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The solution of the quantum equation of motion of an asymmetric top in a rotating coordinate system 
is constructed. For the solution, use is made of the fact that the Laplace equation on a sphere admits 
separation of variables in two coordinate systems, namely in polar and elliptical coordinates. 

THE QUANTUM-MECHANICAL PROBLEM OF TOPS 

IT is well-known that the classical problem of free 
motion of a rigid body has two constants of the motion, 
representing the laws of conservation of angular mo­
mentum and energy[1,2l: 

M1• M22 Mi-
M12+M22+M32=M2, -+-+-=2~ (1) 

It L, Is ' 

where M1o M2, M3 are the components of the angular 
vector M, ~ is the rotational energy, and l1 :s h :s Is 
are the principal moments of inertia of the body. A 
rigid body is called an asymmetric top if l1 ;.o 12 ;.o Is, it 
is called a symmetric top if l1 = h ;.o Is (or l1 ;.o l2 = Is), 
and it is called a spherical top if l1 = l2 =Is. 

In treating the rotations of a rigid body according to 
quantum mechanics the classical components of the 
angular momentum in Eq. (1) are usually replaced by 
the appropriate quantum-mechanical operators. This 
transforms the system (1) into the system of operator 
equations 

M2 I li2 = L12 + L22 + L;•, 2~ I 1i2 = aL12 + bi.- + cL32, (2) 

where a = 1/11, b = 1/12, c = 1/Is, a 2: b 2: c and L1, L2, 
L3 are the components of the angular momentum opera­
tor, satisfying the commutation relations 

(3) 

Thus, the quantum-mechanical solution of the problem 
of rotations of a free top reduces to the determination 
of the eigenfunctions and eigenvalues of the system of 
operator equations (2 ). The constants of the motion do 
not depend on the selection of the reference frame, and 
for their computation one can use a moving coordinate 
system which is rigidly tied to the rotating body. It is 
convenient to direct the axes of this reference frame 
along the principal axes of inertia of the body. 

In the case of a spherical top the two quadratic 
forms coincide, and with respect to a fixed coordinate 
system the problem exhibits the symmetry of three­
dimensional rotations, i.e., the group 0(3). For a 
symmetric top, two different quadratic forms are con­
served. In a fixed coordinate system the wave functions 
are expressed in terms of the Wigner D-functions, 
which depend on the Euler angles. These functions are 
known to form a basis for the representations of the 
group 0(4). It would seem that the asymmetric top 
should also admit a solution in closed form, since to 
the symmetric top corresponds a degenerate quadratic 
form. We show that this is indeed so in a moving co-

ordinate system11 . Formally the solution of this prob­
lem is related to the fact that the variables in the 
Laplace operator on the sphere can be separated not 
only in polar coordinates, but also in elliptic coordi­
nates. Therefore two complete sets of observables 
exist on the sphere: the first corresponds to the inte­
grals of motion of the symmetric top, whereas the 
other corresponds to those of the asymmetric top. 

In a two-dimensional space of constant positive 
curvature (i.e., on the sphere ~ 2 + T/ 2 + ?; 2 = 1) there 
exist two coordinate systems which allow for separa­
tion of the variables: the polar and the elliptic coordi­
nate systems£4 1. It can be shown£ 51 that in addition to 
the Laplacian 

(4) 

in the polar coordinate system 

s = sin'e,cos<p, 1] =sine sin<p, 6 =cos e (5) 

the second diagonal operator is 

Ls = La2, (6) 

whereas in the elliptic coordinate system 21 

s•= (a-pt)(a-p,) 2 (b-pt)(b-p,) 
(a-b)(a-c) ' 11 = (b-a)(b-c) 

(c-p1)(c-p2) 
6' = (7) (c-a)(c-b) 

(a > Pt > b > P• > c) 

the second diagonal operator is 

iE = aL12 + bL~2 + c'La2• (8) 

It is obvious that the operator pairs (4), (6) and (4), 
(8) are the quantum-mechanical operators of th~ prob­
lem of motion of a symmetric and asymmetric top, 
respectively, in a fixed coordinate system. In order to 
determine the eigenfunctions and eigenvalues of the 
pairs (4), (6) and (4), (8) it is necessary to express the 

•>The wave functions of an asymmetric top in a fixed coordinate 
system can be obtained by means of a unitary transformation. We shall 
not dwell upon this here. It should only be mentioned that there exists 
a beautiful relation between such functions and the wave functions of 
the three-body problem (a nonrigid top), which has been considered 
in [3]. 

