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The properties of a strongly non-ideal plasma (y >> 1) are considered. It is shown that in the "gas" 
region of densities and temperatures of any substance (the density is smaller than the solid-body 
value), for which extrapolation of the theory of an ideal plasma predicts strong nonideality, two 
thermodynamic equilibrium states of matter should be possible. In the first, two phases of different 
density should coexist; in one of these the matter is an ideal plasma and in the other the plasma 
density is close to that of a solid body. In the second state, the matter is a homogeneous plasma 
with an ionization equation ne = ( T/ e 2 ) 3 • It is pointed out that in principle the existence of a homo
geneous strongly non-ideal electron-ion plasma should be possible at matter densities close to the 
solid-body values. 

THE properties of a strongly non-ideal plasma are 
being discussed with increasing frequency (see, for 
exampleP• 21 ). By strongly non-ideal plasma we mean 
here a certain phase of matter, in which the average 
potential energy of the charged particles is larger than 
or of the order of their kinetic energy (the non-ideal
behavior parameter is y ~ 1 ). 

It should be noted that in the case when y ~ 1 there 
is no small parameter with which to carry out the 
theoretical estimates. On the other hand, extrapolation 
of the theory of a weakly non-ideal plasma at y ~ 1 is 
generally speaking not valid. We shall therefore dis
cuss in the present paper problems connected with the 
properties of a strongly non-ideal plasma in the case 
y » 1. One of the examples of such a plasma is an 
ionic crystal. Indeed, if the plasma consists of heavy 
positive and negative ions having finite ionic radii, then 
the plasma becomes strongly non-ideal at low tempera
tures, since the Fermi energy of the heavy ions is al
ways small. The situation is entirely different in an 
electron-ion plasma, since it is important that as the 
result of the small electron mass the atom is always 
a pure quantum formation, unlike the unit cell of the 
ionic crystal, i.e., when an electron is localized in a 
region of the order of the dimension of the atom, the 
Fermi energy of the electron becomes comparable with 
the potential energy of the attraction to the ion. It is 
therefore unclear whether a strongly non-ideal elec
tron-ion plasma (y » 1) can exist. 

In this paper we attempt to determine, on the basis 
of simple models and estimates, the regions of densi
ties and temperatures in which a strongly non-ideal 
electron-ion plasma can exist. We also clarify certain 
singularities of the medium in these regions. 

It is clear that the existence of a strongly non-ideal 
electron-ion plasma is possible only at sufficiently low 
temperatures and sufficiently low electron densities 
(small Fermi energy of the electrons), for in the region 
of strong non-ideal behavior it is necessary to satisfy 
the conditions e'tl.:/ 3 » T and e 2 n~ 3 » EF (y » 1)), 
where ne is the electron density, T is the tempera
ture, and EF ~ li 2 n~ 3 m-1 is the Fermi energy of the 
electrons. 
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FIG. 2 

Let the investigated substance consist of electrons 
and ions, which can form atoms with an ionization po
tential I and dimension a. In order to clarify the pos
sible regions of non-ideal behavior, let us examine 
Figs. 1 and 2, in which the axes represent n113 and T 
(n-total density of heavy particles) in atomic units. 
On the straight line OB we have T = n113, i.e., the 
plasma in the region above this line is close to ideal. 
Assume that on the line BE the Fermi energy of the 
electrons is equal to the energy of the Coulomb inter
action. Then in the region lying to the right of the line 
BE the electrons are also almost ideal. Thus, strong 
non-ideal behavior is possible only inside the region 
OBE. 

In the region of matter density na = a -3 (in atomic 
units), we shall use for the number of electrons the 
Saha formula 

( 1 _ :e )( :e ) -2 = knT-'f, eiiT, 

where k is a known numerical constant that depends on 
the concrete substance. 

If we substitute in this formula T = n:/ 3 , then we 
obtain in terms of the variables n and T an approxi
mate equation for the boundary of the region inside of 
which the ideal behavior is violated, and consequently, 
the Saha formula does not hold 

(1) 
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It follows from (1) that the minimum density nb min 
is proportional to r 3 • Figures 1 and 2 show plots of 
nb(T) for hydrogen and for cesium, respectively. 
Cesium is chosen as an example of a substance with a 
low ionization potential. As seen from Fig. 1, for hy
drogen the region of non-ideal behavior OBE is small 
and lies in the density and temperature region in which 
the maximum possible deviation from ideal behavior is 
of the order of unity (n113 ~ 1 ). In the case of cesium, 
on the other hand, strongly non-ideal behavior is possi
ble, due to the low ionization potential of cesium, as 
seen from Fig. 2, i.e., for substances with sufficiently 
low ionization potential a situation in which nb min 
« na « 1 is possible. In this case there exists a 
region of densities and temperatures in which the elec
tron shells of the atoms over lap slightly, and the 
ionized electrons can be strongly non-ideal. This 
region is shown shaded in Fig. 2. In the shaded "gas" 
region it is necessary, when deriving the ionization 
equation, to take into account the interaction of the 
charged particles. Since the electrons are not degener
ate in this region, they can be regarded classically and 
the total partition function for our system will be given 
by 

