
SOVIET PHYSICS JETP VOLUME 30, NUMBER 4 APRIL, 1970 

LONG-WAVE PHONONS IN METALS 

E. G. BROVMAN and Yu. KAGAN 

Submitted April 16, 1969 

Zh. Eksp. Teor. Fiz. 57, 1329-1341 (October, 1969) 

The role of many-particle interaction between ions in a metal through the conduction electrons is 
analyzed. It is shown that in the solution of the dynamical problem, particularly in the determination 
of the phonon spectrum with accuracy up to (VK/~F)2 (VK is the Fourier component of the pseudo
potential at a reciprocal lattice point), it is necessary to take into account three- and four-particle 
interactions. General expressions are found for the elastic moduli or the sound velocities in non
transition metals. By means of certain general relations derived for a charged Fermi liquid, it is 
possible to obtain the microscopic value of the elastic modulus, which depends only on the pseudo
potential of the electron-ion interaction (or on the corresponding scattering amplitude) and on the 
polarization operator of the interacting electron gas. 

1. INTRODUCTION 

UNTIL recently, the theory of metals has been devel
oped chiefly as a one-electron theory. The electron
electron interaction has been taken into account by the 
introduction of the screening of the ionic potential, and 
in problems related to the total energy, only the energy 
of the interacting electron gas has been added. This has 
resulted in simply an effective pair potential for the 
interaction between ions, corresponding to indirect in
teraction through the conduction electrons. 

Here, simply speaking, it remains an open question 
as to why metals exist with a complicated crystalline 
structure. Usually, the existence of additional forces 
has been implicitly assumed for the establishment of 
stability of the lattice; these are due to the interaction 
of the interior electrons of the ion shells. However, it 
has been found recently that these forces in metals are 
very weak and cannot preserve the lattice in equilibrium. 

The progress made recently in the theory of metals, 
which is associated with the introduction of the concept 
of the pseudopotential, also made no change in this sys
tem of representations, since the pseudopotential is 
considered most frequently simply as a method of con
venient description of the electron-ion interaction in the 
band theory. As a result, although this method syste
matically demonstrates the possibility of reducing the 
strong electron-ion interaction to an effective weak 
pseudopotential, and thus forms a basis of a model of 
quasi-free electrons (see, for example, lll ), the entire 
consideration is practically a one- electron one, as be
fore. Therefore there remained the essential question 
of a systematic many- electron conside,ration of metals, 
which would make it possible to find both the electron 
and the phonon spectra within the framework of the same 
initial representations, and also all the physical quanti
ties that depend on these spectra. 

Such a consideration was undertaken in the resear
ches of the authors, l2 ' 31 in connection with the analysis 
of the problem of the formation of the phonon spectrum 
of metals. Here two circumstances were made use of. 
The first is the small dimensions of the ions of the non
transition metals, which remains after the separation of 
all valence electrons. (The ions occupy about 5-10% of 
the atomic volume.) As a result, the interaction between 
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the ions is composed of the direct Coulomb interaction 
and the indirect interaction through the conduction elec
trons. This makes it possible to introduce a Hamiltonian 
for the description of the electron-ion system of the 
metal, which in turn allows us to solve the problem to 
any approximation. 

The second important circumstance is that the scat
tering amplitude of the electron by the separate field in 
the metal, at a momentum transfer on the order of the 
reciprocal lattice vector K, is a small quantity. In the 
language of the pseudopotential, this means that there is 
a small parameter VK/~F (VK is the Fourier compon
ent of the pseudopotential) which, by the way, predeter
mines the success of the quasi-free electron model. In 
the band theory, this circumstance has in fact no appli
cation. In the theory developed by us, it allows us to 
look for the physical quantities in the form of a series 
expansion in powers of the pseudopotential. l2 ' 31 Here 
the perturbation theory in the electron-electron inter
action is not used, so that the whole consideration is to 
a certain degree the reverse of what is done in standard 
one-electron theory. 