1>The orthogonal families of lines of a polar coordinate system on 
the sphere are the family of concentric circumferences (8 = const.) and 
the pencil of straight lines (pi = const) passing through the pole. For the 
elliptic coordinates on the sphere the orthogonal lines (pi= const, i = 
1, 2) are two families of confocal elipses and convex hyperbolas. 
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operators Li in terms of the infinitesimal differential 
operators in the appropriate coordinate systems. It is 
a priori clear from group-theory considerations that 
the eigenvalues of the operator (4) are l (l + 1), where 
l is a positive integer or an odd half-integer. 

In the polar coordinate system we obtain explicit 
expressions for the operators L and Ls[s,7 J: 

L =- [-.1-!._( sin 8 !..._) +.-. -1 -~.] = l(l+ 1), sm8 as aa sm2 8 oq>' 
A a• 

Ls = -- = m2, m = - l, -l + 1, ... , l- 1,l. aq;• 
(9) 

The eigenfunctions of this system of operators are 
linear combinations of the well-known spherical func­
tions Yzm( lJ, cp): 

Y<+l 1 y •1 y<_:l 1 (Y y •] • .c:+> y 1m= -=[Y~m+ 1m , 1m =---::- lm- lm , Iio = 10 

l'2 tl'2 (10) 

Ylm(8,<p)= V 2~ 1 ~:~:::~:P/m 1 (cos8)eim~. 
Spherical functions expressed in terms of associated 
Legendre functions are valid only for integral values 
of the parameters land m. In order to obtain expres­
sions for the spherical functions which are valid also 
for half-integral values of l and m, we transform the 
Legendre equation, that is satisfied by the associated 
Legendre functions into a hypergeometric equation, 
which in turn we subject to a quadratic transformation 
of the form [a] 

As a result we obtain 

P)ml (cos e)~ sinlmi8 2F1 ( -l + lml, l + lml+ 1; 1 + lml; sin2 :) 

= sinimla 2F1(- l-21ml, l +1~1+ 1; 1 +lml; sin• a) 

( l-lml-1 l+lml ) =cos6sinlmi& 2F, 2 ,-2--+1;1+lml;sin2 8. 
(12) 

The hypergeometric functions in (12) can be expressed 
in terms of Jacobi polynomials p~a ,/3)( cos 2 9): 

dn 
2nn!P~"·~>(x) =(-1)n(1- x)---«(1 + x)-~-[(1- x)<>+n(1 +x)Hn]. 

dxn {13) 
Thus we obtained for the normalized spherical functions 
the following expressions, valid both for integral and 
half-integral values of l and m: 

if (l - I m I ) is even, then 

Y,m(8,q>)=[2lt/ rc-~ml +1)rC+Im21+1) 

xr-' ( t + lml + 1 )r-'( l-lml + 1) )''• sinlml aPS~~il;~>(cos 2a)eim~ 
2 2 (14) 

if (l - I m I) is odd, then 

Y,m(8,q>)=[ 21~1 rC+!ml +1)rC-I~I+1) 

xr-'C~Iml +1 )r-·C+I~I+i) ]"' 
(15) 

We construct the explicit expressions for the opera­
tors Li in the elliptic coordinate system: 

Lt=---
A 2i [ (p1 - b) (p1 - c) (P2 -b) (p2 -c) ]''• 

p,-p2 (a-b)(c-a) 

x[(Pt-a)-0--(p2-a)~l' 
iJpt opa 

A _ 2i [ (p1 - c) (Pt-a) (Pa- c) (pa- a) ]''• 
La----

p1-p2 (b-c)(a-b) 

x[(p1 -b)~-(p2 -b)..!..J, (16) 
opt opa 

La =--2-i _ [(Pt-a) (pt- b) (p2 - a) (p2 - b) J''• 
Pt-pa (c-a)(b-c) 

