
SOVIET PHYSICS JETP VOLUME 30, NUMBER 4 APRIL 1970 

GENERATION OF LONGITUDINAL WAVES AT COMBINATION FREQUENCIES 

IN A BEAM-PLASMA. SYSTEM 

M. I. RABINOVICH and S. M. F AINSHTEIN 

Radiophysics Institute, Gorkii State University 

Submitted April 14, 1969 

Zh. Eksp. Teor. Fiz. 57, 1298-1305 (October, 1969) 

It is shown that the second harmonic of the plasma frequency can be generated in a beam-plasma 
system; this effect is due to the nonlinear interaction between the harmonic plasma wave that is ex
cited as a result of the two-stream instability and the higher frequency longitudinal waves that are 
in synchronism with it. The net effect is a limitation on the amplitude of the excited primary wave, 
that is to say, dynamic stabilization of the two-stream instability. Both two-wave and three-wave 
processes are considered for various relative densities of the beam and plasma. It is found that 
stability can be achieved in the corresponding equilibrium processes in a plasma if the collision 
frequency is high enough. The analogous problem in nonlinear optics is discussed. The analysis is 
carried out for a single-velocity beam and a cold, highly magnetized plasma in the hydrodynamic ap
proximation. Estimates show that it should be possible to observe the effect under laboratory condi
tions. 

IT is well knownl 11 that longitudinal waves with fre
quencies w ~ w0 (w0 is the electron plasma frequency) 
can be excited in a beam-plasma system by the two
stream instability. In the linear approximation, waves 
at frequencies much higher than w0 are damped (when 
collisions are taken into account). It is the purpose of 
the present work to show that nonlinear processes in a 
beam-plasma system can lead to the generation of lon
gitudinal waves at frequencies much higher than w0 , in
cluding waves at a frequency w ~ 2w0 • It is found that 
by virtue of the nonlinear interaction of the growing 
wave with other waves, for which the dissipation is pos
itive, a limitation appears on the amplitude of the grow
ing wave; this leads to the termination of the smearing 
of the beam, i.e., this is an effective method of dynamic 
stabilization of the two-stream instability. The mecha
nism involved in this mode of stabilization differs from 
other well-known mechanisms.l 2 ' 3 1 

Estimates carried out below show the conversion of 
energy of longitudinal waves at frequency w0 into 
higher-frequency waves is always effective and can be 
realized under laboratory conditions. The mechanisms 
being analyzed here may also be pertinent to explana
tions of a number of effects observed in astrophysical 
plasmas. 

The basic features of these nonlinear effects appear 
at relatively low amplitudes of the density and velocity 
oscillations of the electrons in the beam and in the plas
ma. In particular, this feature allows us to regard the 
nonlinear terms in the original equations that describe 
the system as small, while the nonlinear processes are 
regarded as the result of an interaction between indi
vidual harmonic waves. 

1. BASIC EQUATIONS. SYNCHRONISM CONDITIONS 

We will investigate the interaction of a single-veloc
ity beam with a cold plasma making use of the hydrody-

mic equations1> 

aE 
a;-4ne(p + Ps)= 0, 

av e { av } ap av a ---E= -V--Veff v , -+N-=--(pv), at m ax at ax ax 
av, av, e av, ap, av. ap. a 
-+Vo---E=-v,-, -+N,-+Vo-=--(p,v,). at ax m ax at {)x {)x {)x 

(1) 
Here, E is the electric field; e/m is the specific 
charge of the electron; p, Ps, v, and vs are respective
ly the deviations from the equilibrium values N, Ns, 0, 
and V0 of the densities and velocities of the electrons 
in the plasma and the beam, while Veff is the effective 
collision frequency. Since all deviations from equilib
rium are assumed to be small, the right sides of the 
equations in (1), which contain quadratic terms, essen
tially appear in the equation with a small parameter. 2> 

Neglecting collisions, in the linear approximation we 
can write the following dispersion equation for the 
beam-plasma system: 

