.t 

where Jn(Pl) denotes a Bessel function. We find 

4rt2 ~ 
dWsp = ~dsp2P(Q) ~ J,.Z(Pi)6(Qps + 2p!W- Q- 2nw)dQ. (28) 

n=O 

As follows from formula (28), the probability dWsp has 
the characteristic form of a sum of terms which 
describe multiphoton transitions. 

The presence of the term 2plw in the law of energy 
conservation leads to a shift of the maximum for ab­
sorption of the frequency n to the "blue" side. For ex­
ample, if the frequency n was tuned to the resonance 
n = nPS' then the switching-on of sufficiently intense 
laser radiation "destroys" the resonance. Here the 
term 2plw, with regard to its own magnitude, must at 
least exceed the width of the absorption line. The 
integral probability of a multiphoton transition in the 
discrete spectrum of an atom is determined by the 
formula 

r 4n2 • 
W., == J dW.,P = tzzc d,p2P(Q)llnl(Pi). (29) 

Here [n] denotes the integer part of n, 

For P1 = 0 expression (29) goes over into the formula 
for the probability w~~ of the single-photon absorption 

of light. For P1 ;>< 0, w « n we haven= nps + 2p!w, 
and 

(30) 

The presence of the square of the Bessel function in 
Eq. (30) is typical and reflects the contribution of vir­
tual laser photons to the transition. ts,I3J In the general 
case of ann-photon transition its probability is entirely 
determined by the factor J~Ill (P 1). In the case of only a 
single laser source, it is most probable that one of the 
strongly excited levels of the atom will satisfy the 
resonance condition. In the presence of a transition to 
such a level, photoionization of the atom will subse­
quently occur with a probability close to unity. Since 
the "bottleneck" of the process is the multiphoton exci­
tation to this discrete level, then the corresponding 
probability is simultaneously the probability of multi­
photon ionization of the atom. In principle indirect 
ionization may lead to smaller values of the ''index of 
the multiphoton nature" n in the law Wioniz ~ F2n (F is 
the field intensity of the laser beam) and must be taken 
into account side by side with other possible physical 
considerations. ll4-lsl 

3. DIRECT MULTIPHOTON IONIZATION OF ATOMS 

Let us consider multiphoton ionization of an atom 
from th~ ground state due to the influence of the pertur­
bation Wnct: 

After standard transformations the expression for the 
transition probability per unit time may be reduced to 
the form 

+oo t 

{ PF "' (' - { i (' ' } - ) Wioniz =Sp Tf .l (sJWndJk)Texp -h~V(t,)dt1 (kJWnd(t)Js)dtf' 
-» 0 

Here V(t) is the same operator as in Eq. (19), but the 
index p = k refers to a state of the continuous spectrum, 

'w nd (I) = exp {iH,t In} W nd exp {-iH,t In}. 

The following calculation does not differ fundamentally 
from the calculation for the case of a discrete spec­
trum. 

In the case of a stably oscillating laser (L) we find 

~ 

Wi~k = ~ W2 (n 1; w)ln((p1)--j- ~ W3(m1; w)lm,Z(p!). (32) 
m1=mo 

Here Jk(x) denotes a Bessel function; the contribution 
to the transition probability from the terms Wnd which 
do not enter into W2(n1; w) and W3(m1; w) (see formula 
(39) below) is denoted by t.W 

H7 2 (n1 ; w) = 4::;;3 N~,l.oL"~dQk"' 
x[~ V,;,V;,,"'(e,"'-e;1 -liw-n11iw--j-p11ioo) \' (33 ) 

;,' (e,- e;, + liw) (ek"'- e;, -liw) ' 
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(34) 

_Je,J ,/2mw ,/2mw 
.(]-hw +2p,,kro= V /t(2n-q+2), k 00'= V ---,;-(2n-q+3). 

(35) 

Since the Bessel functions decrease sharply with in­
creasing values of n1 and m1, one can restrict oneself to 
the formula 

W;~~ = W,(w)ln((pJ)+ W,(w)lm((pi), (36) 
no=~{[q-1], if [q-2] ~s odd 

2 [q], if [q- 2] IS even 
mo = _t ~ [q- 2], if [q- 3] is odd 

2 \ [q- 1], if [q- 3] is even (37) 

Here W2(w) = W2(no; w) and W3(w) = W3(mo; w). As is 
not difficult to verify, in the case of two- and three­
photon processes the quantities W2(w) and W3(w) corre­
spond to the probabilities of two-photon and three­
photon ionization of the atom. For multiphoton transi­
tions of arbitrary order, these quantities must be 
numerically estimated in each specific case. The basic 
parameter of the theory, p = Pk - Ps is calculated ac-

w 
cording to formula (27). For the calculation of Ps one 
can assume fl.w << IEs 1. In connection with a calculation 
of Pkw, the excited states primarily give a contribution 
to the sum over j in formula (27). In the approximation 
ti w » I Ekw - Ej I the evaluation of Pkw can be carried 
out exactly on the basis of a sum rule (in analogy to the 
calculation of the Thomson cross-section for the scat­
tering of light[t?l ). For a sufficiently large ionization 
potential (Pkw » Ps) we find 

w 
y=-, 

Wt 

where Wt is the tunneling frequency. [3J 

(38) 

Let us estimate the magnitude of AW. First of all we 
note that since the contribution of the terms H" 
(H" ~ A2, A is the vector potential) to the probability of 
two- and three-photon transitions is, according to 
numerous estimates, less important than the contribu­
tion from the term A· V, then for the sake of simplicity 
it is not taken into consideration in formulas (33) and 
(34) for W2(w) and W3(w). The structure of AW is ap­
proximately represented by a sum of the form 

11W ~ W4(w)Jp((p,) + Ws(w)h'(p,) +. .. (39) 

(Po and lo satisfy conditions of the type (37); for exam­
ple, if [q- 4] is even then p0 = (1/2)[q- 2] and so forth). 
The coefficients W4 (w), W5 (w) and so on correspond to 
the probabilities of four-, five-, and so on photon tran­
sitions under the assumption that the frequency w satis­
fies a given multiphoton resonance. 

