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Asymptotic values of the renormalized (after Dyson) photoo and electron Green's functions are ob
tained for large momenta in the so-called a(uL)n approximation (the definition of which is given in 
the text). The gauge transformation for the renormalized electron Green's function is considered. 

1. INTRODUCTION 

TnE investigation of the asymptotic renormalized 
electrodynamic functions DJJ.v, G, and rv in the region 
of large momenta has been the subject of an appreci
able number of papers[l-sl, but this problem is far from 
completely solved and continues to remain of interest 
in many respects. 

In the asymptotic region, the series of perturbation 
theory for the renormalized functions become double 
series in the parameters a and aL, where a is the 
renormalized coupling constant and L is a generalized 
symbol for the logarithms of the corresponding large 
momenta: L ~ ln (k2/m 2 ), ln (p2/m 2 ), etc. The charac
ter of these series can be presented schematically in 
the following form 1>: 

f(L, a) =fo(aL) +aft(aL) +a'/2(aL) + ... , (1) 

(2) 

In view of the smallness of a, we can confine our
selves, generally speaking, to several terms in the 
expansions of the type (1) with respect to a, but in the 
expansions (2) it suffices to confine oneself to a finite 
number of terms only in the momentum region a L 
<< 1, whereas in the region aL ~ 12> it is necessary 
to know the exact form of at least several of the first 
"coefficient functions" fm(aL). The approximation in 
which only fo(aL) is taken into account will be called 
the (a L )n approximation, while allowance for the 
terms afl(aL) will be called the a(uL)n approxima
tion, etc. r 81 • 

The need for considering the region aL ~ 1 arises, 
for example, in such problems as the determination of 
the values of the renormalization constantr 9l, the prob
lem of self-consistency of the renormalized quantum 
electrodynamics[ 101 , the problem of the existence and 
properties of solutions of the "superconducting type" 
in quantum electrodynamics[8l, and others. Studies of 
these problems have been limited so far to the (uLf 

l)We note that for the vertex function there exists also a "double 
logarithmic" region [6 ), which is not considered here; for details see 
article II, which is devoted to the vertex function (Zh. Eksp. Teor. Fiz. 
57,2198 (1969) [Sov. Phys. JETP 30, No. 12, 1970]). 

2llt can be shown [7 ) that aL ceases to be a characteristic parameter 
of the expansion in the momentum region in which aL ;!> I. 
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approximation, but, as shown in[sJ, it is also important 
to take into account the u(aL)n approximation, and 
possibly also higher approximations. 

In this paper we calculate in the a (aLP approxi
mation the Green's function DJJ.v(k) and G( p) re
normalized after Dyson. This problem can be solved 
either on the basis of the Dyson equation[ 1J or with the 
aid of asymptotic functional relations of Gell-Mann 
and Low[2l. We use the second method, since it 
reaches our target in a shorter path. 

We note that asymptotic forms of the Green's func
tions in a similar approximation were considered by 
Bogolyubov and Shirkov within the framework of the 
method of renormalization grouprsJ a>. The results ob
tained in (sJ, however, are insufficient for our purposes 
in two respects. First, in[sJ are considered not ordi
nary Green's functions, renormalized after Dyson and 
dependent on the physical interaction constant a, but 
functions normalized at certain arbitrary points k 2 

= A 2 and p2 = A' 2 and dependent on the charge e 2 ; the 
correspondence between the asymptotic forms of both 
types of functions occurs only with logarithmic accu
racy, i.e., when terms ~u are neglected, and these 
terms must be taken into account in the a(aL)n ap
proximation. Second, not all the coefficients of the 
logarithmic terms have been determined in[ 5l; in addi
tion, the coefficient taken from [4 J seems to us to be 
incorrect ( cf. our formula (44)). 