The various powers of the pseudopotential in the total 
energy describe the contribution from the effective two-, 
three-, four-ion indirect interaction through the conduc
tion electrons, and so forth. The appearance of many
particle (unpaired) interionic forces in the metal has 
quite a fundamental character even in the case in which 
their contribution is comparatively small. In particular, 
the aforementioned problem of instability of metals l2 •31 

is involved here. 
Up to the present time, in the analysis of the phonon 

spectra of specific metals, l2-41 we have parameterized 
the many-particle interactions using the general proper
ties of the metals, particularly the fact that they possess 
symmetrical lattices. This approach has been very suc
cessful and allows us to explain the phonon spectra of a 
number of complicated metals throughout all phase 
space. In the present work, we carry out a microscopic 
analysis of the role of many-particle forces, and the 
dipole part of the phonon spectrum is most completely 
studied. 

It turns out that the unpaired interaction is especially 
important in the dynamical problem of oscillations. 
Thus, whereas for the determination of the static energy 
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with accuracy (VK/ EF)2 it is sufficient to consider only 
pair interactions, for the determination of the longi
tudinal sound velocity with the same accuracy it is 
necessary to include three-particle and even four-parti
cle interactions. In other words, in the consideration of 
the dynamics of oscillations in many-particle interac
tions, terms of the same order as in the pair interaction 
are kept. This indicates, in particular, the incorrect
ness of the usual notions concerning the dynamics of 
metals, which take only pair forces into account (for 
example, seel1J ). 

It is essential that by using a number of exact rela
tions for a charged Fermi liquid introduced in the 
present work, we can obtain a closed expression for the 
elastic moduli only in terms of the polarizability of the 
electron gas and the pseudo-potential of the electron-ion 
interaction. 

2. LONG-WAVE PHONONS IN A METAL. THE ELAS
TIC MODULI 

In accord with the results of12 J, the energy of the 
electron system in a field of fixed ions with coordinates 
Rm can be represented in the form of a power series in 
the pseudopotential: 

Ee = E<01 + E\11 + E<•> +... . (2.1) 

Here the expression for E(n) has the form 

E<n>=Q ~ r<nl(q1, ... ,qn)Uq, ... Uqnd(q1 + ... +qn), (2.2) 
ql·.,qn 

where 

(2.3) 

V is the Fourier component of the effective pseudo
pJtential for the separate ion, which will be assumed to 
be local, n is the total volume, N the number of atoms 
in the volume of the crystal and ~ a delta function des
cribing the law of momentum conservation. 

It is clear from the definition (2.2) that the multipole 

r(n)(ql, ... , qn), which depends only on the electron
electron interaction, can be regarded as symmetrized 
over all its arguments without any loss of generality. 
On the other hand, by assuming spherical symmetry of 
the electron-ion interaction, we have 

f(nl(qJ, ... ' qn) = f(nl(-q!, ... ' --qn). (2.4) 

If the ions are located at equilibrium positions, then 
all the qi in (2.2) for n 2 2 are equal to the reciprocal 
lattice vectors ~. By virtue of this fact, each succes
sive term in the expression for the electron energy of 
the static lattice will contain the additional small param
eter VK/EF. 

In this connection, if we consider the static energy 
with accuracy to within (VK/EF)2, then it suffices in 
(2.1) to keep only terms up to E<21 inclusively. The need 
to account for many-particle terms arises only when we 
want to determine the energy with greater accuracy. In 
the case of an oscillatory problem, the situation is quite 
different. Actually, the position of the ions in (2.3) does 
not now coincide with equilibrium. By expanding (2.2) 
in terms of the displacements of the ions and extracting 
the part of the electron energy which plays the role of 

the potential energy of the oscillation problem in the 
daiabatic approximation, we find that the corresponding 
expression will contain the Fourier components of the 
potential even for arbitrary q. Therefore the character 
of the expansion in the parameter VK/ EF changes sig
nificantly and, as we shall see below, for the determina
tion of the sound or, more generally, the phonon spec
trum with accuracy up to (VK/EF)2, with which the 
entire analysis is performed, it is necessary to take 
into account the contribution from the many-particle 
interactions with just this accuracy. 