Z ~ { exp(-Fa(Ne)/T) 1 [ 1 (IN ~ pl 
= N, (2nh)"'·(N,!) 2 .) exp -T e+ 2m 

N N 

+ :i ~~ + Uee + U;; + Ue;) J rJ dp; dPk dr;dRk}, (2) 
j, k 

where Ne is the total number of electrons in the sys
tem, Fa is the free energy of the atoms, Pj are the 
electron momenta, P\{ are the ion momenta, and uee, 
uii, and Uei are the electron-electron, ion-ion, and 
electron-ion interaction energies, respectively. 

In this formula, for the usual reasons, we do not 
take into account the excited atoms. The integration 
with respect to the coordinates and momenta of the 
ions is carried out with without limitations. In inte
grating with respect to the coordinates and the mo
menta of the electrons, we should satisfy the require
ment that the corresponding states be the states of the 
ionized electrons. The simplest definition of the 
ionized state is as follows[:lJ: the energy of the elec
tron in the field of the nearest ion should be positive. 
Apparently, it is more correct to determine· the free 
electrons by stipulating that their energy in the field of 
the nearest ion corres~ond to the energy of the bound 
state with radius ~n£/ 3 • Therefore, we shall calculate 
the partition function under the condition 

(3) 

where uj is the potential of the j-th electron in the 
field of the nearest ion, and (:3 is a number of the order 
of unity. The actual condition imposed on the region of 
integration in phase space of the electrons is more 
complicated, but by using the condition (3) it is appar
ently possible to obtain correct semiquantitative re
sults. 

Integrating in (2) over all the momenta, with allow
ance for the condition (3), we obtain 

r 1 N, t } X~ exp [- T (u" + uii + uei) J IT j e-x'x2 dx dr; dRk , (4) 

v i.•C'f't' 
where Fe and Fi are respectively the free energies 
of the ideal electron and ion gases, and <Pj = uj 
+ (3e2n:f3. 

If the electron is close to the ion, then l <Pj l/T » 1 
and 

~ e-x'x' dx ·~ ; (I ~i I /' exp ( ~; ) . 
(~;~t (5) 

therefore, as seen from (5) and (4 ), in the vicinity of 
the ion the electron interacts with the ion with an ef
fective potential ~T ln ( l uj l/T). The partition func
tion (4) therefore converges. 

It is seen from (5) that the proposed cutoff of the 
Coulomb interaction of the electron with the ion occurs 
at distances on the order of e 2/T. Although it does not 
contain ti, it has a quantum-mechanical origin-ac
count is taken of the existence of the atoms (ti enters 
in the ionization potential of the atoms). Another cut
off is obtained by taking into account the quantum 
dimension of the electron A = h/v' 3mT. At tempera
tures exceeding one Rydberg (i.e., in the region of an 
almost ideal plasma) we have A > e 2/T, and it is 
necessary to cutoff the classical partition function at 
distances of the order of A (the thermodynamic char
acteristics of a weakly non-ideal plasma were investi
gated in this case by Vedenov and Larkin[4 l). On the 
other hand, at temperatures less than one Rydberg we 
have i\. < e 2/T, and the proposed cutoff of the Coulomb 
interaction of the electrons with the ions is more 
likely to be correct. 

In the region of strong non-ideal behavior, expres
sion (5) is always valid, so that we obtain for the par
tition function (4) the expression 

Z = ~ { exp[ -;(Fa +F.+F;+IN.) J ( v!,1, r· 
N, 

X~ exp [- ~ (uee + U;; +fie;)] IJ dr;dRh }, 
v J,k 

(6) 

where the mtegration is carried out over the entire 
volume, and Uei is the energy of interaction between 
the electrons and the ions, in which the potential of in
teraction with the nearest ion is replaced by 

(7) 

Since the temperature is low, the electrons and the 
ions are arranged in a lattice in which the electrons 
are located between the ions. Indeed, it is clear that 
at low temperatures the electrons and ions are ar
ranged in separate sublattices. In the usual case, how
ever, if we disregard the effective potential (7 ), the 
relative placement of the lattices has no equilibrium 
position. In the case under consideration, on the other 
hand, the electrons interact weakly with the nearest 
ion, and therefore the total potential energy has a 
minimum when the electron has the largest number of 
nearest neighbors, i.e., the electrons lie between the 
ions. 

Discarding small terms connected with the thermal 
deviation from equilibrium and with the logarithmic 
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interaction, we transform the expression (6) into 

Z = ~ exp [- ~ (Fa+ Fe+ F; + !Ne- ae2ne'f, Ne)] 
N, 

[ F(Ne)] == ~exp --T- ; 
.ve 

here Q ~ 1 and is determined by the lattices structure 
(the Madelung constant). 