In view of the foregoing, we shall calculate here the 
asymptotic forms of the Dyson Green's functions in the 
a (a L )n approximation in an independent manner, with 
the aid of the Gell-Mann and Low functional relations. 
We note that this method, just like the renormalization
group method, is not applicable to the vertex function 
rv(p, q). The calculation of the a(aLf asymptotic 
form of r 11 (p, q) will be carried out in the succeeding 
article with the aid of Dyson's equation. 

2. SOLUTION OF THE ASYMPTOTIC FUNCTIONAL 
RELATIONS IN THE a(aL)n APPROXIMATION 

The asymptotic functional relations of Gell-Mann 
and Low hold for the scalar functions d(k), A( p), and 

3)The a(aL)n asymptotic form of the part of the function G(p) 
which is odd in pf.l was considered earlier by Gor'kov [4 ). His result, 
however, contains errors (compare with our formula (46)). 
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B{p), in terms of which the photon and electron 
Green's functions are expressed41 : 

n •• (k)=d~~ (o ... -k~~). G-t(p)=-pA(p)+tmB(p). (3) 

These relations are of the form[a,laJ 

ad(k)= F( q:(a)+ ln:.), 

A(p)= r1 (/.., a)Ht( 'Jl(a)+ln !: ) , 
B(p) = r2(/.., a)H2( !J)(a) + ln ~:), 

~.p2>m2, 

(4) 

(5) 

where F, cp, ri, and Hi are unknown functions, and A 
is a parameter introduced in order to eliminate the 
infrared divergence {for example, the photon "mass"). 
Relations (4) and (5 ), as will be shown below, make it 
possible to determine the functions d, A, and B with 
accuracy up to the a ( aLf approximation for the first 
four perturbation-theory terms for each of these func
tions (two terms of the form ( aLf and two of the 
form a (a L )n at n = 0 and 1 ). (Thus using the results 
of perturbation theory, relations (4) and (5) assume the 
character of equations that makes it possible to addi
tionally refine the form of the corresponding functions.) 

For d(k), these four terms are51 

a k2 5a 13 a2 k2 (6) 
d(ok)= 1 +s;;:-In--;;.--g;-- 108 ~ln;;T+···. 

Expanding formally the right side of relation (4) with 
respect to the parameter ln (k2/m 2) up to the linear 
term and comparing the result with {6 ), we obtain two 
equations 

F(qJ(a))= a (1-~+ ... ), _d_F(q>(a))=~(1-.£.~+ ... ) 
9n dq:(a) 3n 36 n ' 

which makes it possible to determine the form of the (7) 
functions F and cp, and consequently also d{k), with 
the required accuracy. The result is of the 

d(k)=_!_[1-~~-~lnTJJ, TJ=i-~ln.!_ (8) 
T) 9n TJ 4n TJ 3n m2 ' 

3n 9 a (9) 
;(a)= --;;:-- 4 lns;-· 

Writing for the functions A and B expansions ana
logous to (6), in the form (here S =A, B) 

a p2 a al y 
S(p)= 1 +a1-ln-2 +a2-+aa-ln-2 +... (10) 

rr m n n2 m 

and using expression {9) for cp (a), we can readily ob
tain on the basis of relations (5), in analogy with the 
procedure used for the function d(k), the following 
result: 

S(p)= s-:n, { 1 + : [ a2 + 3 (! at+ ata2- aa)( 1- :) - 9t ~ s]} 

The problem thus reduces to the calculation of the co
efficients a 1 , a 2, and a 3 for the functions A( p) and 
B( p). This problem is solved in the next section. 