4nNe2 

roo2 =--, 
m 

Perturbations at frequencies w ~ w? in the system 
in (1) grow with a growth rate y ~ 2-4 V3 (Ns/N)1 13w0 

(cf. [ 11 ) so long as nonlinear processes do not come in
to play. In the hydrodynamic approximation, i.e., when 
beam smearing can be neglected, such a process would 
be the interaction of the growing wave with higher fre
quency waves. Since Eq. (1) only contains quadratic 
nonlinearities the elementary nonlinear process in the 
system is a three-frequency interaction, which is possi-

1) It is assumed that the system is in a strong magnetic field WH ;Jl> 

w0 (wH is the electron gyrofrequency); hence the investigation is 
limited to one-dimensional waves, i.e., solutions that depend only on 
x and t. 

2 l The frictional force "eff is also assumed to be small. 
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ble if the followillP' synchronism condition is satisfied: 

(3) 

If one of the waves Wi grows by virtue of this com
bination interaction, it is also possible for the system 
to generate waves with frequencies WJti· If the stream 

is weak, {3 2 = Ns/N << 1, the growth rate y ( y << w0 ) 

falls off rapidly as the frequency is reduced and is a 
maximum near w0 • In view of this feature we can re
gard the growing wave as being quasiharmonic. These 
considerations apply even more strongly if there is a 
linear damping mechanism in the plasma which leads to 
the compression of the excitation band. 3 > 

Assuming that the highest growth rate .y corre
sponds to a wave characterized by k1 = wo/V0 , and using 
Eqs. (2) and (3), we can determine the parameters of 
the other two waves that satisfy the synchronism condi
tion. The satisfaction of the synchronism condition is 
sensitive to the ratio of the frequencies w0 and w0 s, 
i.e., it is sensitive to the electron density in the beam 
and in the plasma. If the plasma is dense, {3 > f3cr 
(f3~r3 ~ 0.5), the synchronism condition can only be sat
isfied for one wave mode (lying on one branch of the 
dispersion curve) with parameters 

(J}I=Ulo-1> (Uli=ReUl(k!), Im(J}(ki)=y); 

i(4) 
k2 = Ulo + ~o _ flUlo , 

Vo Vo(1- Ulo2/ (Ulo + ~o) 2 ) '" 
Ul2 = Ulo + ~o; 

2Ulo + Llo - I> fl(J}o 
lea= , , Ula =2Ulo + ~o- 0; 

Vo V0 (1- Ulo2/ (2Ulo + ~.- 1>)2)" 

here 1i = 2-4 13 w0 {3 2 / 3 while 

~o 1/ --;;;z- ao• = (- 0 ± 2fl/l'3) • 
(J}o = r ao2- 1 - 1• f32 

If the beam is weak, {3 < f3cr' in addition to the waves 
kz and ka, which are in synchronism with k1, we also 
find synchronism for waves with parameters 

k 2' = wo + ~o' _ flUlo 
-::::---:-:---,o:-:---~.,.,-, Ul2 = (J}o + 6o'; 

V0 Vo(1 - Ulo2/ (Ulo + M) 2) '1• (5) 
k'-2Ulo+~o'-l> flUlo -~ 6 ,_ 11 

3 - Vo +Vo(1-Ulo2/(2·wo+~ 0'-1>)2)'" ,!lls- o+ 0 ' 

which pertain to different branches of the dispersion 
equation. 

If the beam is weak, in addition to the three-wave 
interactions, which satisfy the synchronism condition 
rigorously, it is also necessary to consider two-wave 
interactions that satisfy (3) approximately. Taking kz 
= k1, we find from Eqs. (2) and (3) 

(6) 

where t. w > 0 is the deviation from synchronism. 

2. SECOND-HARMONIC GENERATION. 
STABILIZATION OF THE INSTABILITY 

For the processes that are being considered here, it 
will be shown below by estimates that the lifetime for 

3l This single-mode approximation is obviously valid if the width of 
the instability region t.k satisfies the relation [cf. (II), (17)] 

aA A' A a a 
ks»!J.k ~-~---, (')""'-, (')==-. 

