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The influence of plasma inhomogeneities on the solution of the stationary boundary problem concerning 
the interaction between an electron beam and a plasma is investigated. It is shown that the inhomo­
geneity leads to two important effects. Firstly, if the plasma contains regions in which the density 
increases in the direction of motion of the beam, then quasilinear relaxation causes the appearance 
of accelerated electrons. Secondly, the quasilinear relaxation in an inhomogeneous plasma proceeds 
at a much slower rate than in a homogeneous one (in the absence of "trapped" oscillations). 

INTRODUCTION 

FOR a theoretical description of experiments on the 
stationary injection of weak electron beams into a 
plasma it is necessary to solve a boundary quasilinear 
problem. In the homogeneous plasma approximation 
such a problem was investigated in detail in the papers 
by Fat'nberg and Shapiro[ll and Tsytovich[2J. On the 
other hand, in[3J it was established that in a quasilinear 
problem with initial conditions if even very insignificant 
inhomogeneities of the density are taken into account 
this leads to a cardinal change in the nature of the quasi­
linear relaxation. Therefore, the problem arises of the 
influence of plasma inhomogeneities on the solution of 
the boundary problem. In the present communication we 
show that under definite conditions this influence turns 
out to be very significant. 

For the sake of simplicity we assume that the param­
eters of the plasma and of the beam depend only on the 
one coordinate x directed along a strong constant mag­
netic field, and that the characteristic wavelength of the 
Langmuir oscillations induced by the beam is small 
compared to the scale of the plasma inhomogeneities 
and to the size of the region of quasilinear relaxation. 

Under these conditions it is possible, firstly, to re­
strict oneself to the one-dimensional variant of the 
quasilinear theory and, secondly, to utilize the quasi­
classical approximation for the Langmuir oscillations. 

With respect to the properties of the beam we as­
sume that its density nb is small compared to the plasma 
density n, while its initial velocity vo considerably ex­
ceeds the thermal velocity of the plasma electrons vT. 
We neglect the initial spread of the velocities in the 
beam. 

Before we proceed to solve the problem formulated 
above we obtain some simple estimates which refer to 
the relaxation of an electron beam in a homogeneous 
plasma. In particular, we find the spread of the veloci­
ties in the beam when it leaves the plasma as a function 
of the density of the beam. The corresponding results 
will contain nothing that is in principle new compared 
with[1J, but the qualitative derivation utilized by us will 
enable us to understand in a simpler manner the special 
features of relaxation in an inhomogeneous plasma. 

It is clear that for sufficiently small values of the 
density of the beam the spread in the velocities liv when 
the beam leaves the plasma is small in comparison with 
vo, so that the characteristic increment in the beam in­
stability y can be estimated by means of the formula 

nb ( Vo ) 2 
v~-n !W oop, 

where wp = (41Tne2/m) 112 is the electronic plasma fre­
quency. 

The oscillations to which the beam gives rise propa­
gate into the interior of the plasma with the group veloc­
ity v g ~ vT/vo. If we denote by L the length of the reg­
ion occupied by the plasma, then the time r during which 
the oscillations are amplified by the beam11 can be esti­
mated as L/v . During the time r the energy of the os­
cillations mu~ grow from the initial (thermal) level to 
a level which significantly exceeds the initial one (other­
wise the oscillations could not react back on the beam). 
This condition can be written in the following manner: 

(1) 

where A is the logarithm of the ratio of the final energy 
density of the oscillations to the initial one. Since this 
ratio is very large, then A depends weakly on the final 
level of oscillations, and usually one can assume that 
A~ 10-20. 

The spread of the velocities when the beam leaves the 
plasma is established just at such a level at which rela­
tion (1) is satisfied: 

whence we have 

yt ~ nb oopL vo2 vo2 ~ A, 
n vo v:r2 Av2 

(2) 

Here we have denoted by I and T respectively the en­
ergy of the electrons in the beam and the temperature 

1>We make the natural assumption that at the boundary of the 
plasma the oscillations are absorbed and, therefore, we do not take into 
account the possibility of repeated traversal by the oscillation of the 
plasma interval. In the case when the boundaries of the plasma reflect 
oscillations perfectly, and the plasma density is homogeneous the prob­
lem concerning the relaxation was solved in [4 ). 
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of the electronics of the plasma. Of course the estimate 
so obtained is valid only under the condition t:.v/vo « 1. 