It is not difficult to verify that the contribution AW 
is small in comparison with W?(L) . For example, in 

lOfilZ 
the case of four-photon ionization 

W;~~z = W2 (w)J12 (pi), 11W = W.(w)fc?-(p,) 

and an estimate shows that A W is approximately an or-

der of magnitude smaller than Wi~~~z· One can under­
stand the last result if one takes into consideration that 
in the case of ann-photon transition Wn(w) decreases 
like [ (n - 1) ! J2 while the square of the Bessel function 

which enters into W~~~~z (for p 1 < 1 and n » 1) falls off 

like 2-m- 2 >[ (n - 2/ 2)! r 2 • (The remaining factors are 
approximately identical for comparable terms). We 
neglect the contribution of A W in what follows. 

It is not difficult to verify that in the limiting cases 
formula (36) goes over into the well-known expressions 
for the ionization probability. For Pt « 1 and a large 
number of photons we find 

IV.'(LJ = w,o( 2,718eo2F' )'"•+I + lFso( 2,718e02£2 )2mo+2 (4Q) 
1001' 8/iw'm[q + 1] 81iw3m[q + 1] 

The constants wg and W~ correspond to the quantities 
W,(w) and W3(w) taken at a value for the photon density 
N° ~ m w2..f[qT/1Te~, and F denotes the amplitude of the 
light wave's field intensity. The expression standing 
inside the circular brackets in formula (40) determines 
the "threshold" dependence of the transition probability 
and agrees with the analogous expression in the work 
by L. V. Keldysh[3J (formula (21)). (An estimate of W~ 
for the hydrogen atom gives: wg ~ 1017 sec-1). In another 
limiting case, for p 1 >> 1, we obtain 

where K113(x) is Basset's function. Taking int?, account 
the asymptotic expansion[ 18 J Kt13(X) ~ (11'/2x)1 2e-x, we 
obtain 

2 _ liw2 V 2m j _ 4 l'2mle,l'f,} 
1"" (pi)- rre0F le,l exp \ 3 er/tF · (41) 

The exponential in formula (41) agrees with the well­
known exponential in the theory of auto-ionization of an 
atom. (tgJ We note that the field dependence of the factor 
standing in front of the exponential in the expression for 
the ionization probability is determined by the choice 
of the perturbation operator. 

The dependence of the logarithm of the probability of 
ionization of the hydrogen atom by a ruby laser on the 
intensity;£ (in the units photons/cm2 sec), calculated 
according to the formula 

W;oniz ~ 10-5l;£2Jn.'(3·10-33;£) +2-1Q-85;£3J,,"(3·1Q-33;£), 

is shown graphically in the Figure. The graph has a 
characteristic "dip" associated with the transition to a 
higher-order of the multiphoton nature of the process. 

We consider next a "random" source (G). This may 
be a laser operating below threshold or a thermal source 
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from which a spectrally narrow collimated beam is 
selected with the aid of a linear filter. (The output dis­
tribution of the filter, of course, should possess the 
specified line contour.) Such sources are essentially 
narrow band quantum- mechanical generators of noise. 
In this connection for light the conditions for first-order 
coherence are assumed to be satisfied (factorization of 
the correlation functions of first order in the field 
operators), but the conditions for coherence of higher 
orders (factorization of the higher-order correlation 
functions)WJ is not satisfied. 

The weight function PP({rK}) for the radiation being 
investigated may be chosen in the form of a product of 
Gaussian functions of the individual modes 

1 J rx2 } .'J'(Gl(rx) = -_- exp - -_- . 
nnxof.o l nx).o 

Calculation of cpz 1 z2 in Eq. (22) with the function (42) 
gives 

(42) 

<PI~~)= (2/2 +II+ v)!(iix,~,,) 21o+H•, V = 2,3. (43) 

Let us represent the factor (2l2 + l 1 + v)! appearing in 
Eq. (43) in the form of an integral: 

00 

(212 + 11 + v)! = S e·-<"l"2l,+l,~d"t". 

In addition, for convenience l~t us write w?(L) = w~<2! 
L lOlllZ lOlllZ 

+ Wio~fz from formula (36) as a function of the param-

etersp1and t: 

(44) 

It is not difficult to verify that 
00 00 

JVi~::iz = s e-'T21Vi~~~ (p1T; \;T)dT + s e-'"t"31V~~:z (PiT; \;T)d,;. (45) 
0 0 

One can only accomplish the integration over T in the 
general case by numerical methods. In order to obtain 
a visible result, we make the following two approxima­
tions. Side by side with the ionization potential we 
neglect the average oscillation energy of the electron in 
the field of the electromagnetic wave, i.e., we omit 
eg F2 I 4m w2 together with the quantity I Es I in formula 
(44). (Correspondingly we neglect /;Tin Eq. (45) since 
values of T <;:;; 1 are essential.) In addition, we confine 
ourselves to the case P1 << 1 when, according to the 
multiplication theorem for cylindrical functions llsl 

ln,(Pi"t") ~ "l"n'Jn,(PJ). 

To the approximations being used, we obtain 

(46) 

From formula (46) it follows that the probability of 
ionization of an atom per unit time associated with 
steady- state irradiation by a "random" source is n! 
(n denotes the number of photons absorbed) times lar­
ger than that associated with radiation by an artificial 
emitter. For the case n = 2, this result is well 
known. l20 '21J 
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