We write out the general expression for the dynam
ical matrix of a metal with one atom in the elementary 
cell (here we use a somewhat different notation than 
inl2,3l): 

Here the first and second terms describe the dynamical 
matrix arising from the direct Coulomb interaction be
tween ions and from the indirect interaction through the 
conduction electrons, respectively. Here we have for 
na/3) (q), taking into consideration (2.2), (2.3), 

(n 

a~ ) ,... n (n- 1) "' ' K a R' )~ V V V V DcnJ(q =~><o M .:::.. {[\q+ 1) (q+ 2 q+K, q+K, K,··· Kn 

Kt ... K71 

><rcn>(q + K1,- q- K2 , K.3,., ., Kn)Ll(K 1 - K2 + Ka + ... + Kn)l 
- [q = OJl (2.6) 

(0 0 is the volume of the elementary cell). It is stipulated 
that here and below the terms VK= 0 are assumed to be 
equal to zero because of electrical neutrality. 

It follows at once from (2.6) that for n 2 5 the corre
sponding terms in the dynamical matrix have an order 
of smallness not less than {VK/EF)3. As to terms with 
n = 3 and 4, although they contain the pseudopotential in 
third and fourth powers, the corresponding order of 
smallness does not appear through all of phase space. 
Actually, we note that 

(we have introduced the dielectric constant t:(q) here in 
explicit form, recognizing that it always appears in the 
description of r(n)(ql, ... , qn)-seel2l and the section 
below). Then it becomes clear that if we set K1 or K2 
in the term n = 3 equal to zero (for K 1 = K2 = 0, this 
term vanishes), then the separated part will be of the 
order (VK/EF)2 for small q, i.e., of the same order as 
the terms with K ;o< 0 in D<21 {q). A similar situation ex
ists for n = 4, if we consider the region of small q and 
set K1 = K2 = 0. 

Thus, for the long-wave part of the phonon spectrum, 
the dynamical matrix is not reduced only to na~ (q)' and 
has the following form in the approximation considered: 

D"P(q) = ~e• _2; {[(q + K)"(q + K)~ I Vq+K l'rc•> (q + K, - q- K) 
K 

+ 3 (2q"l + q"K~ + q~K") VqVq+KvKr'31 (q, - q- K, K) 

+ 6qaq~ 1 Vq 1'1 vK I' r<•> (q, - q, K, - KlJ- [q = OJ\.1(2.7) 

(We have used here the symmetry of r(n)(ql, ... , qn) 
with respect to all its arguments, and the relation (2.4).) 

We now consider the region of limitingly long waves 
and find an explicit expression for the elastic moduli 
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from (2.7). Here we expand (2.7) in a series in q and 
introduce the notation 

D"~(q) = ~0[ap, yll]qvq~. (2.8) 

The square brackets in (2.8) are identical with the well
known notation of Born and Huang[sJ and are convenient 
for the direct transition to the elastic moduli [sJ 

c .. ~vo = [ay, Pli] + [yp, all] - [yll, ap]. (2.9) 

We further introduce the following notation: 

r(({)={/a v,r<•>(q, -q-K, K)} , 
q q-oO 

V"(K) = {-0- VqfK} = - 0- VK. (2.10) 
f)qa q~o fJK" 

Then, comparing the expansion (2.7) with (2.8), we have 
for the contribution of three-particle interaction 

[ap, yl\](3) = 3 ~ v.r<•J (0, K, - K) {21 VK I'WVI)PS +/)as/)~ 
K+O 

+ VK [K"6~6 Vv (K) + K"6~vvs (K) + K~llaavv (K) + KPI\•vvs (K)Jl 

+I VKI2 [K"IIps Fv(K) + K"I)~YF8 (K) + K~6"5Fv(K) + KP6a1 F 8 (K)]. 

(2.11) 
Correspondingly, for the contribution of the four-parti
cle interaction we have 

[a~. y6J<•> = 6J v. J' ~ 1 VKI'r<•> 
K+O (2.12) 

x(O, 0, K, - K) (llavl\~8 + 11"6 11~). 
In (2.11) and (2.12}, and also everywhere below, expres
sions with zero argument should be understood in the 
sense q- 0. 

In the determination of the contribution of the two
particle interaction, it is appropriate to unite the in
direct interaction through the electrons (the first term 
in (2.7)) with the direct Coulomb interaction (the first 
term in (2.5)), which is paired in nature. We separate 
here the terms with K = 0 and K ""' 0, which we denote by 
[at!, yli ]<o> and [a{3, yli ](p)' respectively. 

