
SOVIET PHYSICS JETP VOLUME 30, NUMBER 4 APRIL, 1970 

TURBULENT RELAXATION OFA PLASMA FAR FROM THE STABILITY THRESHOLD 

A.A.GALEEV 

Nuclear Physics Institute, Siberian Division, USSR Academy of Sciences 

Submitted April 24, 1969 

Zh. Eksp. Teor. Fiz. 1361-1375 (October, 1969) 

We consider an anisotropic plasma far from the stability threshold, when the appearance of collective 
oscillations affects the motion of the plasma particles. It is shown that the motion of the particles in 
turbulent electric fields can be represented as the result of nonlinear phase shifts in the "wave + par
ticle" system. This nonlinear effect does not prevent instability, but merely decreases its increment. 
The instability can therefore be regarded as weak in the nonlinear stage of its development and the re
laxation of the anisotropic ion distribution is therefore studied on the basis of the quasilinear theory 
developed for our case. It is shown that the instability disappears before relaxation to a completely 
stable state occurs. This is the reason why the instability consists of consecutive oscillation spikes, 
each of which contribute to relaxation of the plasma. 

THIS paper is devoted to an investigation of turbulent 
plasma in which the oscillation level is already high 
enough to appreciably perturb the particle motion, but 
not high enough to cause quasilinear relaxation of the 
plasma distribution to the stable state. It then turns 
out that the effect of particle motion in stochastic elec
tric and magnetic fields can be described in terms of 
the stochastic variation of the phase of the interaction 
of the given oscillations with the plasma particles. 

The stochastic collapse of the oscillation phase, as 
is well known, does not stop the course of the energy
exchange process, and only slows it down. Therefore 
the instability of the plasma, which is the result of such 
an interaction, only slows down its rate of development, 
but does not stop completely. 

The equations for the oscillation amplitudes and for 
the particle distribution function, after averaging over 
the stochastic phase wandering, contain as a time-vary
ing parameter certain integral characteristics of the 
turbulence spectrum, which serve as a measure of the 
time of phase correlation between the resonant particle 
and the oscillation. Principal attention will be paid to 
the investigation of the properties of the equations ob
tained in this manner. 

1. DERIVATION OF FUNDAMENTAL EQUATIONS 

Before we proceed to a derivation of the equations, 
it is useful to make a few remarks concerning the re
lation between the nonlinear phase collapse considered 
by us and the quasilinear relaxation of the plasma dis
tribution. In a plasma without a magnetic field, both 
these phenomena become manifest simultaneously in a 
turbulent electric field U~ at particle velocities ex
ceeding the phase velocity of the wave (the latter is 
assumed to be large or comparable with the thermal 
velocity of the particle v): 

(1) 

where I<Pq I is the amplitude of the oscillations with 
wave vector q and frequency wq, while e and m are the 
charge and mass of the particle. 
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Moreover, at such high amplitudes, the rate of ex
change of energy between the different oscillation modes 
turns out to be comparable with the rate of energy supply 
to each mode, owing to the instability. All this is the 
reason why the phase collapse is not the main effect 
under the given conditions, and therefore it is impos
sible to simplify the equations for the oscillation am
plitudes. 

The foregoing considerations remain valid also for 
turbulent motion of the particles along the magnetic 
field. However, the effects of turbulent motion of par
ticles across a strong magnetic field can be appreciable 
even at small oscillation amplitudes, when the reaction 
of the oscillations on the particle distributions can be 
neglected. 

Indeed, let us represent the turbulent electric field 
in the form 1 > 

E=-VIl>, II>=~ lll>k"lexp{-iro,.t+ikr+i'¢""}. (2) 
k,n 

It is then easy to calculate the change of the trans
verse energy of the particles, averaged over the time 
of the Larmor rotation. It will be small compared with 
the total kinetic energy of the Larmor rotation of the 
particles under the condition 

(3) 

where we= eH0 /mc is the Larmor frequency, v 1 is the 
velocity of the particle across the field H0, Jn is a 
Bessel function of order n, and the oscillation frequen
cies are assumed to be multiples of the Larmor fre
quency of the particles (wn Rl nwc). 

