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We consider the contribution to the kinetic coefficients which is caused by the increase of long-wave 
parts of the fluctuations near the transition point of a system between liquid and gas. To describe the 
fluctuations before averaging over them we use the equations of hydrodynamics, regarded as micro­
scopic equations of motion of the apposite degrees of freedom. The terms for viscosity, thermal con­
ductivity, and so on, are treated as empirical terms approximately describing the other degrees of 
freedom which are taken to have already been eliminated by averaging. It is assumed that before the 
averaging over the fluctuations there exists a region of applicability of a theory of the Landau self­
consistent-field type. We make estimates of the corrections to the kinetic coefficients, and ascer­
tain how close to the critical point these estimates can still be taken as reasonable. 

ExPERIMENTS on critical phenomena in solutions 
have given interesting results[ lJ which indicate that the 
viscosity increases near the critical point of a solution. 
Attempts to explain such anomalies have been made in 
a number of papers. l 2 - 4 J The purpose of the present 
paper is to treat, within the framework of a phenomeno­
logical approach, the problem of the contribution to the 
viscosity caused by the increase of the long-wave parts 
of the fluctuations near the liquid-gas transition point. 
The existence of a large characteristic scale of length 
allows us to hope that the equations of hydrodynamics 
can be applied, regarded as microscopic equations for 
the degree of freedom they contain, to describe the 
fluctuations before one averages over them. The terms 
for viscosity, thermal conductivity, and so on, are then 
regarded as empirical terms approximately describing 
the effects of other degrees of freedom over which the 
average has already been taken. In other words, the 
"bare" kinetic coefficients occurring in the microsco­
pic equations do not give the system's response aver­
aged over all degrees of freedom, since the averaging 
has been taken only over the nonhydrodynamic degrees 
of freedom not associated with the critical fluctuations. 
We assume that the exact equations of motion of the 
hydrodynamic degrees of freedom are of the same form 
as the hydrodynamic equations in which all nonlinear 
effects describing the interaction of the fluctuations are 
taken into account. In what follows we shall keep the 
term "hydrodynamic equations" for these microscopic 
equations. 

In Gibbs statistical mechanics there are relations 
(fluctuation-dissipation theorem) relating the mobilities 
of the system, averaged over all fluctuations, with the 
corresponding correlation functions. To find the corre­
lation functions one could try to use the exact micro­
scopic theory, dealing with the motion of all the parti­
cles of the system. However, we do not see any mathe­
matical way to realize such a program. On the other 
hand, since the system of equations that we use contains 
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empirical terms describing transfer of energy into non­
hydrodynamic degrees of freedom, we cannot use the 
usual Gibbs formalism without explicit introduction of 
the equations of motion for the nonhydrodynamic de­
grees of freedom. Nevertheless we can secure a level 
of critical fluctuations by introducing extraneous ran­
dom forces into the system. The ensemble of these 
forces must be such that the "artificial" fluctuations 
are the same as the equilibrium thermal fluctuations 
that result from the usual Gibbsian averaging with the 
full microscopic description. Moreover they must sat­
isfy the fluctuation-dissipation theorem, and this en­
ables us to find the characteristics of the ensemble of 
random forces. This will be discussed in more detail 
in Sec. 2, 