We shall make use of the fact that, in accord with the 
results of previous researches,[2 •3 J 

['(2>(q, -q) = -'hTI(q) I e(q), (2.13) 
where 

s(q) = 1 + 4ne2q-•TI(q) (2.14) 

is the statistical dielectric constant. Then, after simple 
transformations, we get 

[a~ ylllo) = .!.( Z2 + 2bZ) (/la.Y/1~6 + ll"~ll~) 
' 2 TI(O)Oo2 Oo2 ' (2.15) 

(a~, yll]<Pl = 2~0 ~ {rp(K) wvll~8 + 11"81\Pv)+ [ll"8KPrpv (K) 
K+O 

+ fJP 5K"rpY (K) + 6"vKPrp8 (K) + 6~ K"rp8 (K)] + K"KPrpv8 (K)); 1(2.16) 

Here 
( )- 4nZ•e• _JVqJ•TI(q) g 

lp q - q2!Jo e(q) 0' 

P-~ 
cV" - oq"oqP • 

(2.17) 

The value of b is determined from the limiting value of 
the pseudopotential 

4nZe2 b 
Vq...o-+---+-. 

q2!Jo Oo 
(2.18) 

By knowing (2.11}, (2.12}, (2.15}, and (2.16}, we can 
find the elastic moduli for any symmetry crystal 

directly. We shall limit ourselves for simplicity to the 
case of a lattice of cubic symmetry. By using (2.9), we 
have for the determination of the elastic modulus 
Cu = Cxxxx, corresponding to longitudinal sound veloc
ity in the direction of the wave vector along the cubic 
axis, 

Z1 2bZ 1 ~ [ 2 a 
Cu = g •n (O) + 1f' + g ~ rp (K) + ""3 K"rp (K) 

0 0 0 K+O 

+i-(/C'}'tp'""'(K)]+4 ~ {av.r<•>(o, K, -K)[JVKJ" 
K+o 

+ ; VKK"V"(K)] +Vol VKJ2 K"F"(K) . 

+ 31Vo I'IVK I' r<•> (0, 0, K, -•.q}. (2.19) 

In similar fashion, we can find the expression for the 
shear modulus: 

Cu = C.,<~~11 = 2~ ~ (K"')2 rp"11 (K), 
0 K+O 

C' = C11 -; C12 = C==-; Cxuxv = ! ~ [(K"')'cp"'"',(K) + (K"')"rp"" (K) 
K+O 

-2KxK"rp"'"(K)]. (2.20) 

From these expressions, we can draw the conclusion 
that in the considered approximation, when all terms of 
order (VK/EF)2 are kept, the many-particle interaction 
through the ions changes significantly the longitudinal 
velocity of sound or the modulus C u, and leaves the 
shear modulus unchanged. Therefore the contribution 
of the many-particle forces to the shear modulus (2.20) 
begins with terms of order (VK/EF)3 • So far as the 
modulus Cu is concerned, it is necessary in its deter
mination to know the value of the multipoles for a very 
specific value of the arguments: r<3 >(o, K, -K}, 
r <4> (0, 0, K, - K) and FO! (K). It is shown that one can 
obtain general relations that are valid for a charged 
Fermi liquid, which allows us to connect these quantities 
with the simplest multipole r<2 >(K, -K) (2.13). 

3. SOME EXACT RELATIONS FOR THE CHARGED 
FERMI LIQUID 

In this section, we shall obtain a series of exact re
lations that are correct for a charged Fermi liquid and 
connect the different multipoles r(n}(qh ... , qn) (see 
(2.2)). For the derivation of these relations, we find it 
convenient to use the diagram representation of the 
multipoles, which is obtained from the corresponding 
energy representation (2.2). As was noted in[2J, the 
electron energy in the field of static ions can be set in 
correspondence with the set of coupled vacuum diagrams 
in which the role of excitations in the S matrix is played 
by Hint= Hei + Hee· Then each term of (2.2) corre
sponds to the set of all diagrams of a definite order in 
Hei and of arbitrary order in Hee· It is known that the 
coefficients in the vacuum diagrams, which are obtained 
by use of the Wick theorem, in contrast with the dia
grams for the G functions, depend on the symmetry of 
the diagram and on the order of the perturbation. This 
greatly complicates the calculations. Therefore, we 
shall apply the following method. 