On the other hand, the phenomenon of nonlinear phase 
collapse takes place when the phase shift of the resonant 
particle as it moves in the turbulent electric field ex
ceeds the linear change of the phase of the wave: 

k•U.1.~•= ~c•[k.J..q.J2 IIllqPI•J,.•(q.l.v.l. )/no•>(ro,.-nroc)• (4)* 
q,p Ole I 

I) As usual, we assume in (3) that the normalization volume is equal 
to unity. 

*[kl~] = k1 X~· 
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The inequalities (3) and (4) can be satisfied simulta
neously only if the maximum of the spectral density of 
the electric field fluctuations occurs in the region of 
wavelengths shorter than the Larmor radius of the par
ticles interacting with the oscillations. In other words, 
the wavelength of the most developed oscillations with 
frequency wn ~ nwc should obey the condition 

n2 /'J..,•«:.1. (5) 

Here .X= kir~ and rc = v 1 /wc is the Larmor radius. 
Bearing in mind all the foregoing, we consider as a 

concrete example the nonlinear stage of development 
of a short-wave ion-cyclotron turbulence and the re
laxation of the ion distribution in an anisotropic plasma 
(Tli » Tui) placed in a strong magnetic field. The ef
fects of nonlinearity of motion of the electrons, and also 
the quasilinear relaxation of the distribution of particles 
of both sorts will be less important than the nonlinear 
phase collapse of the ions when the following inequali
ties are satisfied: 

(6) 

where /'k is the increment of the ion-cyclotron instabil
ity, and U1jand U11J are the mean-square pulsation ve
locities of the part1cles of type j across and along the 
magnetic field, respectively. 

The effect of interest to us, the nonlinear phase col
lapse, is due to the motion of particles in a turbulent 
electric field. Under conditions (6), it suffices for us 
to consider the motion of the ions across the magnetic 
field. Averaging the equations of motion over the Lar
mor rotation of the ions, we reduce this equation to the 
"generalized" drift equation: 

[v.L(t)h] 
r.L(t)=r0 ----+6r.L(t), (7) 

Wei 

dllr.L ( q.Lv .L ) --=- ~ic(qhJI<l>qPilp -- H 0-l 
dt q, p ffici 

Xexp{ i[~.~ + ip(;- 6q )- i(rop- proc~)t+ iq6r.L + hjlqP} (8) 

Here h is a unit vector along the constant magnetic field 
H0, 9q is the initial phase of rotation of the ions around 
the force line, reckoned from the direction of the wave
vector component q transverse to the magnetic field. 
The second term in (7) is responsible for the Larmor 
rotation of the ions, and the third is due to the drift in 
the turbulent electric field. 

In solving Eq. (8), we make the following assumptions: 
a) The phases of the oscillations are random, i.e., 

(exp[i'ljlkn]) = 0, (exp[i(IJlkn + 1Jlk•n')]) =Ilk', -klln•,-n• (9} 

The angle brackets denote averaging over the sta
tistical ensemble. 

b) The amplitude of the deviation of the ions from 
the trajectory of free motion in the field of an individ
ual mode of oscillations is much smaller than the wave
length 

([klirq (t) )2) «:, 1. (10) 

c) To the contrary, the mean-square deviation of the 
ions in the turbulent electric field is comparable or 
larger than the wavelength: 

~ ([k6rq(t)j2) >1. (11) 
q 

Under these assumptions, it is reasonable to expect 
the motion of the ions to be described by the random 
function with independent increments or l(t), having the 
following properties: 

(llr..,(t)> = 0, ([llro:(t +T) -llro:(t) ]6r~(t)) = 0, 

(Or..,(t)Or~(t)) = llo:~t. (12) 

These properties can be proved by the induction 
method. In other words, we assume that they are satis
fied, and then calculate the change of the ion trajectory 
under the influence of a small group of "trial" waves 
and verify that the trajectory, with allowance for these 
changes, has the properties (12) as before. Calculations 
performed in this manner lead to the following formula 
for the coefficient D (see the appendix): 

D = { ~ c2 l<l>qP 12Jp2( q.LV.L) n.-z r. (13) 
Q,p Cl>d 

Knowledge of the statistical properties of the particle 
trajectory in a turbulent electric field makes it possible 
to obtain a simple equation for the oscillations of a tur
bulent plasma. 