The relaxation process in the case under considera­
tion has one characteristic property: it does not lead to 
the appearance of electrons with velocities v > vo. 
Therefore, the estimate (2) obtained above for the spread 
of the velocities in the beam must be interpreted in the 
sense that the distribution function for the electron beam 
as it leaves the plasma differs from zero over a range 
of velocities Vo- t:.v < v < Vo· 

From formula (2) it may be seen that as the density 
of the beam nb is increased the spread of the velocities 
t:.v increases and for 

(3} 

becomes of order of Vo, i.e., the beam has time over the 
length L to relax to a plateau state: 

I= { 2nb/Vo, v < Vo 

0, v > Vo 
(4) 

where f is the distribution function for the electrons of 
the beam. But if the concentration of the beam becomes 
greater than the critical value nb0 which is determined 
by relation (3}, then the beam has time to go over into 
the plateau state (4} over a certain distance l < L, after 
which the relaxation comes to an end2 >. In order to find 
l one should in formula (2) replace L by l, and set t:.v/vo 
equal to unity. As a result of this we find that 

(5} 

We now proceed to investigate the relaxation of the 
beam in an inhomogeneous plasma. We consider three 
density profiles typical for experiments (cf., Fig. 1, a-c) 
where for concreteness we assume that the character­
istic scale of the inhomogeneity is in order of magnitude 
equal to L-the size of the plasma interval. 

In the case of a homogeneous plasma the stationary 
nature of the solution of the boundary problem is 
guaranteed by the fact that the generation of oscilla­
tions in the case of beam instability is compensated by 
their being carried in the direction of the beam[ 11 • A 
stationary solution is also possible in the cases shown 
in Fig. 1 a-c since in the case of such density profiles 
the oscillations are not "trapped" within the volume of 
the plasma. But if the function n(x) has sufficiently deep 
minima (Fig. 1 d), then the oscillations are "trapped" 
in the corresponding potential wells and the instability 
is not compensated by the displacement of the oscilla­
tions3>. In such a case the boundary problem has no 
stationary quasilinear solution. 

If the characteristic dimension and the characteristic 
amplitude of the small-scale inhomogeneities in the 
density are respectively equal to a and t:.n, then the con­
dition for the absence of minima superimposed on a " 
background of smoothly varying functions n(x} shown in 
Fig. 1 a-c will be given by t:.n/n « a/L. In what follows 
we shall consider that this condition is satisfied. 

2>Naturally, for nb > nb0 the quantity t:J.v can no longer be deter­
mined by means of formula (2). 

3>In particular this refers to those potential wells which are situated 
close to the point x = 0, where the beam has not yet been spread out in 
energy and the increment is maximal. 

FIG. I. Density profiles considered in 
this paper. 
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1. THE PLASMA DENSITY DECREASES MONOTONIC­
ALLY IN THE DIRECTION OF INJECTION OF THE 
BEAM 

In this case as the oscillations generated by the beam 
are propagated in the direction x > 0 they enter a reg­
ion of lower values of the density, and as a result of this 
their phase velocity diminishes. We find the change in 
the phase velocity of the oscillations Vph over a distance 
t:.x. In order to do this we make use of the dispersion 
relation for the Langmuir oscillations which has the 
form 

co= illp(x) [1 + 812(vT! Vph) 2]. 

Since the frequency of a wave propagating in a medium 
with stationary parameters does not vary we can write 

( 3 V~ ) drop VT1 !:J.Vph 
Aoo= 1+--- --t:J.x-Soop----=0. 