We introduce the quantities !l)(n)(ql, ... , qn), which 
correspond to the vacuum diagrams. However, all the 
external momenta we shall consider fixed (we shall not 
carry out the integration over them as in (2.2)), and the 
coefficient in all diagrams of similar type we shall take 
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to be equal to unity. This allows us to carry out partial 
summation without difficulty (to introduce the ''heavy'' 
lines exactly as was done for the Green's functions; see, 
for example, lsl ). 

Therefore, we can write down directly the following 
graphical equality for the complete block q)m + 1 ', sim
ilar to the usual equation for the vertex: 

(3.1) 

(The heavy lines correspond to the complete G~function.) 
In the mixed multipole s<gl (n entering lines of the ex
ternal field and two electron lines), which is actually 
determined by this equality, one can separate the 
irreducible block in the following way: 

= ~· (3.la) 

?, ,, ;, f., 

On the right hand side of this equality we have intro
duced the vertex T, which represents the complete 
block, as usual, converting particle into particle. It is 
not difficult to see that the mixed multipole R\¥/ pos
sesses two essential properties: it is irreducible over 
the two electron lines and over the line of electron
electron interaction, since the corresponding parts are 
transferred to the complete vertex T. 

The resultant equality can be represented in analytic 
form in the following way: 

S a•p 
q)(n+l)(q~, ... , qn, qn+!) = (2n)• T(qn+b P,- P- qn+!) 

x G(p) G(p + qnH)RA~' (p,- p- qn+t• q1, ... , qn)· (3.2) 

We now introduce the complete symmetrization of the 
left and right sides of (3.2) over the momenta of the ex
ternal field q1, ••• , qn. Denoting the multipole thus 

symmetrized as _0m+ 0 and R~~/, we rewrite (3.2) in the 
form 

- s a•p 
q)(nHl(q~, ... , qn, qn+!) = (2n)' T(qn+l• p,- p- qn+l) 

XG(p)G(p + qn+t)R<~)'(p,- p- q•H• qt, ... , qn). (3.2a) 

We now introduce another relation, using the tech
nique of skeleton diagrams, developed for Fermi sys
tems in the work of Luttinger and Wardl 7l (see alsolal ). 
By a skeleton diagram, we mean, as usual, a diagram 
which does not have self-energy parts, so that the re
placement in it of a G line by a heavy line corresponds 
to summation of a whole class of diagrams. We note that 
the very possibility of a distinct introduction of skeleton 
diagrams arises after fixing of the external momenta, 
i.e., after transition to diagrams of the type $. 

We represent the complete multipole 2l.)m>(q1 , ... , qn) 
in the form of a sum over skeleton diagrams of arbi
trary order in the interelectronic interaction, in which 
all the fine lines are replaced by heavy lines. This 
multipole can be regarded as a functional of the exact G 

functions. Then variation of this functional can itself be 
represented as the variation of the separate G functions 
in each skeleton diagram. For the variation of the sym
metrized multi pole, we obtain 

- s a•p (n) 
tJq)(n)(ql, ... , qn) = nl (2n)• I'JG(p)Q(2.) (p,- p, q~, ... , qn)• (3.3) 

In the variation of the complete set of multipoles over 
all the Green's functions, n identical expressions appear 
each time, thanks to the symmetrization of these multi
poles; these lead to the appearance of the coefficient n 
in (3.3). ~ 

The multi pole Q ~r/ appearing upon variation has two 
initial electron lines and n lines of the external field. 
This pole is irreducible in the two electron lines. Ac
tually, in the opposite case, in the closing of the elec
tron ends of this multipole, we would obtain a diagram 
with a self-energy part: 

(3 .4a) 

which contradicts the initial assumption that only the 
skeleton diagrams were varied. Similarly, we canes
tablish the fact that the multipole Q\¥,' is also irreduci
ble over the lines of the interelectron interaction: 

(3.4b) 

Thus the multipole Q:~/ has the same properties as 
R:¥/ in (3.2a). If we go to the limit qn + 1 - 0 in R.W?, 
then both multi poles become identical: 