In the approximation that is a natural generalization 
of the linear theory of small oscillations in a quiet plas
ma, it is possible to write down the solution of the ki
netic equation for the plasma ions in the form of an in
tegral over the trajectories of the ions with properties 
(12) 

The second term in the square brackets takes into 
account here the change of the distribution of the par
ticles owing to the presence of ''background" oscilla
tions of finite amplitude. Since the exact trajectory of 
the ions is unknown to us, we average this expression 
over the phases of the ''background" oscillations and 
by the same token express it in terms of the average 
characteristics of the trajectory. In the first term of 
(14), the averaging over the phases of the oscillations 
reduces to a calculation of the mean value of the mixed 
functional of the particle trajectory: 

(<l>k(r(t), t)> ~ (exp[ikllr.L(t)]> = exp{-k.L2Dt'}. (15) 

When averaging the second term in (14), it must be 
borne in mind that the correction to the distribution 
function of the particles turns out to be proportional 
to the amplitude of the oscillations and can be written 
in the form (henceforth, to simplify the notation, we 
omit the index n or p in the expressions for fk and Dk, 
assuming that they are encountered and summed only 
in pairs (k, n) or (q, p)): 

In the case of short-wave oscillations considered by 
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us, the gradients of the particle distribution in velocity 
space are determined by the phase factor 
exp { i [ k x v ] • h/ wed, so that we can carry out the dif
ferentiation over the velocities and rewrite the second 
term in expression (14) in the following form: 

t 

- ~ fq(v) S dt'!llk(r,t')_;_[ikllrq(t')]. 
dt 

q -oo 

Since the displacements of the ions in the fields of the 
individual oscillation modes are statistically indepen
dent, the averaging over the phases of the "background" 
oscillations can be easily carried out here, and as a re
sult we obtain 

2 ~ f q (v) ([kq] h) 2q_~_ - 2Dq(!llk (r, t') ), (17) 
q 

where 
Dq ~ c2Ho-2I!IJqPI2Jp2( q_~_v.J.)/ D. 

Wet 

To solve (14) with respect to the distribution function 
of the particles in the oscillation field, we divide it by 
the quantity 

ln( k~:: )exp{i(~~~ +in(~ -ek)} I!IJ~<nl 
Xexp{- i(wn- nwe;)t + ikr + i,pkn}, 

and then average over the space of the wave numbers 
with weight D.t: As a result, we obtain an equation for 
the quantity I:IkDt: 

e s' '[ 8/ot 8/o; ] ~f~t(v)Dk=i-~Dk dt ku-+nwe;--
1< m; k -oo ovu VJ.OVJ. 

Xexp{- i [wn- nwe1- kuvu + ik_~_2D](t'- t)} 

t 

+ [ ~ f~~:D~~:] ~ S dt'k.J...2Dk · (18) 
k k -oo 

Combining (14), (17), and (18) we arrive at the final 
result 

• 6 +oo s' 1 { [ ofoi 0/0i ] /~~:' =- ~ dt i k:i-+nwe~--
m1n=-oo -oo OVU VJ.OV.J... 

0S [ 8/o; 8/ot ] - ~ Dq dt qu-8 +Pwe~-8- 8(p,q,t) 
q -oo VU V_j_ VJ. 

0 ~ 

x',( ~ Dq ~ dt(wp- pwe~- qi!DU).:f(p, q,t)) 
q ~ 

x[ !_ + i( Wn- nwei- ku~·ul]} I QJkn lln( k_j_VJ.) 
8t · We, 

X exp {in(; - ek) + i~~~~h + iljlqP }.:f(n, k,t- t'), 

8(p, q, t) = exp {-.. [i(wv- pwc~- quvu)- q2D]t}. (19) 

This equation was first obtained by the author by in
tegrating the kinetic equation along the exact trajecto
ries of the particles in a random oscillation field, fol
lowed by averaging of the results over the phases of the 
oscillation . 21 [lJ The first published paper in which the 

2>In [ 1] we considered the drift-cyclotron instability of a plasma in 
the presence of a weak long-wave turbulence. Because the square of the 
deviation of the ions in a weak magnetic field is proportional to the 
square of the time, the integration with respect to time along the aver
age trajectory turned out in [ 1 ] to be equivalent of a thermal scatter of 
the ion velocities. 

wandering of the particles in turbulent fields was taken 
into account is that of Dupree, [2J and concerns turbu
lence of a plasma without a magnetic field. To be sure, 
his equation is incorrect, since he does not take into 
account the change of the particle distribution in the 
presence of background oscillations (see the second 
term in Eq. (14)). Later, Orszag and Kraichnan[3J again 
reviewed Dupree's problem and presented a correct de
scription of the turbulence for certain statistical mod
els, whose energy, momentum, and other characteristic 
integrals coincided exactly with their values for the 
real plasma. The latter circumstance has made it pos
sible to hope that turbulence in such a model will have 
much in common with the true plasma turbulence. 