2 Vph2 dx Vph2 Vp~ 

From this we can first of all see that t:J.vph < 0 for 

dwp/dx < 0. Further, since Vph- Vo » VT, ldwp/dxl 
- wp/L, then we have 

lix vo2 
l!ivphl - Vo--. {6) 

L VT2 

Let the velocity spread in the beam be t:.v. A definite 
Langmuir oscillation will be excited by a beam with such 
a spread if the phase velocity of the oscillation lies in 
the range Vo- t:.v < Vph < vo. As this oscillation propa­
gates into the region of lower values of the density its 
phase velocity will finally leave the velocity range indi­
cated above, and the oscillation will stop growing. This 
will occur over a distance 

l1x-L~ v~ 
Vo Vo2 

(7} 

and during a time 
lix L t:J.v -r-----
Vg Vo Vo 

(in order to obtain the estimate (7) one should substitute 
into formula (6) t:.v in place of t:.vph· From this it can 
be seen that the product y T which determines the effec­
tiveness of the growth of oscillations is equal to 

nb Vo oopL 

-n~v;--

and decreases as t:. v is increased. It is clear that re­
laxation ceases for such values of t:.v when this product 
becomes of order A i.e., when 

(8) 
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A rough estimate of the size of the domain of relaxation 
l can be obtained by substituting this value of .:l v into 
formula (7): 

In this case, just as in a homogeneous plasma, relaxa­
tion does not lead to the appearance of electrons with 
velocities v > vo since as the oscillations propagate in 
the direction of lower values of the density their phase 
velocity can only decrease. However, there also exists 
an essentially new circumstance: in an inhomogeneous 
plasma relaxation proceeds much less effectively than 
in a homogeneous plasma. Indeed, even for nb ~ nb 

0 

when the relaxation in a homogeneous plasma already 
leads to the formation of a plateau, in an inhomogeneous 
plasma only a small velocity spread appears: .:lv/v0 

"' T/E « 1. A plateau is formed when nb exceeds the 
new critical value: 

As nb increases further the form of the distribution 
function at the point where the beam leaves the plasma 
is not altered. 

We note that for nb » nb 1 inhomogeneity exerts no 
influence on the relaxation process since in this case 
the length of the region of relaxation which is evaluated 
according to the homogeneous plasma modell ,:.,~ Lnbjnb 
« LT/ & is so small that the phase velocity of the os­
cillations does not have time to be altered significantly 
over this length (cf. (6)). 

From the estimates for l given above it follows that 
both for nb < nb1 and for nb > nb 1 the dimension of the 
relaxation region (i.e., the dimension over which the 
distribution function attains its final state) is small 
compared to L. Oscillations generated in this region 
propagate freely through the plasma until they are 
damped either due to collisions or due to the Cerenkov 
absorption by plasma electrons. 

2. THE PLASMA DENSITY INCREASES MONOTONIC­
ALLY IN THE DIRECTION OF THE INJECTION OF 
THE BEAM 

In this case the phase velocity of the Langmuir os­
cillations generated by the beam increases as they 
propagate in the direction x > 0. The change in the 
phase velocity over a distance .:lx can be determined as 
before by formula (6). In accordance with this the esti­
mate (8) for the final spread of the velocities in the 
beam remains valid (for nb « nb)· Only the meaning of 
the quantity .:lv is altered: now when the beam leaves 
the plasma there appear in it not only decelerated 
(v < vo), but also accelerated (v > v0) electrons, and 
approximately in equal numbers. In other words, the 
distribution function for the beam at the point x = L 
differs from zero in the velocity range v 0 - .:lv/2 < v 
< Vo + .:lv/2. 

The mechanism for the production of accelerated 
electrons manifests itself particularly clearly for 
nb » nb1 , and we consider this case in greater detail. 
As has been noted in the preceding section, under the 
condition~ » ~~the inhomogeneity of the plasma has 

no influence on the establishment of a plateau in the dis­
tribution function for the electrons of the beam since 
relaxation towards the plateau state (4) occurs over a 
very small distance l "'Lnb/nb « LT/ iii'. In a homo­
geneous plasma or in a plasma with a density which de­
creases monotonically in the direction of the injection 
of the beam relaxation ceases at this point. But in the 
case of increasing density the oscillations generated by 
the beam in the region x < l and having initially phase 
velocities Vph < Vo in propagating into the interior of the 
plasma increase their phase velocity and lead to an ac­
celeration of the electrons. 

The phase velocity of the Langmuir oscillations 
changes by an amount of the order of magnitude of itself 
over a distances ~ LvT/v~ (cf., (6)). It is just over this 
distance that the effect of acceleration begins to play 
a significant role. On the other hand, for nb » fib 1 we 

have the inequality s >> l. Therefore, the whole relaxa­
tion process can be divided into two stages: at first, 
over a distance l, the establishment of a plateau occurs 
in the velocity range 0 < v < vo, and the distribution 
function acquires the form (4); then over a distance s, 
the phase velocity of the oscillations increases and ac­
celeration of electrons takes place. 