For the vertex function r 11 ( p, q), the functional 
relations, analogous to (5), are of the form[la] 

fUl(p,q)=R;(/..,a)~;(q:(a)+ln p:, qJ(a)+ln P~, qJ(a)+ln~). 
m. m m 

p2, q2 >- m2, (12) 

where r (i) is any of the scalar functions contained in 
r 11 (p, q). In the case p2 » q 2 ~ m 2, Eq. (12) goes over 
into the simpler expression: 

f(il(p, q) = R1(/.., a)~~ ( q:(a) +In ~2 , '1'(11)), p2 >- q2 ~ m2. (13) 

Unlike the Green's functions considered above, the use 
of the results of perturbation theory for r 11 , even in 
the case (13), does not make it possible to refine the 
form of r (i)( p, q), since each term of the perturbation
theory series of the type (1) and (3), as can be readily 
verified, can be represented in the form (13). This is 
connected with the fact that the functions f:3i in (13), 
unlike F and Hi in (4) and (5), depend not on one but 
on two arguments. To determine the asymptotic form 
of rv{p, q) it is necessary to use, consequently, more 
powerful methods, for example the Dyson-equation 
method. 

3. CALCULATION OF THE COEFFICIENTS af AND 
a~ 

1 

In this section we obtain the coefficients at of the 
expansion of the form (10) for the functions A and B. 
In accordance with the assumed approximation, we 
represent any function f in the form 

f = /(o) + f, (14) 

where f(O) is the known contribution of the (aLf 
approximation, and f is the sought contribution of the 
a( aLf approximation, and to find ai we shall need 
only the terms with n = 0 and 1. The functions A and 
B are connected with the renormalized self-energy 
part ~R by the relation 

G-t(p) = -pA(p) + tmB(p) = -p + im -l:8 (p). (15) 

The quantity ~R is expressed in terms of the corre
sponding non-regularized function ~ ( p) by the relation 

p-tm+l:R(P) =Z2[p-tm+l:(p) -l:(po)], (16) 

The renormalization constant Z2, by virtue of the 
equality Z2 = Z1 , is determined in terms of the vertex 
part AJ.L, in accordance with 

(17) 

(11) The function ~ ( p) is determined by the integral 

l:(p)= 4: 3 ~ y"G(p- k)fv(P ->k,p)Du.v(k)d•k. {18) 

4>We adhere to the notation of the book [1 1 ]. The analysis is car
ried out in a transverse gauge (d[ = 0), since the functional relations (5) 
employed by us are valid for this case. The transition to an arbitrary 
gauge is effected is Sec. 4. 

S>The corresponding calculations were frrst carried out by lost and 
Luttinger [ 13 ]. As a check, we calculated independently the coefficients 
in the expansion (6). 

Since (18) already contains the factor a, it suffices to 
substitute each of the functions G, r 11 , and DJ.Lv in the 
forEl (14), retaining in f<o> the terms ~1 and aL, and 
in f only the term ~a. The contribution to ~{p) of 
interest to us will come from the following four inte
grals that result from this substitution: 
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~(P)=lo+I,+I•+Is1 {19) 

lo(P) = 4a 3 S YuG(o)(p- k)r(OlY(P- kl p)~o>(k) ( ll"v- kpk~) ~:! 1 

It 11>{20) 

(21) 

a S ( k"kv ) d'k la(P)= 41t3 ypS(p-k)yvil(t)(k) ll"v----r i~ . (23) 

It is convenient to carry out the integration infour
dimensional spherical coordinates, going over to 
Euclidean space by rotating the contourfll 61 • The func
tions dco>• D10>, and 1'10)11 in the integral (20)1 taken 
accurate to terms with aL, are of the form[BJ 

a ~ 
~o)(k)= 1 +J;"In~+ ... 1 k2':Pm•1 

G<o>(P- k) = [k- p + imBco>(P- k) ]-•, 
3a (p-k) 2 

B(o)(p-k)=1~~ln m• + ... 1 (p-k) 2 ':Pm21 (24) 

{
Y" 

r(O) , (p- k, p) = a . • • ' k2 

y,- -;;----a [6tmk, + p(ky,- y,k)]ln----.-, k''?> p2;pm• 
ultK p 

Those terms of the integrand in (20 ), which contain 
ln k2 or ln {p- k)2, make a contribution ~a~ only the 
regions k2 » p2 (in this case ln ( k - p )2 -- ln k2) and 
k2 « p2 ( ln (k - p)2 - ln p2). In the region k 2 » p2, 

integrals of the following type arise 

grals (21)-(23) are proportional to a 2 , and it is there
fore necessary to separate in them the terms a~, 
which results from logarithmic integration in the re
gion k 2 » p2 >> m 2• In this region the function 