VgrA A vgrA ax at 

the phases of the individual waves T tf1i ~ 1/ t.wi is much 

greater than the nonlinear interaction time T n· Hence, 
the phases can be regarded as regular functions of the 
coordinates and time and treated in the analysis of the 
nonlinear interactions by a dynamic description. l 41 

We shall investigate the three-wave interactions us
ing the method of averaging over two variables. l 5 ' 61 

The solution of Eq. (1) is written in the form of three
waves which satisfy the synchronism condition (3): 

3 

E = ~ 'l'1iA;(x, t)exp {i[(J};t- krx + q:;(x, t)]} +c. c. 'l'ti = 1; 
j=i 

v = ~ '¥2iA;(x, t)exp {i [Ul;t- krx + cp;(x, t)J} + c.c. 
j=1 

p=~ 'l'siA;(x,t)exp {i[Ul;t- krx+cp;(x,t)J} +c. c. 
j==i 

3 

qr•i=-. _e_; 
~mwi 

v, = ~ '¥4iA;(x, t)exp {i[(J};t- k;mx + !!';(x, t)]} +c.c. 
j=i 

3 

P• = ~ 'l'&iA;(x, t)exp{i [Ul;t- krx + !f;(x, t)]}+ c.c. 
i=i 

ur. ekrN. 
Tri= ; 

tm(Ul;- krVo}' 

(7) 

where 'i!i is the distribution coefficient, Aj(x, t) and 

rpj(x, t) are functions of the coordinates and time and 
vary slowly compared with exp i(wt- kx), while wand 
k are related by the dispersion equation of the linear 
problem (2). We recall that one of the interacting waves, 
specifically the wave k11 is a growing wave, that is to 
say, it is characterized by a complex frequency w 
= w1 - iy where w1 = w0 - o. Assuming that y is small 
( y << w0 ) in what follows, w will be assumed to be real 
in all expressions apart from the exponentials: w = w1• 

Equations for the slow variables Aj and tf1j are ob-

tained by averaging over x and t and are written in the 
forml s, 61 

p = iUl, x=-ik, (9) 

where D(p, K) = 0 is the dispersion equation for the 

system; Aj and rpj are the amplitude and phase of 
the waves at frequency w j (m is the subscript for the 

wave type, the branch of the dispersion equation) and 

v~r is the group velocity at this frequency; ~Zm is the 
characteristic function of the conjugate algebraic sys
tem to (1) (a/at- p, a/ax- K, the right sides equal to 
zero), am = canst, and 

. 1 :J::,. 
!7'''=-)S f•(x,t)exp{-i[Ul;t-krx+q;;(x,t)]}dxdt, (10) 

T'Ao o o 

where fz (x, t) represents the right side of Eq. (1) when 
the unknown functions are expressed in terms of (7). In 
the present case, taking account of (3) we obtain the fol
lowing averaged equations: 
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A,+ vgrr4t' = a1A 2As cos <I>+ ·y(A12)A 1, 

A2 + vgr,.A2' = cr~tAs cos <I>- v~2, 

As+ vgr.,.4s' = crsAtAz cos <I>- vsAs; (11) 
. .. . ~· !jlt + vgr1cpt' = ---crt sin Cl>, !jl2 + vgr~!jl2' = ---cr2 sin <I>, 

. ~ . Az (12) 
. AtAz 
Cj)3 + llgr3Cj)31 = -A crs sin Cl>, 

' 8 

llgr = Vo[1 + (llo2wo, /w3(1- wo2/w2)''•]-t. 

Here 

(13) 

-1 {ewcfks(ws- kaVo) 2 ew,(wa- kaVo) 2wo2 / kt kz) 
cra=- + -+-

2Da mw1w2 mwtWz Wt w2 

+ ewa2(1lo.'ks + ew32(ws-k3Vo)wo,2 
m(Wt- ktVo) (wz- k2Vo) m(wt- ktVo) (w2 - kzVo) 

x( kt + kz )}· 
Wt-ktVo wz-k2Vo ' 

ci> = !jlt + cpz- Cfa, 

D;~t. 2, s = [wo,2w;- w;(w;- kt Vo) 2 + (wo'- w12) (w1 - k1 V0 ) ]. 