Orszag and Kraichnan, comparing their results with 
those of Dupree, noted that Dupree's equation does not 
satisfy the initial conditions, and therefore proposed to 
add to it a term describing the evolution of the distor
tion of the particle distribution in the turbulent field 
existing at the initial instant of time. The obtained 
equation (7 .5) of [sJ still does not take into account the 
correlation, reflected in our Eq. (14), between this ini
tial distortion of the distribution and the turbulent field, 
and is therefore likewise inaccurate. 

The presence of a second term in (19) is of funda
mental importance for a correct description of the evo
lution of the instability. We shall show later that in our 
model the nonlinear collapse of the phases of the inter
acting waves leads only to a decrease of the instability 
increment with decreasing phase-correlation time, and 
the total stabilization of the instability occurs as a re
sult of the quasilinear relaxation of the plasma distri
bution to the stable state. At the same time, the appear
ance of the phase-collapse effect in the Dupree model 
leads immediately to stabilization of the instability. 

There are objections also against the applicability 
of the developed theory for a description of turbulence 
in a plasma without a magnetic field. The point is that 
the trajectory of the ions in turbulent fields is described 
by a random function with independent increments only 
in the limit of large oscillation amplitudes (see formula 
(A.2) of the Appendix). The latter does not take place in 
a plasma without a magnetic field, where the quasilinear 
relaxation of the plasma distribution stops the growth of 
the oscillation amplitude at a low level of the order of 
kU ~ = Wk. For particles whose memory of the past path 
does not vanish, equations of the type (19) are already 
approximate and cannot describe the evolution of the 
turbulence correctly. Thus, in particular, they do not 
take into account the processes of resonant interactions 
in the system of plasma waves, which in the presence 
of a strong magnetic field turn out to be small, [<~J and 
can here already make a contribution comparable with 
the effect of nonlinear phase collapse.31 

2. ION-CYCLOTRON INSTABILITY OF AN ANISO
TROPIC PLASMA 

Before we proceed to an investigation of the non
linear stage of development of the instability in an 

3> Such processes in themselves conserve the total momentum and 
the oscillation energy, and consequently, do not change the energy and 
momentum balance equation in the "wave plus particle" system investi
gated in [6 ]. 
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anisotropic plasma, we recall the fundamental results 
of the linear theory. 

Our problem has the simplest form under the fol
lowing assumptions: 

1. The electrons are cold, Te = 0. 
2. Only a small fraction of the plasma ions remains 

hot or, expressing ourselves more concretely, the den
sities of the hot and cold ionic components satisfy the 
condition: 

(20) 

where Wph,c is the plasma frequency, determined from 
the density of the hot and cold components of the ions, 
respectively. 

3. The thermal velocity of the hot ions is much lower 
than the phase velocity of the oscillations, and the dis
tribution over the longitudinal velocities is Maxwellian. 

The first of these assumptions makes it possible, in 
describing the electrons, to use the drift approximation 
and to neglect the thermal motion of the electrons. The 
second is a condition which when satisfied enables us 
to describe the electrons with the aid of linear equa
tions even in the nonlinear stage of the instability de
velopment. 

The dispersion equation for the ion-cyclotron oscil
lations in such a plasma is well known (see, for ex
ample, [4 ' 5 J) 

where 

Wpc2 -0 
Wci(w-nooci)-' 

(21) 

T = vfli /vii is the degree of the anisotropy of the ion 
distribution. 