Gct>(p-k)==[ (k-p) 1 .1+a.A ;)+tm(B<•>+azB ;)r 
- [k- p + imB(o)]-• 

takes the simpler form 

1 [(A ;;;kp) ) J a Gc•>(p-k)~k2 p-2-k-2 -+2im a,A-tma2B ~· 

Substituting (31) in (21) and integrating in the region 
p2 « k2 « A 2 with logarithmic accuracy, we obtain 

3a2 .\• 
lt(P) = -im(2a2A- a2B)Jri-4112 pZ. 

The function r 1 uv in (22) is determined by the 
following integral (prior to regularization) 

(31) 

(32) 

r(t)Y(p-k1 p)= :. S yaS(p-k-t)yvS(p-t)y, 
(33) 

x(ll _tat.) d't. 
a< t2 it2 

Calculating this integral in the region k 2 » p2 » m 2 

with accuracy to terms linear in p/k and m/k, we 
obtain 

- a ·{ i i [· · • A k,kj/k r<1,,(p-k, p) = 4n yY•+ k' ky,k-y,pk+-r 

+ i~ (P~·P - k-v.) )} . (34) 

.. d'k .. d'k 
a S alnk2-= a2 1np•S -+O(a2) k5 k5 I 

The regularization reduces to subtraction of the quan
(25) tity 

A2=p2 p2 

and in the region k 2 « p2, of the type 

1<'-p' d'k p' d'k 
a S alnk2k2= a2 lnp2 ~ k'+O(a2). {26) 

0 •· 

These considerations allow us to make effectively in 
the functions Gco~· r(O)IIJ and dco) in (20) the substitu
tion ln k 2 -- ln p . This is equivalent to replacing ex
pressions (24) by the following expressions: 

a p' 
d(o)(k)-.~o>(P) = 1 + 3:rt ln m• + · · · 1 

A A k-p-imBco>(P) 
G(o)(p-k)-.(k-p+imB(o)(p)]-1 ~ , p•>m•, 

(k-p)2 
r(o)Y(p- kl p) -.y.. (27) 

As a result of these simplifications, the integral {20) 
takes the form 

lo(P) =_a_ s y f- P- imB(ol(P) d(o)(P) (II _ k#v) d•k (28) 
4in3 " (k-p)Z yv k• ·"• k• · 

Further integration is simpler and leads to the result 

J0(p)= 3a [ ~p (1 +~ln p• )- im(ln~+ 1-~lnL)l . 
411 2 311 m2 m2 1~n r::,• J{29) 

In~the integrals (20)-(23), we denote by G(l>• 1'11, 11 , 

and d11> the terms ~a in the corresponding functions. 
According to {6 ), 

il(ll = -Sa I 9n, (30) 

whereas G(l) and r(l) must be calculated. The inte-

6lThis can be done in the case of the space-like vector Pp· The tran
sition to the temporal Pp is by analytic continuation. 

.\t)Y{Po.Po)=~S y.S(Po-t)y...S(po-t)v·(lla.-~) ~·t 
4113 t2 1t2 

(35) 

-1 -3(ln~2 
+t) 

O"t- ( til ) 
-6 lnm2 +i 

The quantity a 0 has a different form, depending on 
whether the infrared divergence is eliminated by intro
ducing the proton "mass" ;\ << m or by introducing 
the "deviation off the mass shell" ~ 2 = pg + m 2 << m 2 

is introduced. 
Substituting the regularized expressions for r(l)ll 

in (22) and carrying out logarithmic integration in the 
region p2 « k 2 « A 2, we obtain 