In order to investigate the relaxation process quan­
titatively we utilize the following system of quasilinear 
equations: 

v!j_ = _!__D!J_ (9) 
{)x {)v {)v ' 

D=4n2e2W/m2v, L*= ldlnwp/dxi~'~L, 

(!)Po = Wp (0), no= n (0), 

where f = f(v, x) is the distribution function for the 
electrons of the beam, normalized to the total number 
of particles in the beam, while W = W(v, x) is the spec­
tral density of the energy of the oscillations 4>. In writ­
ing Eq. (9) we have utilized the fact that the size of the 
domain of relaxation is small compared to the scale of 
the inhomogeneity. 

As has been pointed out above, the first stage of the 
relaxation can be described in the approximation of a 
homogeneous plasma. In other words, in considering 
this stage one can omit the first term on the left hand 
side of (10). The resultant system of equations has a 
quasilinear integral: 

Wp 0 {) W 
vf-3-vre"--= nb6(v- vo). (11) 

m {)v v4 

We have taken into account the fact that at the left-hand 
boundary of the plasma the distribution function for the 
electrons has the form f = nbo (v- v0) and that the noise 
level at the end of the first stage of relaxation is sig­
nificantly higher than the thermal noise level. Substitut­
ing into Eq. (11) the function (4) for the function f(v) we 
obtain the spectrum of oscillations at the end of the first 
phase of relaxation: 

4>The quantity W(v,x) wpv-2dvdx represents the energy of oscilla­
tions contained within the range of phase velocities (v, v + dv) in a layer 
of plasma of thickness dx. 
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{ 
inbm v6 

· ---- v<vo 3 2. 
W _ W ( ) _ vo Colp, Vx 
-tV- 0, v>vo' (12) 

The further evolution of the functions f and W is des­
cribed by the system (9) and (10) with the boundary con­
ditions 

for v< vo 

for v>vo' 
(13) 

(14) 

We specify the boundary conditions at the point x = 0, 
and not at the point x ~ l, since l is much smaller than 
s-the characteristic scale for the second stage of the 
relaxation. 

We make estimates of the left hand side and the right 
hand side of (9): 

iJI I iJ iJI I nb val 
V 8.¥- Vo-11 , -D--D-- Colp~-f. 

• fJv fJv v02 nv~ 

We have taken into account Eq. (12) in accordance with 
which W ~ mnbv~/w VT· From the estimates given 
above it seems to foRow that for nb » nb1 the left hand 
side of (9) is much smaller than the right hand side. But 
in actual fact this means that the distribution function is 
near to the plateau state (i.e., jafjavl « f/v0) over the 
whole range of velocities where the diffusion coefficient 
D(v, x) differs from zero (in other words, in the domain 
0 < v < u(x), where by u(x) we have denoted the maxi­
mum phase velocity of oscillations at the point x): 

l(v,x) ={2nbvo/u2 (x), v < u(x) 
0 , v > u(x) 

(15) 

The normalization of the distribution function is ob­
tained from the condition of conservation of the flux of 
electrons. 

Since at the point x = 0 the maximum phase velocity 
of the oscillations is equal to v0 , then we have for u(x) 

( 2 x v0• )-'I• 
u(x)=!lo 1-3 L• Vx2 • (16) 

We shall see below that this formula breaks down for 

3 .v2x( 1) x>xo=-L- 1--=- , 
2 vo2 l'3 

(16') 

so that the problem of the divergence of u(x) at the point 
x = 3L*~T/2~ does not arise. 