R~)) (p,- p, ql, • • •, qn) = Q(~J) (p,- P, q~, • • •, qn) • 

The advantage of Eq. (3.3) lies in the fact that it 
allows us to find the derivatives in the external argu
ments without difficulty. For our purposes, it is neces
sary to find the derivative with respect to the chemical 
potential of the interacting electron gas: 

a.&)<n>(q1 , ... ,qn) _ s a•p aG(p) n<n>( _ ) (3.5) --'-"-:---...::.-'--- n ----'<(2) p, p, qlo ..• ' qn . a,.., (2n)• a,.., 
(The line of electron-electron interaction does not con
tain !J..) It is not difficult to see that 

a"G G(p,Jl.+all-)-G(p,J!) 

a;= a"' 
=-G(p,Jl.+a"')G(p,Jl.)(t- a~a(p,Jl.) )I . 

I! d~-o 

(3.6) 

1t can be shown (seelal) that the quantity 
G(p, !J. +d!J.)G(p, !J.)Id!J.-0 acts as the "static" limit 
of the theory of a Fermi liquid(sJ (w/k- 0): 

G(p, 1! + a,..,)G(p, 1!) ld~-o = {G2 (p)}A. (3.7) 

We use the Ward identity for the vertexlal 

1-d~(p, ~-t) ;a,..,= T,(p, -p,O). (3.8) 

We emphasize that, as.can be shown directly, the vertex 
Th which is unresolved in the electron-electron inter-
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action because of electrical neutrality, stands on the 
right side of (3.8). Substituting (3.6)-(3.8) in (3.5), we 
finally get 

a.®<nl(q,, ... ' qn) =- n s _!!!!.__ (3.9) 
dll (2n) 4 

X{G2(p)}kT,(p,- p,O).R,_,\n>(p,- p, q~, ... , qn). 

We now consider (3.2a) in the limit em+ 1 - 0 (the 
static limit for the square of the Green's function is 
obtained automatically, inasmuch as the external field 
is static, i.e., w = 0). We provisionally separate the 
part from the total vertex T which is unresolved in the 
electron-electron interaction. This corresponds simply 
to the separation in explicit form of the dielectric con
stant corresponding to screening of the lines of the ex
ternal field: 

T(q,p, -p- q) = T1(q,p, -p -q) I e(q), (3 .10) 

Then, substituting (3.10) in (3.2), setting qn. 1 = 0, and 
comparing this limit with (3.9), we obtain the identity 

.®<n+1)( 0)- __ 1_ a.®<n>(q,, ... ,qn) (3.11) 
qh · · · 'qn, - ne(O) dll · 

Here, as everywhere, we mean by zero q the limiting 
value as q- 0. The relation (3.9) can be obtained as 
any of the momenta qi tend to zero in the initial multi
pole2l)m+1>(q1, ... , qn. 1). Th~refore, without loss of 
generality, we can consider $<n + 1> on the left side of 
(3.11) as a completely symmetrized multipole in all its 
arguments. 

Carrying out the entire derivation for the diagrams 
of .0m> having coefficients in all diagrams equal to 
unity, we transform to the multipoles r <n>, which are 
determined by the expansion of the energy and have co
efficients connected with the Wick expansion. It is not 
difficult to see that, inasmuch as we mean by .iiJ<n> the 
entire set of symmetrized diagrams of n-th order in 
the electron interaction, the following equality is valid: 

t -r<n>(q,, ... , qn) = ~q){nl(qh ...• qn). 

Using this, we obtain finally 

f{n+il(qh···•qn,0)=--1- 1 df<nl(qh ... ,qn) (3.12) 
e (0) n + 1 dll · 

The identities (3.12), as is seen from the derivation 
above, follow from the very structure of the theory of a 
Fermi liquid and are exact. 

We now write out several simple relations that fol
low from (3.12) for the case of multipoles with small 
numbers of vertices. 