On averaging our system over the critical fluctua­
tions, we get a system of macroscopic equations de­
scribing the relaxation of the macroscopic average 
quantities of the system (the mean particle-number den­
sity, momentum density, etc.) for the case of small de­
viations from equilibrium. For times and distances 
much larger than all the characteristic fluctuational 
lengths and times, we can expect, on the basis of the 
usual arguments employed in the derivation of the hy­
drodynamic equations, that these equations will be of 
the form of the ordinary linearized hydrodynamic equa­
tions. These macroscopic equations involve the macro­
scopically observable kinetic coefficients (the actual 
viscosity, thermal conductivity, etc.). If, on the other 
hand, there are macroscopic changes on time and dis­
tance scale smaller than (or of the order of) the char­
acteristic scales associated with the correlation ranges 
-which are increased in the critical region-the aver­
aged equations may be of a form very different from 
the ordinary equations. In particular, we can expect 
that there will be a strong dispersion of the kinetic co­
efficients. In this case the interpretation of these quan­
tities as viscosity, thermal conductivity, and so on, is 
not unambiguous. 
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In the main we shall consider only the region of large 
times and distances, where the definition of the kinetic 
coefficients is unambiguous. In this case, by applying 
the hydrodynamic theory of fluctuations to the com­
pletely averaged equations, we find the expressions for 
the correlation functions in terms of the true viscosity, 
thermal conductivity, and so on. On the other hand, by 
calculating the correlation functions by means of an 
averaging over the hydrodynamic degrees of freedom, 
we find the expressions for the true kinetic coefficients 
in terms of the empirical constants. We note that it is 
reasonable to separate out the hydrodynamic degrees of 
freedom only for scales of size much larger than inter­
atomic distances, though still smaller than the correla­
tion range. As will be shown below, for some of the 
quantities there is no large contribution owing to the 
critical fluctuations-the main contribution is from dis­
tances of the interatomic order. From the point of view 
of the theory to be given here, this means that the cal­
culation of these quantities is outside the framework of 
their applicability. However, though they do not show 
anomalous behavior in the critical region, as functions 
of the temperature they may have singularities in their 
derivatives. The appearance of such singularities is 
due to the mechanism described in l 51 • 

1. THE METHOD FOR STUDYING THE CRITICAL 
FLUCTUATIONS 

As the macroscopic characteristics of the system 
we introduce the following densities of conserved quan­
titites, which have meaning also outside hydrodynamics: 

1 ----v:-)= p(r)= ~6(r-r;), 
(r i 

i(r)= ~ p;6(r-ri), 
i 

H(r) = 1'2(;) + e(r)p(r). 

Here E is the internal energy, and the summation is 
taken over all particles in a small macroscopic volume. 
Hereafter all densities will be used in the form of their 
Fourier components: 

.x(k, oo) = S S .x(r, t) ei(kr-wt) dr dt. 

We now define a linear combination of the variations 
of these quantities: 

bT(k, oo) =- Cv(k, oo)[T(:P/oT) v- P] 6V(k, ro) + Cv(~. ro) lle(k, ro), 

which is such that its equal-time correlation with p is 
equal to zero, and the autocorrelator is 

(TT)k = 1'2/Cv(k, 0). 

We shall use T as a local "temperature." 1 > We assume 
that the equations for these densities are 

dj(r) --;u-= -Vo(r)- Vo•x(r), 

p(r) = -Vj(r), 

.B(r) = - VJH(r) + Vq•x(r). 

(1.1) 

{1.2) 

(1.3) 

1) Here Cy(O, 0), (3P/3T)y, etc., are empirical constants. Only far 
from the critical point, where the nonlinearities in (1.1)- (1.3) can be 
neglected, do they have the meaning of the ordinary thermo-dynamic 
derivatives. 

Here O'ex and qex are external forces which reestab­
lish the actual temperature equilibrium in the system. 
For a system with I j I = 0 the diagonal element ayy{r) 
of the stress tensor is the "pressure" P. Moreover, 
JH{r) = u• j/p- q, where q is the energy flux caused 
by the gradient of the "temperature" T. 

For the complete description of the system we must 
adjoin to (1.1)-(1.3) an equation of state. It is assumed 
that before the averaging over the fluctuations there 
exists a region of applicability of a theory of the type 
of the Landau self-consistent field. l 61 Then, assuming 
that the spatial dispersion of the compressibility is of 
the form corresponding to the theory of Ornstein and 
Zernike, we have 

bP=(!!...) (1+k'rc2)6p+(!!...) 6T+~(a'P) (6r)' a;> r aT p 2! ap' r 

+ ~ [ ( ~~) J T 1\p 6T + :! ( :~) P ( 1\T) 2 + :! ( ~;) T (lip) 3 

+~~[(o'P) ] (1\p)'(IIT)+~~[(o'P)] 6p(6T)' 
2 aT . op' r p 2 ap aT' p r 

+ ;, ( !~) P (6T)3, 

where rc is a quantity of the order of the correlation 
range. As generalized forces and coordinates we take 

k~ k Fn=--On~•x(k,oo), :&;=/;( ,ro), 
OOOo 

ka. f = -T q,.ex(k, oo), y = T(k, ro). 
(i} 0 

The expressions for the corresponding generalized sus­
ceptibilities are given in the Appendix. 