Since the coefficient quasilinear diffusion is great 
albeit not infinite, the distribution function in the do­
main 0 < v < u(x) will have a nonvanishing derivative 
with respect to v, i.e., it will deviate somewhat from the 
plateau. The value of Bf/av can be obtained by substitut­
ing (15) into the left hand side of (9). As a result we ob­
tain that 

D!!_= 4n2e2 W!L_= _ 2nbvov2 ~. ( 17) 
iJv m•v fJv u3 d:& 

We see that Bf/av < 0, i.e., the oscillations are damped 
as x increases. Determining from (17) the quantity 
WBf/av and substituting it into the right hand side of 
(10), we obtain the equation for the spectra function 
W(v, x): 

~ fJW + 3v2x fJW = _ 2 mnbvo• ~~. v < u(x). (18) 
L fJv v fJx (J)p, u3 fJx 

In order to solve (17) it is convenient to go over from 
the variable v to the variable 

( 2 X v2 )-'I• 
V=v 1+'3£• v~ , 

which represents the phase velocity of a definite 
Langmuir oscillation at the point x = 0. In this case (18) 
assumes the form 

aw = ~ve(V x)~-1 -. 
fJx 3Colp,v~ ' d:& u2 (x) 

(19) 

where 

( 2 :c yz )-1/2 
v(V,:c)= V 1-3 L' v~ , 

while W is now regarded as a function of V and x. The 
solution of (19) which satisfies the boundary condition 
(14) can be obtained in an elementary matter: 

W(V,:c)= _mnbVO [ 1+~f d:&'vfl(V,x')~-1-] 
3vx2Colp,Vo VO 0 dx' u2 (x') 

= mnbVO [ 1 + vo• S d:!fl 1-~ x' ..!::)-a ~-1-J. (20) 
3vx'Colp,Vo 0 \ 3 £• Vx2 dx' u2 (x') 

Under the condition (16) it follows from (20) that 

W(V,x)= mnbV6 [ 1 +.!!._- vo2 ( 1 -~..:__!::)-2]. 
3vx2Colp,Vo 2¥2 2¥2 3 L• vx2 

It can be easily seen that the energy of those Langmuir 
oscillations which at the point x = 0 had the phase veloc­
ity V = Vo, 

mnbvo5 [ 1 ( 2 x Vo2 )]-2 
W(V,x)iv=v,=--- f-- 1----.- , 

2VxColp, 3 3 L vx" 

decreases, and at x = x 0 (cf., (16')) vanishes. With in­
creasing penetration into the interior of the plasma 
there is a progressive damping to zero of oscillations 
with smaller and smaller values of the initial phase 
velocity V, and at each point x > Xo only those oscilla­
tions are present the initial phase velocity of which 
satisfies the inequality V < V(x), where the function V(x) 
is determined by the equation 

1 + vo• s" d:&'( 1-.3_~ V2(x) )-3 ~-1- = 0. 
0 3 L' Vx2 d:&' u•(x') 

(21) 

(This equation is obtained from (20)). 
The position of the boundary of the plateau u = u(x) in 

the region x > xo is expressed in terms of V(x): 

( 2 x V2(x) )-'I• 
u(x)= V(x). 1-----

3L'vx2 • 
(22) 

Formula (16) is now, naturally, inapplicable: it could be 
used only as long as the energy of the oscillations with 
the initial phase velocity V = v0 was different from zero. 

From (21) and (22) we can obtain the equation for the 
function u(x) which in terms of the dimensionless varia­
bles y = ~/u2 (x), ~ = 2xvV3L*vT has the form 

• !IS' dy(6') 
i+£;+y(6)P ~ [s-s'+Y(s)P d6' =0. (23) 

We are unable to obtain an exact solution of this integral 
equation, but the asymptotic value of u(x) for x - co 

!lao= limu(x), ........ 
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can be found very simply, even without making use of 
(23). In order to do this we must utilize the fact that the 
sum of the energy fluxes for the particles and the os­
cillations does not depend upon x and is equal to 
mllbvV2. The end of the relaxation process corresponds 
to a complete damping of the oscillations and the vanish­
ing of their energy flux. On the other hand, the energy 
flux for the particles is given by 

u(x) 

~ S v3f(v,x)dv= mnbv~2(x) 
0 

(cf., (15)). Therefore we can write that 

i.e., Uoo = vo¥2. Naturally, this result can also be ob­
tained from (23) but by means of a lengthier argument. 