To find the number of ionized electrons, we must 
now find the minimum of F with respect to Ne. Using 
the fact that 8F/8Ne =0, we can calculate the pressure 
P=-8F/8V: 

We see that when e 2 n~ 3 >> T the pressure of the 
charged particles turns out to be negative. This means 
that in the considered region of n and T either there 
exists a minimum with respect to Ne, at which ne 
~ (T/e 2 ) 3 , or else the substance breaks up into two 
phases, in one of which n << na and e 2 n¥ 3 << T, and 
in the other n ? na. For any particular substance, the 
two-phase region of densities and temperatures will 
approximately correspond in this case to the cesium 
region shown shaded in Fig. 2. 

Indeed, we should evaluate the partition function (2) 
over all possible states, including the states when the 
charged particles occupy only part of the total volume. 
U the minimum with respect to Ne lies in the region 
where e'h~ 3 >> T, then the obtained negative pressure 
denotes that a disposition of the charged particles in 
only part of the total volume will be much more proba
ble, for this state corresponds to the smaller free 
energy. This means that in the case under considera
tion the breakdown of the substance into two phases 
with different densities is thermodynamically favored. 
However, for the dense phase to be stable it is neces
sary that the pressure become positive, and this can 
occur only if the quantum corrections, which we have 
not taken into account, are significant. This corre
sponds either to atomic densities or to the case 
y ~ 1. The possibility of breaking down a non-ideal 
plasma into phases was indicated in(1• 21 • Alekseev et 
al.[ll ignored, quite incorrectly, the negative pressure 
of the charged component. Norman and Starostin, on 
the other hand[2l, related the possibility of the phase 
transition with the non-monotonic dependence of the 
pressure on the density. It is clear that this can happen 
only when y "" 1. On the other hand, there are no relia
ble methods, of calculating the partition function in this 
region, where there is no small parameter, so that it 
is impossible at present to prove theoretically that the 
pressure of the charged particles in this region be
comes non-monotonic. An attempt to calculate the 
properties of the plasma in this region numerically was 
made inr 51 • 

U the minimum of the partition function with respect 
to Ne lies in the region e 2 n¥ 3 "" T and corresponds to 
positive pressure, then there is no breakdown into 
Phases and the formula for the ionization takes the 

' 2 3 • approximate form ne = (TIe ) . The two foregomg 
possibilities can be verified experimentally, either by 
observing the breakdown into phases, or, if the sub
stance remains homogeneous, by measuring the depend
ence, say, of the electric conductivity on the tempera
ture. We indicate by way of an example that in cesium 

the described phenomena should occur, as seen from 
Fig. 2, at pressures on the order of 10 3 atm and tem
peratures on the order of 104 deg, which are expected 
to be attained in shock tubes. 

We see that strong non-ideal behavior is impossible 
( y » 1) in the density and temperature regions under 
consideration, but is possible in principle at densities 
close to atomic, and at low temperatures. U the dimen
sion oi the atom is sufficiently large, then at densities 
close to atomic and at low temperatures the Fermi 
energy of the electrons will be of the order of or 
larger than the interaction energy of the electrons with 
the ions, but still small compared with the energy of 
the electron-electron interaction. The electrons and 
ions will then form a lattice at low temperatures. In 
the. first approximation we can disregard the energy 
of interaction of the electrons and ions. In this ap
proximation, the electron and ion lattices oscillate in
dependently in the field of the smeared-out compen
sating charge. In the next-higher approximation it is 
necessary to take into account the small restoring 
force acting between the lattices. The theory of oscil
lations of a Coulomb lattice in a smeared background 
of compensating charge is developed in [sJ, where it is 
shown that the spectrum of the low-frequency oscilla
tions turns out in this case to be quadratic: 
w = ceck2/ w0 , where ce is the velocity of the trans
verse electron sound and w 0 is the plasma frequency 
of the electrons. By the same methods as in[6 l, it can 
be shown that for a sufficiently small restoring force 
there exists a region of frequencies for the electron 
branch of the low-frequency oscillations ( w < wo) with 
a similar dispersion. But even in substances that are 
most favorable for the realization of the non-ideal 
state under consideration (one of which is cesium), the 
Fermi energy of the electrons in atomic collisions 
turns out to be too large, and the electrons form a 
liquid even at T = 0 (see, for example, [?J ). It is appar
ently of interest, however, to investigate the electro
magnetic properties of solid cesium at sufficiently high 
frequencies (not lower than w0 ), when the transverse 
elasticity of the electron gas may turn out to be ap
preciable (see[ 6 l ). 

The authors are grateful to A. A. Vedenov and A. N. 
Starostin for a discussion of the results. 
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