As an illustration of the method of solution of (1.1)­
(1.3) let us consider the simple model of a nonlinear 
oscillator with friction. The equation of motion in the 
w representation is of the form 

(oo02 - ro2 - iroy).x =A S .x(oo- oo').x(@')dro' 

+ B S S x("'- ro'- "'").x(ro')x(ro")d"'' dro" + j•X(ro). 

Regarding the nonlinearities as small corrections, we 
get in first approximation 

x,(ro) = a 1 (ro)f"X(ro), 

where a 1 ( w) = [ w~ - w2 - iwy ]-1 is a generalized sus­
ceptibility. In higher orders of perturbation theory 
x{w) will be a complicated function of fex. We define 
the total mobility a{w) as the variational derivative 
(15x(w)/6feX(w)). Here the averaging is over the en­
semble of random forces. The ensemble is assumed to 
be such that averages calculated with it are equal to 
the thermodynamic averages. Selecting the strongly 
connected diagrams from the resulting series, we can 
write the analog of the Dyson equation a(w) = a 1(w) 
X [1- ~ 1 {w) where ~ 1 (w) is the mass operator. The 
fluctuation-dissipation theorem enables us to set up a 
connection between the Fourier components of the total 
correlation functions of the fluctuating quantities and 
the linear responses of the system to the external ac­
tions that could cause particular fluctuations: 

kT 
(x.X)ro = --Ima(ro). 

2~ro 

Analogous relations must also be imposed on the higher 
moments of the field variables. These conditions, which 
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are equivalent to the requirement that the system be in 
thermal equilibrium, completely fix the ensemble of the 
forces fex(w), which in general is not a Gaussian one. 
Sufficiently far from the critical point, however, where 
the expansion parameters of the total vertex functions 
are still small, the spectrum of the random forces can 
be regarded as Gaussian, and ~ 1(w) will have the fol­
lowing form: 

t (<.o>)=4~+3 Q +fl ~. (1.4) 
i ......___. ~ 

Here the point and shaded circle denote vertex func­
tions of types A and B, [ 7 1 and a wavy line is a total 
correlation function ( xx >w: 

JVV\r "'- z:,((d) -, (1.5) 

where -(kT/2rrw) Im ~ 1 (w) = ~2(w). Thus we find that 
a -1(w) = U~- w2 + iwr, where U~ = w~- Re ~ 1 (w) and 
r = y + (2rr) x (kT)-1 ~ 2(w). 

We shall further consider a concrete liquid-gas sys­
tem described by Eqs. (1.1) -(1.3). 

2, THE CORRECTIONS TO THE KINETIC COEFFI­
CIENTS. DISCUSSION OF RESULTS 

As is well known, the poles of the Green's functions 
determine the spectrum of the elementary excitations, 
and thus in our case give a complete spectral descrip­
tion of the thermal fluctuations. In the critical region 
there are three characteristic lengths in a liquid: the 
isothermal correlation range r CT ~ const • C.f\ the 

adiabatic correlation range r CS ~ const • C ~t, and the 

interatomic distance a ~ 10-7 em. Accordingly near the 
critical point the characteristic times associated with 
the relaxation of individual formations or with un­
damped oscillations can be classified in the following 
way: a) thermal-flux times w;1 ~ - p0 CprcT/K; 
b) sound waves w;1 ~- p0rcs/X, w;1 ~ rcs/Cs; 
c) times associated with the establishing of equilibrium 
in momentum space in a small macroscopic volume of 
size a~ 10-7 em: w~1 ~ 10-12 sec. Divergences in the 
kinetic coefficients, if there are any, are necessarily 
caused by slowly relaxing formations, including inter­
ferences of all possible kinetic processes with large 
wavelengths. The high-frequency fluctuation field, on 
the other hand, leads simply to a shift of the position of 
the critical point. 