It should be noted here that in actual fact the de­
crease in the energy of the oscillations finally leads to 
the fact that the left hand side and the right hand side of 
(9), formerly estimated as vof/s and Df/v~ become of 
the same order of magnitude and the ''plateau approxi­
mation'' breaks down. This occurs for 

The energy flux density corresponding to this value of 
W which in order of magnitude is equal to 
mnbv~vo/nbLwp is small compared to the energy flux 
density for the particles. Thus, the "plateau approxi­
mation'' breaks down when the energy of oscillations 
becomes so small that the oscillations in practice cease 
to exert an influence on the distribution function for the 
electrons. Consequently, one can use the "plateau ap­
proximation" to the very end of the second stage of the 
relaxation. 

Summarizing the above one can assert that for 
llt » nb1 relaxation proceeds in two stages: at first the 
beam excites oscillations, transfers its energy to them 
and at the same time relaxes towards the state (4); then 
the oscillations are again absorbed by the beam and it 
arrives at the state 

t={ nb/vo, v < vol'~. 
· 0 , v > v0l'2 

3. THE DENSITY HAS A MAXIMUM WITHIN THE 
PLASMA INTERVAL 

(24) 

In this case for low densities of the beam relaxation 
occurs near the position of the maximum since here the 
plasma density varies most slowly. In exactly the same 
way as it was done above one can show that for suffi­
ciently small values of nb the spread of the velocities is 
determined by the formula 

(25) 

As should have been expected, the spread of the veloci­
ties increases with increasing nb more rapidly than in a 
plasma with a monotonically varying density, but slower 
than in a plasma with a homogeneous density. Since to 
the left of the maximum the plasma density is an 
increasing function of x relaxation leads to the appear­
ance both of decelerated as well as accelerated elec-

trons, i.e., the distribution function for the electron 
beam when it leaves the plasma turns out to be different 
from zero in the velocity interval vo- ~v/2 ~ v ~ Vo 
+ ~v/2. 

Relaxation occurs within a region of width 

(26) 

near the point where the plasma density has a maximum. 
Formulas (25) and (26) are valid for such values of 

nb when the spread ~v determined by means of the first 
of these two formulas is small compared to vo, i.e., for 

As the density increases further the velocity spread in­
creases, and the domain of relaxation gradually ''slips'' 
towards the left hand boundary of the plasma. Finally, 
when nb becomes of the order of nb1 relaxation is com­
pleted in a region of width of. order LT/E near the 
origin. The form of the distribution function in this case 
is determined by the relation (24). 

4. DISCUSSION OF RESULTS 

The estimates obtained in the present paper are 
qualitatively illustrated in Fig. 2. From the figure it 
can be seen that the inhomogeneity of the plasma leads 
to two significant effects. Firstly, when there exist in 
the plasma regions with a positive derivative of the den­
sity relaxation gives rise to the appearance of acceler­
ated electrons. Secondly, the quasilinear relaxation in 
an inhomogeneous plasma proceeds at a considerably 
slower rate than in a homogeneous plasma (fib 1 » fib2 

» fib 0). The last assertion refers, however, only to the 
case when "trapped" oscillations are absent. 

The role played by the scattering of the Langmuir 
oscillations by the electrons of the plasma is not a sig­
nificant one in the problem under consideration. Indeed, 
the oscillations are scattered only by electrons with 
very low velocities: lvl :::s v;,/vo ~ vT(T/E) 112• In the 
case when the spectrum of oscillations is one-dimen­
sional the effect of scattering leads to the establishment 
of a plateau in the distribution function for the electrons 
of the plasma (in the domain of the velocities lv I 
:S vT(T/ .W) 112). This r%quires a very small energy (in a 
unit volume nT(T/ .§') 5 2). Therefore, after a certain time 
after the beam is switched on a plateau is established in 
the distribution function of the electrons of the plasma, 
and after this scattering stops completely (if we do not 
take pair collisions into account). 

FIG. 2. Dependence of the veloc­
ity spread in the beam when it leaves 
the plasma on the beam density: I -
the density decreases monotonically, 
2 - the density increases monotoni­
cally, 3 - the density has a maximum 
in the central portion of the plasma 
interval. The dotted line represents 
the curve corresponding to a homo­
geneous plasma. 
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The polarization electric field E ~ T/eL which exists 
in an inhomogeneous plasma is also not significant, since 
a change in the phase velocity of the oscillations due to 
the inhomogeneity is much greater than the change of the 
velocity of the electrons of the beam in this field. 
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