It is interesting to note that these equations are the 
same as the equations that describe the nondegenerate 
parametric interaction of electromagnetic waves in a 
transparent medium with a quadratic nonlinearity and 
small losses. [ 7• 81 However, the corresponding prob
lem in nonlinear optics is actually quite different from 
the one being considered here. This difference arises 
primarily from the fact that in nonlinear optics one 
usually considers the interaction of weakly damped 
waves: the parameters w and k lie in the region of 
transparency of the medium. The coefficients aj, which 
determine the efficiency of the nonlinear interaction, 
satisfy the well-known Manley-Rowe relations in this 
case;[ 91 the nonlinear process itself is the transforma
tion of the energy of a wave which appears from outside 
(a pumping wave) into the energy of waves at other fre
quencies. 

In the present problem the generation or amplifica
tion of the waves k2 and ks that lie in the transparency 
band is realized by virtue of the acquisition of energy 
of the other characteristic wave, which is a growing 
wave in the linear approximation. In this case the Man
ley-Rowe relations are obviously not satisfied. We note 
that the analogous problem can also be formulated in 
nonlinear optics. It arises in the analysis of the combi
nation interaction of waves in an oscillator. An oscilla
tor of this kind might be realized experimentally if, for 
example, a population inversion is produced in a medium 
with a quadratic nonlinearity for one of the frequencies 
that satisfies the condition in (3). 

We shall consider the three-wave process in an infi
nite system, assuming that the solution is uniform in 
space. For this purpose we find the equilibrium state 
of the system (11)-(13) and analyze the stability of this 
state with respect to perturbations in amplitude and 
phase. The existence of stable regimes will show the 
beam-plasma system can support stationary genera
tion of the waves k1, ka and ks, which implies stabiliza
tion of the two-stream instability. It is interesting to 
note that if dissipation effects are neglected for the 
non-growing waves (waves 2 and 3) i.e., if collisions in 
the plasma are neglected, then in the approximation be
ing treated here an equilibrium three-frequency regime 
is not possible. 

In the general case, taking account of the feedback 
effect of the generated waves on the single-velocity 
beam we find that the growth rate of the wave falls off 
with increasing energy of waves 1, 2, and 3; this feature 
appears as a result of the heating of the beam and the 
plasma, i.e., the smearing of the electron velocity dis
tribution function. [a, 31 At small energies of the inter
acting waves this effect can be treated phenomenologi
cally by taking 

y(AJ2)= yo-~ '\'1A12 (yjAJ'~yo), (14) 
i=1 

where Yo= y -II. 
Setting A, A', (p and qJ' equal to zero in Eqs. (11) 

and (12) we find the steady-state generation parame
ters:4> 

(15) 

Limiting ourselves to spatially uniform perturbations, 
it is easy to show that the stationary regime (15), which 
corresponds to <P = 0, is stable with respect to such 
perturbations in the parameter region 

vz>vo, Yo ( N, )''• --·- <1. 
Y~oz2 N 

(16) 

A similar result is obtained for convective instabilities 
which depend only on t = ut - x (u = const). 

A three-frequency stationary mode of operation is 
possible only if the electron beam is relatively dense 
({3 ~ f3cr>· If the electron density in the beam is small 
({3 < f3cr> the basic process is the two-frequency proc
ess, for which the synchronism condition in (6) is satis
fied approximately. Writing A2, cp 2 = A1, (/Ju from (6), 
(11}-(13} we obtain the averaged equations which de
scribe generation of the second harmonic ""'2 w0: 

A, + vgr1A{ = crtAtAa cos ci> + voA~o 
As + vrp,A/ = aA t2 cos <I> - vAs; 

<Pt + vrp,q>{ = -·crtAz sin <I>,. 