First of all we find the connection between r <1> and 
r<2 >. It is not difficult to see that the quantity r<1>(0) 
can be computed exactly. Actually, it is described by 
the single diagram 

(3 .13) 

since all the complications are already included in the 
heavy G line. Therefore, 

S d'p f<1>(0) =- 2i --G(p) =no, 
(2n) 4 

(3.13a) 

where n0 is the density of the electron gas. On the other 

hand, r <2 >(q, -q) can also be found exactly. lzJ This 
multipole has the form of (2.13). Then, using (3.12) for 
this case, we obtain directly 

II (0) = dno I dll. (3.14) 

Or, using the expression for the compressibility, 

we find 

II(O) = no'x. (3.15) 

Thus, in this special case, we obtain the well-known 
relation between the compressibility and the polariza
tion operator for q = 0, which is usually obtained by an 
entirely different method. [gJ 

For the case of interest to us in the problem of the 
sound of the multipole r <3 >(K, - K, 0), we have 

1 1 d II(K) (3.16) 
r<'>(K,-K,O)=B e(O) d; e(K) . 

Using (3.12) twice in succession, we find another multi
pole 

1 1 d [ 1 d II(K) J 
r<•>(K, -K,O,O)=- 24 e(O) d; e(O) d; e(K) . (3.17) 

Putting K = 0 in these expressions, we obtain multipoles 
which are important for the anharmonic problem in a 
metal (for anharmonism of third and fourth orders, 
respectively), 

f<"l 0 0 _ __!__1_dii(O) =.!__1_ d'no (3.18) 
( ' ,O)- 6 (e(0)) 3 d!l 6 (e(0)) 3 d!l2 

and 

r<•>(O 0 0 0) = ~ _1_[ _1_( dii(O) )2- .!_ t:VII(O) l (3.19) 
' ' ' 8 (e(0)) 4 II(O) dll 3 dft2 ' 

Thus, in all cases of interest to us, the multipoles 
can be expressed only in terms of the polarization 
operator and its derivatives with respect to the chem
ical potential. The expression for the elastic moduli 
contains the vector derivative of the multipole F<l'(K) 
(2.10). We shall show that this quantity can also be re
duced to the derivative of the polarization operator. 

For the transformation of (2.10), we first make use 
of the fact that for any multipole one can carry out par
tial summation, making all the lines of the external 
field heavy:lzl 

A<n>(qh ... , qn) 
e(qi) ... e(qn) · 

(3.20) 

Here Am> is a multipole which no longer has blocks 
(polarization parts), which could refer to lines of the 
external field. If we transform Eq. (2.10) with the aid 
of (3.20), then it is easy to see that the differentiation 
of Vq/E(q) gives a zero contribution to F<l'(K) as q- 0, 
and consequently, 

F"(K)= (~) { o A<'>(K,-K-q,q) } . (3.21) 
e(q) q->-o iJif"' e(K)e(K+ q) q-+o 

For the multipole A <3 >, the following relation can be 
established: 

{ ~A<3>(K,-K-q,q)} =__!__a_A<3>(K,-K,O). (3.22) 
iJif"' q->-0 2 iJKa 

This solves our problem, inasmuch as we have, by using 
(3.16), (3.21), (3.22): 

pa. K -~-1-_iJ_..!_ II(K) 
( ) - 12 II (0) iJK"' dll e(K) . 

(3.23) 
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(We have substituted the limiting values for V q and t:(q) 
in (3.21)). The result for (3.22) can be obtainea by 
analyzing the set of diagrams corresponding to the left 
and right sides of this relation. 

As an example, we consider the simplest diagrams: 

~·-· ~-· (3.24) 

a I 

To these diagrams correspond the analytic expressiens 

r d'p 
J ( 2~) 4 G(p)G(p+K)G(p+K+q), 

r d'p 
J (2n)' G(p)G(p+K)G(p+K). 

(3.25a) 

(3.25b) 

Carrying out differentiation in (3.25a) with respect to q, 
and in (3.25b) with respect to K, and transforming to the 
limit q- 0, we immediately establish the validity of 
(3.22). In a similar way, we can consider also diagrams 
of more complicated form. 