X [ (pt- c)-:-- (P•- c)_!_]. 
up! ~2 

From this we find that the operators L and LE have 
the form 

L =-- 4-[ l'- P(pt)~( l'- P(pt)~) 
Pt - pa OPt opt 

+ l'P(p2)_!. (l'P(p2) _!__ )] = l(l + 1), 
ap, ap. (17) 

LE =- - 4-[ Pal'- P(Pt)~( l'- P(Pt)..!..) 
Pt - P• OPt opt · 

+Ptl'P(pa) ~2 ( l'P(p•) ~2 )] = e, 

where P(p) denotes the polynomial P{p) = (p - a) 
(p - b) (p - c). 

SOLUTION OF THE SYSTEM OF EQUATIONS 
(SPHERO-CONICAL WAVE FUNCTIONS) 

We denote the (2l + 1) eigenfunctions of the system 
of operator equations (17 ), corresponding to 2l + 1 
distinct eigenvalues els> (s = 1, 2, .. ,, 2l + 1, E~ 11 

< e~ 2>, •• < e~2 l+ 11 ) by E1S>(p 1, p 2 ). We shall designate 
these eigenfunctions as the wave functions of the asym­
metric top (they are also known as sphero-conical 
functions). 

If one assumes that E{pl, P2) = A1(P1 )A2(p2), then 
from (17) find that each of the functions A 1(p 1 ) and 
A2{p 2) satisfies the differential equation 

[4l'P(p) :P(l'P(p) ~)-l(l+1)p+e]A(p)=0. (18) 

Equation {18) is the Lame differential equation in alge­
braic form[a,oJ. It follows from the theory of the Lame 
differential equation that for integer values of l its 
solution consists of 2l + 1 linearly independent and 
mutually orthogonal functions, corresponding to 2l + 1 
different values of e~S 1 -the so-called Lame polynomi­
als31. The solutions of Eq. (18) are represented in the 
form of the power series .. 

~ A.(p- b)l/2-r, }p-a~ B.(p- b)lf2-'l.-•, 
r=O ....0 

(19) .. 
lP- c ~ C,(p- b) 112-'lr-r, "f(p- a) (p- c)~ Dr(P- b)l/2-t-r. 

r;,;o r=O 

Substituting the series (19) into the equation (18) we 

3lThe solutions of Lame's equation exist also for half-integer values 
of/. In this case the Lame equation goes over into a Heun equation [8•9 ]. 

According to the Kramers theorem the eigenvalues turn out to be doubly 
degenerate, since the energy operator of the asymmetric top is equiva­
lent to the operator of quadrupole interaction. 
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obtain for the coefficients Ar, Br, Cr, Dr the following 
recursion relations 

2r(2l + 1- 2r)Ar = [e- bl(l + 1) + (2b- a- c) (l + 2- 2r)']Ar-I 
- (a- b) (b- c) (l + 4- 2r) (l + 3- 2r)Ar-2, 

2r(2l + 1- 2r)Br = [e- bl(l + 1) + (b- c) (21+ 3- 4r) 
+ (2b- a- c) (l + 1- 2r)']Br-I - (a- b) (b- c) (l + 2 

- 2r) (l + 3- 2r)Br-2, (20) 

2r(2l + 1- 2r)Cr= [e- bl(l + 1) .- (o- b) (21 + 3- 4r) 

+ (2b- a- c) (l + 1- 2r) 2]Cr-1 - (a- b) (b- c) (l + 2 
- 2r) (l + 3- 2r)Cr-2, 

2r(2l+1-2r)Dr= [e-bl(l+1) + (2b-a-c)(Z+1-2r)2]Dr-l 

- (a- b) (b- c) (l + 2- 2r) (l + 1- 2r)Dr-2· 

In Eqs. (20) An = Bn =Cn = Dn = 0 for n < 0. The 
eigenvalues E fcS> are obtained from the condition that 
the series (20 terminate. In the case of even 1 we set 