3u,• r ( 3 ) 1 A] A2 12(p)=- im --a0 --p ln-. 
16n2 2 2 p2 

Analogously, taking (30) into account, we get for 
Is(P) 

S a2 A2 
ls(p)=--imln-

12 :rt2 pZ • 

(36) 

(37) 

Substituting (29), (32), (36), and (37) in {19), we obtain 

3a~ p [ a p2 a A2 ) ~(p)=- - 1+-ln---ln-
4m 2 3n m2 411 p• 

(38) 
. [ A2 Sa p2 ( cro 67) a AI ] ) 

-1m ln-+1--ln-- 2a2A-azB---- -In- j· 
p2 1211 m2 4 72 :n: p2 

The regularization of ~ ( p) is in accordance with 
formula {16). Taking into account the result (35) and 
the definition (17), we can write, with the required ac-
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curacy, 

and analogously for ~ (Po) (the term ~a was taken 
fromr 11l, formula (47.26)) 

3a ( A2 1) a2 AZ l:(po)=--im ln-+- +imY-ln-
4n m2 2 n2 m2 ' 

(39) 

(40) 

where X and Y are certain numbers, which we deter
mine henceforth from the renormalizability condition. 

Substituting (38)-(40) in (16), we readily obtain 

l:R(P) = (P- im)~O'o+ p~[_2_InL+(X -~)In~] 
4n n2 32 m2 32 mz 

3a {[ a ( O'o 8 )] p2 +im- 1+- ----2azA+a28 In-
~ n 2 9 ~ 

[ 
<Jo 67 4 ] a A2 } + 2azA-az8 ---t----(X+Y) -In- . 
4 72 3 nm2 

(41) 

The first term in (41) yields, upon comparison with 
(10), a~= a~ = a0 /4. We now must substitute these 
values in (41 ). The numbers X and Y obviously 
should be such as to cause the terms ~ ln (A 2/ m 2) in 
(41) to vanish, i.e., 

The final expression for ~R is 
.3a p2 ~.a 

l:R(P)= tm-ln-+1(p-tm) -110 
4n m2 · 4n 

[ 
A 7 ( 2 3 )] a2 pi + p--im ---0'0 -ln-. 

32 3 16 n2 m2 

Comparing (43) with (15) and (10), we get 

Substituting (44), (45), in (11), we arrive at the 
result 

A (p) = 1 +: [ O'o + 281 ( : - 1)] , 

B(p)= 6''•{1 +~[oo+~(_!_-t) + 27 In[;]} 
4n 4 £ 4 £ · 

4. GAUGE TRANSFORMATION OF THE FUNCTION 
G(p) 

(42) 

(43) 

(46) 

(47) 

The results (46) and (47) were obtained in a trans
verse gauge. We now generalize with the case of an 
arbitrary gauge, when the renormalized photon 
Green's function is given by 

d(k) ( k"""') k"""' D~v(k) = i~ 6J>v-~ + dz ik' · (48) 

(For simplicity we shall henceforth assume that dz is 
a number independent of k.) For the renormalized 
electronic function in an arbitrary gauge we shall 
write, as before, 

G-l(p) = -pA(p) +imB(p). (49) 

We need to find first the gauge transformation for 

7)These numbers can, of course, be obtained also by an independent 
method, by calculating directly the terms -Oi2 ln (A 2 /m2 ) in Z2 and 
l: (Po). 

G(p). We start from the well known transformationr14l 

llG<•>(p)= iao S [a<0>(p)-G<0>(p-k) J d"k 6dz"> (50) 
4n3 k 2 ( k2 + i.2) 

for the corresponding renormalization function G(~) 
connected with G( p) by the Dyson relation 

In (50), a 0 is a renormalized coupling constant, and 
d(l) is a "renormalized" longitudinal function con-
nected with dz in (48) by the equation 

(51) 

aoil-/"l = adz. (52) 