In this section we are not interested in effects of in
stability of the distributions with a cut-out "loss cone," 
so that we confine ourselves to the approximation in 
which only the first two terms of (21) are fundamental. 
The third term is found to be small if 

ku2 Y• n ->--. 
k2 Wei Ai 

It turns out that the inequality coincides with the 
condition under which the quasilinear relaxation of the 
distribution with respect to the longitudinal velocities 
of the ions is more rapid than with respect to the trans
verse ones (compare the first two terms in the right 
side of the inequality (6)). Supplementing this inequality 
with the condition that the nonlinear phase collapse due 
to the longitudinal motion of the ions be small, we ulti
mately rewrite (6) in the form 

(22) 

When a magnetic trap is filled with a quiescent plas
ma, the most favorable conditions of development occur 

for the oscillations that have a maximum increment. 
Such are the electronic Langmuir oscillations, which 
are in resonant with one of the harmonics of the ion 
cyclotron frequency 

ku 
Re w = ± Wpek;:::: nWci· (23) 

The maximum growth increment of these oscillations 
and the limitation of the anisotropy under which the de
velopment is possible, is obtained from (21): 

(24) 

zr''• T Wph n . 

~ Wci2'Aie 1h ' (25) 

In this paper, for simplicity, we confine ourselves to 
a plasma with a filled "loss cone." Then the third term 
in (21) does not introduce any new unstable roots in the 
dispersion equation. To the contrary, it even exerts a 
stabilizing effect on the instability due to the anisotropy. 
In the entire region of plasma-parameter values of in
terest to us, this stabilizing influence can be neglected. 
The limits of the region of applicability of our theory 
(shown shaded in Fig. 1) is obtained by substituting in 
(22) the increment and the wavelength of the oscillations 
(24) and (25): 

x-• < T < x-'1•, (26) 

where 
T = T I e'l•, x = Wph I e'l•wc~. 

In this region of parameters, the dispersion equation 
(19) is valid. This equation becomes much simpler if 
account is taken of the fact that in the initially quiescent 
plasma the oscillation that increases most rapidly and 
to the largest amplitude is the one having the instability 
increment that is maximal attainable at the given plasma 
parameters. In view of the fact that the growth incre
ment of the oscillations depends only on the modulus of 
the wave number (k1), the spectrum of the resultant 
fluctuations turns out to be axially symmetrical4 > and 
has a clearly pronounced maximum in the vicinity of 
the maximal increment. Specifying the thermodynamic
equilibrium noise level at the initial instant of time, we 
can estimate for the width of the turbulence spectrum 
by using the linear growth of these fluctuations: 

llllk 12 = llll•th 12 exp {2A- 2yk-' azy. A(k.L- kl>) 2}. 
ok.1.2 

(27) 

Here A/yk coincides in order of magnitude with the 
time of development of the instability, and the coeffi
cient itself is determined by the logarithm of the ratio 
of the turbulence level to the thermal background and 

4>We have already used this in the derivation of Eq. (19). 
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is of the order of magnitude of the "Coulomb" loga
rithm, i.e., A::::! 10. 

By virtue of the foregoing, averaging over the spec
trum of the turbulence with wave Dq in (19) becomes 
elementary, and the equation takes the form 

1 _ Wpe1 k112 _ Wph2 kif s vu(iJfoi/iJvu)ln2 d"v 
ro 2 k 2 k2 v .. k 2D + l\wk2 + ku2v112 

[ illrok] ~ nwc~ Zl. ·( . _ 0 (28) 
X 1 + k2D + 2wci2Ai k2IJ n }.,) - ' 

where ow = wn - nwci is the frequency shift and Yk is 
the nonlinear increment, while the coefficients ,;:n and 
D are modified somewhat: 

d"v, 

Under the same assumptions concerning the plasma 
turbulence spectrum, we can supplement the equation 
for the amplitudes of the oscillations (28) by the quasi
linear equation for the ion distribution function. The 
latter is obtained by the usual procedure of averaging 
over the phases of the oscillations of the nonlinear term 
in the Boltzmann equation (see ro, 7J) 

iJfoi < ie ..._, , iJfhi) 
-=- - LJ k<D .. --at m ... av 

a v .. ku2D2 {)foi 
=Wci2-. -

avu y._k2D + 1\w .. 2 + ku2vu2 avu 
, a v .. n2D2 {)foi 

+wei-- --
{) J._{)v J._ V• k 2D + llwk2 + k112vu2 {) 1_{)v J._ 

+Wei' r Vjj_{) __ ( 1-~)_!__] 
L V j_{)U j_ n(J)ci avu 

n2ku2D/k2 [ {) ( w ) {) l X vu--- 1--- fo;. 
'Ykk2D + l\wk2 + k112v1,2 Vj_{)Vl_ nWci' {)vii" 