Using (1.1)-(1.3) and the estimates for the suscepti­
bilities: a!~> (w1 , k) ~ k4 , a~ 1>(wu k) ~ k3, a(l>(wu k) 

1] • 1 

~ aU>(w2 , k) ~ k'\ aij>(w 2, k) ~ const, and ai1 >(w 2, k) 
~ k, we can easily see that all the nonlinearities except 
those in the equation of state lead to a shift of the tran­
sition point. Consequently we can assume that the 
"bare" thermodynamic quantities are regular functions 
of the temperature in the critical region. The main 
contributions to the corrections to the kinetic coeffi­
cients from these nonlinearities comes from a region 
of k and w associated with interatomic distances. We 
can write, for example, some characteristic terms of 
this sort, taking the complete vertex functions as the 
bare quantities: 

<'>1Ja"" <'>sa,...,~ S S Uv(-k) kv (pS)h,.,dkdro, (2,1) 
Po W 

<'>xa ~ Po(kT)-1 s S ((ST>-h, _., (Sp)k,., + (pf>-A,-"' (SS)A, .,] w: dkdw. 

k (2.2) 
According to the fluctuation-dissipation theorem, the 
complete correlation functions are of the form 

kT 
(jpfv)h,m = --2 -(2lt)31mu~v(k,w), ltW 

(jpT)k,m=- 2kT (2lt)Slmu~(k,ro), (2.3) 
ltW 
kT 

(TT)A,., = --2 - (2n:)Slmu(k, w). 
:n:w 

Using (2.3), we find from (2.1) and (2.2) that only the 
temperature derivatives of 11, ~. and K can have singu­
larities in the critical region. Inclusion of the correc­
tions to the vertex functions does not change the behav­
ior of ll.1], ll.~, and ll.K. The result derived by Fixman[21 

can be reconstructed on the assumption of "frozen" 
isothermal fluctuations. In fact, in this case we have 

Ll1J-kT(aP)~ To')., ss<JJ• 
ar p xpo2 k' 

CT2(k)- W2/kZ 
X {{C~(k)-w"/k"]"+ w"'J.,"foo"}"dkdw- const·rex 

This assumption, however, is justified only for X0Cp/K 
<< 1. In our case, meanwhile, we must expect that the 
opposite inequality will hold. 

In our treatment power-law estimates and diver­
gences can be associated only with the scale reT· In 
the case when the contribution to the quantities in ques­
tion is mainly due to small distances (of the order of 
interatomic distances), the hydrodynamic treatment is 
not correct, and in our approximation we must regard 
such a quantity as a constant. We note that in general 
corrections of the order of the value of the correlators 
at interatomic distances can have singularities in their 
temperature derivatives. The point is that the mean en­
ergy, density, and so on, are expressed in terms of 
such correlators. Therefore those of the kinetic coef­
ficients which, while remaining finite, contain correc­
tions of the type described above can show a behavior 
analogous, for example, to that of the resistance of a 
ferromagnetic substance at the Curie point, which was 
studied in [ 51 • 

Let us now consider the correlations, associated 
with reT, to the volume viscosity X and the thermal 
conductivity K. It is obvious from (1.1)-(1.3) that the 
main contribution comes from the interactions de­
scribed by the nonlinearities in the equation of state. 
We shall assume that the expansion parameters in the 
vertex functions are still small, so that in the diagrams 
for ~ we can confine ourselves to the bare vertices. 
Furthermore it is obvious that the behavior of ll.X and 
ll.K is mainly determined by those diagrams of ~ which 
contain only j-lines. For simplicity we can go over to 
the variables T and p. Then 

.1~ "' r: (kTrf (z.rrZ [ ~ 0 +II e l' (2,4) 

where a point is (a 2P/ap 2)TP;\ a circle with a point is 

(03P/ap 3)Tp;\ and a wavy line is (pp)k w· 
' As is well known, in phase transitions of the second 

kind the density and the thermodynamic functions are 
continuous. There are jumps in the derivatives of these 
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functions with respect to the physical parameters. 
Therefore near the transition point, in the expression 
for the expansion of the free energy F in powers of the 
small parameter fJV = 6(1/p), 