Although the integral (50) converges in the region of 
small k, we have introduced infrared regularization, 
since an infrared divergence appears in the gauge 
transformation for the normalized function G( p ), as 
we shall presently show. The explicit form of the 
transformation for G(p), consequently, depends on the 
method of infrared regularization. This transformation 
turns out to be simplest in the case of regularization 
with the aid of the photon ·"mass" A. When A is intro
duced, as is well known, the singularity of the function 
G(p) on the mass shell becomes a pole (and not a 
branch point as when A = 0): 

G<•>(p) ~ Z2 (im-p)-1, p ~ im. (53) 

This circumstance makes it possible to write, on the 
basis of (50), neglecting the non-pole term G10l ( p - k), 
a simple gauge transformation of the renormalization 
constant zpsl: 

(54) 

From (50)-(54) we get the following form of the trans
formation for G( p): 

a S d•k 
oG(p)= 4in" G(p-k),k2(k2+"-2) lld1• (55) 

The integration in (55), accurate to the a(aLf 
terms considered by us, can be carried out in explicit 
form, after which we can change over from (55) to the 
corresponding integral transformation. The logarith
mic integration in (55) arises in the region k 2 « p2, 

in which G( p - k) Rl G( p ), and is taken outside the in
tegral sign. It suffices to carry out the nonlogarithmic 
(exact) integration with the ( aL)ll part of the function 
G, which takes the form 

G1o)(p-k) = [(k-p)A<o>(p-k) +imB(o)(p-k)]-1, 

where A10l(p- k) and B10>(p- k) are functions of the 
argument a ln [{p- k)2/m2]. In the case of nonlogarith
mic integration, this argument can be replaced effec
tively by a ln (p2/m 2 ), in analogy with the procedure 
used for the integral (20 ). The foregoing makes it 
possible to substitute in the integral (55), in place of 
the function G(p- k), the following effective form: 

G (p- k)-+ G(p)8(p'+ k') + c;o>(P- k), 

where ® is the usual step function, 

Gro>(P- k) = [(k- p)A<Ol(P) + imB<o>(P)]-t ~ 

(k- p)A<o>(P)- imB(o)(p) 

~ (k-p)2A~o)(p) 

(56) 

(57) 
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and in the integration of (57) it is necessary to sepa
rate only the a(aLf terms, discarding the (aLf 
terms, since they are already fully taken into account 
for by the first terms of expression {56). 

Substituting (56) in (55) and carrying out the inte
gration in the indicated manner, we obtain (taking odz 
to be a number) 

a { p• im BcoJ(p) } 
6G(p)= 4n6dt G(p)ln ,_1 - ..z ~( ) • 

I' (0) p 
(58) 

Owing to the presence of the factor a in (58), the 
quantities B10>{p) and A101 {p) can be replaced, without 
loss of accuracy, by B{p) and A{p). We then get from 
(58) and {49) the relations 

M(p)=-~lnt._l\tl. OB(p) =-~(lnr -1)od, (59) 
A (p) 4n J..Z B(p) 4n J..Z ' 

integration of which with a( aLf accuracy yields 

{ a p" }( a '},2) I A(p)=exp --d,In- 1+-d,In- A(p) 
4n m• 4n m• d 1=o 

{60) 

B(p)=exp{- :nd,In ~.}[ 1+ 4:d,(ln~:+1 )]B(p),dr=O, (61) 

Where A and B with dz = 0 are given by formulas 
(46) and (47). It is convenient to represent the final 
result in the form 

A(p)= Aco>(P) {1 + 4: (a+ 2: ( ~ -1 )]}. {62) 

B(p)=BcOJ(P){ 1 + 4: [ a+d1+ ~9 ( r--1 )+ !7 ~6 ]}. (63) 

where 

When the infrared divergence is eliminated with the 
aid of the parameter t::.. 2 (see (35)), the functions A{p) 
and B{p) take on the same form (62) and (63), but the 

expression {64) for a is now replaced by 
f12 

0: = 2(d,- 3)ln--j-- 6 +3d,. 
m 

{64') 
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