(29) 

Let us subdivide the process of development of the 
instability into several stages in accordance with the 
investigated effect. In the linear regime, the oscilla
tions that increase exponentially have a wavelength de
termined by the requirement that the Landau damping 
(25) by the ions be small: 

(30) 

At an oscillation-amplitude level exceeding the value 
D > rk'/k2, the motion of the ions in the turbulent field 
takes them constantly out of resonance with the wave. 
At the same time, the quasilinear relaxation of the ions 
can still be neglected if the oscillation amplitude is not 
very large, namely, if it lies in the interval 

(31) 

As follows from (28), a constant phase collapse leads 
to a decrease of the increment of the instability and in
creases somewhat the frequency shift compared with the 
linear increment 

(32) 

where 

The expression for the instability increment coin
cides in structure with the formula obtained in the prob
lem of the decay instability of a wave with a random 
phase raJ 

(33) 

where y~ is the increment of the instability of the wave 
in the same amplitude with fixed phase, and T c is the 
time of the mixing of the phase of the wave. Comparing 
formulas (37) and (36), we arrive at the conclusion that 
the effective phase mixing time in a turbulent field de
creases with increasing amplitude rr_1 ~ 3/ 2 k2D, and 
therefore the instability increment decreases. How
ever, the growth of the amplitude does not stop (see 
Fig. 2), and an instant is arrived at which the right
hand inequality of (31) is violated, and we should already 
take into consideration the decrease of the anisotropy of 
the ion temperature due to the quasilinear broadening 
of the ion distribution with respect to the longitudinal 
velocities. 

Using (28), we can easily show that this effect is even 
incapable of stopping the instability. To be sure, with 
increasing amplitude the instability increment decreases 
much more rapidly than before: 

v .. = e•n•wci• Sat., l'nl"d"vS at., l'nld"v 
4k2 1J ku' vuavu vuavu 

Ul ph2n2wci2 ~n (34) 
- 2wci2A;k2IJ 

llw._ = o,5en",_,,3ku-z S at., I' n 1' a3v. (3 5) 
v11av 11 

As is easily seen from the quasilinear equation (29), 
the stationary state is reached by establishing a two
dimensional plateau in velocity space at the instant 
when the instability increment vanishes. In other words, 
in the stationary state there take place the relations: 

( {) bwk {) ) --+---- ·fo;(vH,Vj_,t= oo)= 0, 
v1_{)v_l_ nwci vll{)vll 

Vk{D, fo,} = 0. 

(36) 

(37) 

From the last relation we can estimate the degree 
of anisotropy of the plasma in the final state Tf at a spe
cified initial anisotropy Ti 

XT/ = [n/•]"iu ~ 1. 

It follows therefore that even after relaxation, the 
plasma parameters remain in the instability region 
shown shaded in Fig. 1. 

(38) 

As follows from (29) and (34), the amplitude of the 
oscillations increases in proportion to ~t1/3 in the in-

FIG. 2 
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terval where these equations are valid, namely at 

(39) 

The described picture of development of the insta
bility takes place only in an unbounded plasma. In a 
bounded plasma, the drift of the oscillations may ter
minate the instability much earlier than the natural 
quasilinear relaxation of the plasma distribution. The 
length of the plasma column in which this takes place 
lies in the following interval (see Fig. 2): 

Substituting here the parameters of the buildup os
cillations from (24) and (25), we rewrite this in explicit 
form: 

(40) 

Knowing the length of the plasma column, we are 
able to determine the maximum level of the turbulence 
on the basis of Fig. 2 from the maximum time of the 
oscillation drift. 

In systems that are even shorter than allowed for 
by inequality (40)), the convective instability does not 
develop at all. In this case the plasma may turn out to 
be unstable with respect to perturbations with a smaller 
phase velocity. 

The instability increment and the wavelength of the 
growing oscillations is determined from the dispersion 
equation (21) 

(41) 

(42) 

The latter inequality guarantees here the possibility of 
neglecting the thermal motion of the ions and conse
quently the Landau damping due to the resonance with 
these ions. Following the previously described scheme, 
we estimate the wavelength of the most stable oscilla
tion from Eq. (42) 

(43) 
where 

Substituting the values of Yk, kn, and k1 obtained by 
us from (41) and (42) into the condition (23), we find that 
the theory developed here is valid in the following 
plasma-parameter interval: 

(44) 

This region lies entirely within the previously obtained 
region (26), where our theory can describe the develop
ment of convective instability, and is shown doubly 
hatched in Fig. 1. 