1 ( 8P ) 1 ( 82P ) 1 ( IJSP) oF=-- - (6V) 2-- - (t'IV) 3-- ~ (t'IV) 4 
21 av T 31 avo T 4! ava T ' 

the third-order terms are always smaller than the 
fourth-order terms. Otherwise there can be a jump of 
the particle density. Accordingly, near the transition 
point we can confine ourselves to the contributions from 
cubic nonlinearities in the equation of state. We then 
have 

r CPCTtorcT• ] 
A~ M +/\A,+ x(83P/8p3)T2(kT) 2 y' (1 + y2)-l. 

2 
Here Cp, CT , K, and A are macroscopically observ-
able quantities, and y is the expansion parameter, 

Far from the critical point, where the random -force 
ensemble can be taken as Gaussian, CT and rc2T be-

have like T = (T- Tc)/Tc. Right at the transition point, 
where the irreducible parts of the correlations are im­
portant, CT and reT must have a singularity of the 
type T - 4 ; 3 • Thus the value of Tat which y comes to be 
of the order of unity is the boundary of the region of ap­
plicability of the calculation. How close it is to the 
critical point depends on the properties of the system. 
In fact, 

zp. a' 
'Y ---r''• c• r3 ' 

where v2a3 ~ kT/p0 , cis the velocity of sound far from 
the transition point, and r is the range of the interac­
tion far from the transition point. Accordingly, the lar­
ger the range of the interaction in the system, the 
broader the region of applicability of our estimates. If 
we assume that c ~ 105 em/sec, Tc~ 3 x 102 °K, 
A~ 10-1 g cm-1 sec-\ p0 ~ 1 g-em 3 , and 
r ~ K/CpCTPo ~ 10-6 em, then for T ~ 105 we have 
y ~ 10-3• 5 and AA ~ Ao x 10-2• But because the esti­
mates are sensitive to the numerical values of the coef­
ficients they must be specially worked out for each con­
crete system. For K we have, in analogy with (2.4) 

x-xo ~ 1\xa+__!..._[( a•P) J (8•S/8p•)T . 
aT 8p2 T p pok 

S S S S :: (p•)-k-q, -ro-<> (p•),,"' (p2) q," dk dq dw dQ. {2. 5) 

It is not hard to see from {2.3) and (2. 5) that K is finite 
for T- Tc as long as y < 1. The corrections to the 

shear viscosity are the same as before, since the non­
linearities in the equation of state merely renormalize 
the vertex function. For the critical point of a solution 
the consideration of such a mechanism of increase of 
the viscosity basically leads to the replacement of 
K/ p0Cp by the diffusion coefficient D = (ci./ p0 ) 

x (a JLioC)T p. A more detailed treatment of this case 
will be givJn elsewhere. The work of Kadanoff differs 
from ours through the use of quadratic nonlinearities 
in the equation of state to describe the critical fluctua­
tions, and evidently also in a different definition of the 
kinetic coefficients. 

APPENDIX 

( iJP ) w•To ( iwi. w• )-1( k12 )-1 
a;= i fiT P xk' CT2 -p.-Tz 1--,;;: k;, 

a=_ iwTo ( 1 -~)-l 
xk2 k2 

Here C-2(k, w) is the "compressibility" at frequen­
cy w: 

( iwi. w2 )( k12 )( k22 )-t iwi. w2 
C2 (k Cil)= CT2---- 1-- 1-- +-+-

' Po k• k• k• po k• ' 

..!:!_= iwpoCv (cE?-- iwi.,_ w2)(cr- iCilA. _ w•)-', 
k2 xk2 Po k2 Po k2 

kz2 iwpoCv 4 
--;;;=~· 1..=-sTJ+£. 

a~~ denotes the longitudinal part of the generalized sus­

ceptibility, and a~ the transverse part. 
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