(17) 

4 > The steady-state amplitudes [ cf. ( 15) and (20)], as can be seen 
from a comparison with the results of [2 ], are found to be much smaller 
in this parameter region than the amplitudes corresponding to the be
ginning of the beam-smearing process (i.e., the quasilinear relaxation of 
the distribution function). Thus, the analysis given here is valid. 
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where 
2'i•e 2'i•e 

O't~---, 

mVo~'1• 
as :::::::::; , yo= y- Vt, 

mVol'3~'1• 

"•<ll<ll 
Vt=--, 

6 

(19) 

The steady-state generation of the second harmonic is 
characterized by the parameters 

Aos= Yo , 
I cr,l cos <Do 

tg<llo=~. (20) 
2yo-v 

yov 
Aot2 = , I O'sO't I cos2 <Do 

Linearizing Eqs. (17) and (18) we can show easily that 
this regime is stable if 

v > 2w. (21) 

Thus, if the instability is to be stabilized the damping 
of the second harmonic must be rather large. 

3. DISCUSSION OF RESULTS 

We now wish to evaluate the possibility of observing 
the effects considered here in a laboratory plasma. 
First, however, we note that under laboratory condi
tions interest also attaches to the problem of conver
sion of energy in a growing wave at frequency w 0 into 
energy at the second harmonic in a bounded sytem. If a 
perturbation at frequency 2 w0 is excited at the bound
ary of the beam-plasma system it will be amplified in 
the propagation process and, in a system of adequate 
length, will reach the limiting value Ao3 = Y oil a 11 

x cos ¥0 • The stationary processes in this amplifier 
are described by Eqs. (17) and (18) with Aj = C,Oj = 0 and 

4> = 2(,01 - (/J3- 6kx where 6k ~ 2o/V0 is the deviation 
from spatial synchronism. Although we shall not here 
actually consider the solution of a concrete boundary 
value problem or an unbounded problem, we can make 
estimates that are useful for equilibrium regimes. 

Three-wave process. The parameters of the beam 
and plasma will be the following: N ~ 1.25 x 1011 cm-3, 

w0 ~ 2 x 1010 sec-\ Ns~ 1.6 x 1010 cm-3, {3;:;:, 0.5, the 
. 2 13 2/ 2 thermal veloctty of the electrons vT ~ 5 X 10 em sec , 

the effective electron-neutral collision frequencyE 111 is 
lleff ~ 5 X 109 sec-\ The energy of the beam electrons 
is W ~ 1 keV, whence V0 ~ 1.7 x 109 em/sec while the 
current density is j = eNsV0 ~ 4A/cm2• With these 
parameters, the beam-plasma system will generate 
plasma waves with wavelength A.1 ~ 1 em and A3 

~ 5.35 mm. In the stationary regime the power of these 
waves, in accordance with Eq. (15), is respectively P1 

~ 10-2 W /cm2 and P 3 = 27 W /cm2• These quantities are 
much smaller than the beam power W = N sm vV2 
~ 4 x 103 W/cm2, so that the approximation used here 
is valid. 

We note that to achieve one-dimensional motion in 
the system it is necessary to apply a longitudinal mag-

. . 1 5 103 • th' 1011 - 1 netic fte d H0 ~ x g; m 1s case wH ~ sec 
> Wo. 

Two-frequency process. We shall retain most of the 
parameters of the plasma given above, merel~ changing 
the velocity and density of the beam: Ns ~ 10 cm-3, 

(3 213 ~ 0.2, V0 ~ 1. 7 X 109 em/sec, W ~ 20 W /cm2 , 

j ~ 0.03 A/cm2 and lleff~ 109 sec-\ With these values 
of the parameters the power in the generated waves, as 
follows from (20) is P1 ~ 0.1 W/cm2 and P 3 

~ 0.3 W /cm2• As before, the condition P1 2 << W is 
' satisfied. 

The authors are indebted to A. A. Andronov, A. V. 
Gaponov, M. S. Korner and V. K. Yulpatov for useful 
discussions. 
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