The nonlinear stage of development of an aperiodic 
instability with increment (41) turns out to be much 
shorter, and is described in the following equation: 

8fo;IJ l'd'--vua n -v 

1 ···S vu ~o +en Ole> k'D + k 2 2 • "\'k II Vii 
(45) 

We see that the nonlinear phase collapse of the oscil
lations leads to a decrease of the increment in accor
dance with the law (33): 

(46) 

The relaxation of the ion distribution is described 
as before by Eq. (29). Retaining in it the principal 
terms, we have 

8/o; 2 8 "\'kku2D 2 8/o; 
fit= we, a;;;- '/kk2D + ku2vu2 . 8vu . (47) 

We see that the growth of the oscillation amplitude and 
the quasilinear relaxation stops simultaneously already 
following a small change of the plasma anisotropy D. T 

~ Ti· Therefore, unlike the preceding case, the only 
relatively large interval of the amplitudes is the one in 
which the nonlinear phase collapse takes place: 

(48) 

In short systems, the drift of the oscillations may 
stop the instability earlier than the quasilinear relaxa
tion of the ion temperature, if the length lies in the 
interval 

The quasilinear relaxation of the electrons is in this 
case immaterial under a condition that is somewhat 
less stringent than (20) 

(50) 

CONCLUSION 

It should be borne in mind that a number of limita
tions imposed on the plasma parameters in the present 
paper can be lifted without loss of rigor of the solution. 
For example, the requirement that particles be present 
in the ion "loss cone" is not obligatory. In long sys
terns, the temperature anisotropy leads to a stronger 
instability than the cone instability in an appreciable 
part of the plasma parameter region considered above 
(this part of the region lies in Fig. 1 below the dash-dot 
curve). In short systems, the cone instability, being 
convective, is also less dangerous than the aperiodic 
instability, owing to the anisotropy of the temperatures, 
which can develop at a shorter length. It is therefore 
possible to hope that the obtained results will be useful 
in the analysis of experiment with the Phoenix 11[9 J and 
Alice [1oJ installations. 

In experiments on cyclotron heating of ions in 
Stellarator C, [UJ our assumption concerning the pres
ence of particles in the loss cone is satisfied, but the 
electrons can no longer be regarded as cold. The latter 
imposes a limitation on the wavelengths and by the same 
token indirectly on the amplitudes of the growing oscil
lations. The contribution of the electron to the nonlinear 
interaction of the oscillations, which was neglected by 
us, can be taken into account within the framework of 
the theory of a weakly turbulent plasma (see, for ex
ample, [12l), for the instability becomes weak because 
of the nonlinear phase collapse in the "wave plus par
ticle" system. The equation of weakly-turbulent plasma 
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was already used earlier to estimate the amplitude of 
the electronic oscillations of a magnetized ~lasma with 
anisotropic distribution of the hot electron. 13J The 
same equations are applicable also to our case after 
substitution in them of the nonlinear increment of in
stability. 

The most serious limitation of our theory follows 
from the instability of the narrow turbulence spectrum 
obtained by us. Indeed, according to Eq. (14), short
wave oscillations always have a tendency to increasing 
in scale, since during the nonlinear stage the increment 
of the long-wave oscillations Yq exceed the increment 
for the short-wave oscillations Yk 

for 

or using the last inequality for the most rapidly growing 
oscillation, we have 

( k2D)''• 
'\'q ~ '\'k &wk • (51) 

From this we obtain with the aid of (32) the time of de
struction of the short-wave spectrum of the oscillations 

Mt ~ A'" I '\'kL· 

After this time has elapsed, the oscillations either 
stop or else the narrow turbulent spectrum becomes 
essentially converted into a broad one. 

In a number of modern traps [9 ' 10J the short length of 
the plasma column causes a rapid drift of the oscilla
tions from the system. This causes the instability to 
become manifest in the form of successive bursts of 
oscillations, each of which is incapable of ensuring re
laxation of the states of the plasma to the fully stable 
one. The observed decrease of the oscillation frequen
cies during the process of the bursts of the instability 
turns out to be comparable in order of magnitude with 
the theoretically predicted shift of the frequency in the 
nonlinear stage of the instability (see (32)). 