Azt2+1 = Bz12 = Cz12 = Dz12 = 0, (21) 

and obtain for one equation of degree 1/2 + 1 and three 
equations of degree l/2 the solutions of which are 21 
+ 1 distinct eigenvalues E~sl. Similarly, for odd l, 
setting 

Azt2+'f, = Bzt2+% = C112+V, = Dzt2-'/, = 0, (22) 

we obtain for E three equations of degree l/2 + Y2 and 
one equation of degree l/2 + Y2, which have as solu­
tions again 21 + 1 distinct values of E~Sl. The coeffi­
cients Ao, Bo, C0, Do are determined from the normali­
zation condition of the sphero-conical wave functions 

a b 

1 r s (E<•l ( )]" (Pt- P2)dpt dp2 1 - J z Pt. P2 = · 
4 b , l'- P(pt) )'P(p2) 

(23) 

The energy operator of the asymmetric top, (8 ), 
together with the commutation relations (3) is invariant 
with respect to the simultaneous sign-change of any two 
of the operators L1, L2, L3, a symmetry which formally 
coincides with the group D2. According to this group 
one can classify the wave functions of the asymmetric 
top into four classes, transforming according to the 
irreducible representations A, B1, B2, B3 of this 
group[ 6l. In this connection it should be noted that the 
following relations hold for the eigenvalues E~Sl, rela-

tions which are easily derived from Eqs. (20). 
For even 1 

~ ei'1 = tj.Z(l + 1) (l + 2)(a + b +c), 
BEA 

(24) 

and for odd l 

~ e,<•l = tj6l(l2 -1) (a+b+c), 
sEA 

ei'1 = 1/2l(Z+1) 2(a+b+c). 

(25) 

From (24) and (25) also follows the general relation 
21-H 

~ef•l=t/al(l+1)(2l+1)(a+b+c). (26) -It is not hard to derive the eigenvalues and the 
sphero-conical wave functions for the lowest values of 
the quantum number 1. For l = 0 we have E~ll = 0 and 
a single sphero-conical function E~1 1 (p1, p 2) = ( 47T )1/ 2, 

belonging to the representation A of the group D2. For 
l = 1 we have 

eftl =b+c, et(2)=a+c, e~ =a+b (27) 

and the sphero-conical functions are 

E?1 (Pt. Pz) = '}'3/4n 6, Ett:J.l (Pt. pz) = l'3/4n TJ, El31 (pt, P2) = l'3/4n 6. 
(28) 

belonging respectively to the representations Bs, B2, 
B1 (L TJ,!; are defined by (7). For the case l = 2 we 
have two eigenfunctions 

eiil = 2(a + b +c)- 2l'(a- c) 2 -(a- b) (b- c), 
(29) 

e:"1 = 2(a + b +c)+ 2'}'(a- c)•-(a- b) (b- c), 
to which correspond the sphero-conical functions 
E~11 (p 1 , p 2 ), E~51 (pl> p 2 ) belonging to the representation 
A. The normalized sphero-conical function E~11 (p 1> p 2) 
has the form 

(t) --
E2 (Pt. pz) = l'5/16n[3pt- (a+ b + c)-l'(a- c)2-(a-b) (b-e)] 

X[3p2- (a+b+c) -'}'(a-e)L (a-b) (b-c)]{2{(a-c) 2- (a-b) (b-e)]2 

- (2b-a-c)[2(a-c) 2+(a-b) (b-e)]'}'(a-e)L(a-b) (b-e)}-''•. 
(30) 

The function E~51 (p 1, p 2 ) differs from E~ll(pl, p 2 ) only 
through the sign of the square root ( (a - c )2 
- (a- b)(b - c))112 . The eigenvalues 

e,<•> = a + b + 4c, e~31 = a+ 4b + c, e~'l = 4a + b + e 

correspond to the eigenfunctions 

E2(2l (Pt. pz) = l'15/4rr !;T], EJ31 (Pt. P2) = l'15/4n TJ6, 

E2<4>(p,, p2) = l'15/4nb!;, 

belonging to the representations B1, B2, Bs. 

(31) 
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