4. LONGITUDINAL SOUND IN METALS 

The relations obtained in the previous paragraph 
permit us to represent the expression for the elastic 
modulus Cu (or the longitudinal sound velocity associa
ted with it) in closed form. For this purpose, we first 
note that inasmuch as dn0 /dJ.L = ll(O) (see (3.14)), the 
identities (3.16), (3.17) and (3.23) can conveniently be 
written with the help of the derivatives with respect to 
the electron density. We obtain 

I'i3>(K,-K.0)=_!_ ll(O) _!_ II(K), (4.1) 
6 e(O) iJno e(K) 

r<'>(K - K 0 0) =- _!__( II(O) ) 2 ...!:__ II(K) (4.2) 
' ' ' 24 e(O) iJn02 e(K) ' 

F"(K)=~~~ II(K). (4.3) 
12 iJKa iJno e(K) 

Here we have taken it into account that the quantity 
IT (0)/ t:(O) does not depend on no. Everywhere, expres
sions for the zero wave vector are understood in the 
limiting sense q- 0 (see Sec. 3). 

Substituting (4.1)-(4.3) in (2.19) we get 

no• 2bn0 1 ~ [ K) 2 ,... a K) 
Cn= ll(O)+~+g-.LJ q>( +;r-.n. q> ( 

o o K+o 

+ ~ (K"')'~p"'"' (K)) -1)
0 

[ 2no IV K 12 {}~ 1; (~i 
1 iJ ( 2 iJ II (K)) 1 2 • a• II (K) ] 

+TnoK"' iJK."' IVKI iJno e(K) +Tn• IVKI iJno' e(K) • 

(4.4) 
Expression (4.4) gives the final result for the longi
tudinal sound velocity in metals with account of the 
many-particle interaction with accuracy to (VK/t:F)2 

inclusively. 
The first term in (4.4) describes the contribution 

from a continuous medium (K = 0). In this case, if we 
take the simplest approximation of the self- consistent 
field or the random phase method, rsJ then this term 
leads to the well-known Bohm-Staver result[loJ for the 
longitudinal speed of sound. This expression is also ob
tained in the popular "jelly" model, in which both the 
electrons and the ions are regarded as spread out with 

uniform density. However, in actuality, even very sim
ple metals give results for the longitudinal sound veloc
ity that differ greatly from those of the "jelly" model. 
Even the second term, which is associated with the non
pointlike nature of the ion, gives a much larger contri
bution to the sound (for more details see[uJ ). The same 
applies also to the contribution due to the discrete ion 
lattice (the first term in q~(K) and its derivatives, see 
(2.17)). The role of indirect interaction between ions 
through the conduction electrons, described by the third 
and fourth terms of (4.4), changes greatly from metal to 
metal. However, it is important that in all cases the 
contribution from both terms is of the same order. 
This means that the terms arising from the non-pair 
interaction play as important a role as the terms aris
ing from pair interaction E<2 >. Therefore, in particular, 
any representation operating on purely pair interaction 
inherently contains an incorrect description of the 
acoustic region and, along with this, of the phonon 
spectrum for the entire phase volume. 

Equation (4.4) depends only on the Fourier compon
ent of the pseudopotential and the polarization operator 
IT (q) of the electron gas. Here it is necessary to know 
the value of these quantities only at the discrete points 
of the sites of the reciprocal lattice. The values of VK, 

· at any rate for the most important first coordination 
spheres of the reciprocal lattice, can be determined 
with sufficient reliability for most of the nontransition 
elements, especially for extracting independent informa
tion, particularly on the measurement of the electron 
spectrum. The electron-ion interaction also enters into 
(4.4) through the quantity b, which is the mean value of 
the non-Coulomb part of the pseudopotential (see (2.18)). 
This quantity can be found with comparatively high ac
curacy from any form of the model of the pseudopoten
tial verified experimentally. In particular, we can use 
the pseudopotential model of Henie and Abarenkov. u 2 ' 1J 

For the determination of the polarization operator, 
we can use the usual approximation for IT (q) (see, for 
example / 9 ' 3 J ) , but with the inapplicable condition that 
ll(O) ought to satisfy the relation (3.15). It is natural 
that this also refers to the U(O), which enters in explicit 
form in (4.4). We note that the compressibility of the 
electron gas is computed with sufficient accuracy, as 
direct analysis shows. 

Thus, there is every reason for assuming that by 
using (4.4) one can determine the velocity of longitudi
nal sound quite reliably for most nontransition metals. 
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