Our analysis shows that the development of the in
stability is accompanied by a decrease of the plasma 
anisotropy, but is not always capable of making an ap
preciable contribution to the particle loss. 

APPENDIX 

PROPERTIES OF PARTICLE TRAJECTORIES IN RAN
DOM FIELDS 

The purpose of our appendix is to prove the proper
ties (12) for the trajectories of the particles in a ran
dom electric field of the form (1). To this end, we break 
up all the plasma oscillations into two parts-a small 
number of trial waves, and the main ''background" of 
the random oscillations. The properties (12) will be as
sumed proved for the process of wandering of the ions 
among the waves of the ''background," so that our prob
lem reduces to proving that the ion-trajectory distortion 
due to the presence of trial waves does not violate the 
properties (12). 

The trajectory of the particles, as a functional of the 
fields of the trial oscillations, will be represented in the 
form of a series in powers of the amplitudes of these 
fields. Then a nonzero contribution to the average quan-

tities of interest to us is made only by those terms of 
the series, which contain the amplitudes of the oscilla
tions in the form of pairs of complex-conjugate ampli
tudes. Each of these terms of the series will be repre
sented graphically in the form of a time axis with ver
tices arranged in it in chronological order, and corre
sponding trial-wave amplitudes. The sequence of the 
choice of the amplitudes will be represented with the 
aid of a wavy line joining the corresponding vertices. 

By way of illustration, Fig. 3 shows the first non
vanishing term in the expansion of the average displace
ment in a series in the oscillation amplitudes. The cor
responding term of the series is 

(ik_~_&r_~_) ~ - ~[k_~_q_~_][q_~_p_~_][p_~_q.J(q_~_p_~_] rqrp 
q, p 

t t, tl t3 

X ( ~ eiq~r(t,) dtt ) eiP6rjt,) dt.) e-iq~r(t,) dts ) e-ip6rjt~ dt, (A.l) 
0 0 0 0 

where 

Thus, to each segment up to the extreme right vertex 
there corresponds its own vector froduct and its own 
integral with respect to the time. 5 

It is obvious from Fig. 3 that among the internal 
momenta there is always one that is encountered an odd 
number of times in the product. It corresponds to the 
extreme right vertex (pin Fig. 3). The momenta of all 
the wavy lines terminating at internal points of the axis 
are encountered an even number of times. As a result, 
summation over the extreme right momentum causes 
the entire expression to vanish, thus proving the first 
of the properties in (12). 

Let us calculate further the mean-square displace
ments of the ions in random fields. The general form 
of the possible diagrams of interest to us is shown in 
Fig. 4. 

On the two last diagrams there are wavy lines join
ing points on the same time axis. Therefore such dia
grams make no contribution to the necessary process, 
owing to the antisymmetry of the final expression with 
respect to the momentum of that wavy line, which goes 
over from some point of a given time axis to its ex
treme right point. 

As to the second diagram of Fig. 4, it either repre
sents a function that is odd with respect to the input 

• t 

p 

FIG. 3 

5llf an entire bundle of wavy lines converges to a single vortex, it is 
necessary to correct the corresponding expression by a factor that results 
from the series expansion of the exponential. 
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a 

FIG. 5 

momentum q (or q') (Fig. 5a), or else contains an in
ternal wavy line terminating in the extreme right point 
(Fig. 5b), and therefore the contribution from it van
ishes after the summation. The contribution from the 
first diagram of Fig. 4 leads to the dependence of (12) 
on the time. 

In perfect analogy we can obtain 

([k, 6r(t -:- <)- 1\r(t)] k6r(t)) 

= 2; c"[kJ.q.d"j<D.Pj' lp"( qJ.VJ.). (A.2) 
q,p H2 (qJ.'D) 2 We( 

We see that the distortion of the trajectory due to the 
trial waves does not violate the property (12), and only 
changes the coefficient D. 

All possible diagrams of the type shown in Fig. 4 
correct quantitatively the integral in Eq. (A.2), owing 
to the effect of the diffusion of the ion trajectories in 
the trial fields. With allowance for the latter, expres
sion (A.2) takes the form 

Going to the limit, when all the waves are trial waves, 
we obtain the required expression for the coefficient D: 
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