
SOVIET PHYSICS JETP VOLUME 30, NUMBER 4 APRIL 1970 

CONCENTRATION-DEPENDENT PHASE TRANSITIONS TO A NONCOLLINEAR 

MAGNETIC STATE 

E.L.NAGAEV 

Submitted March 31, 1969 

Zh. Eksp. Teor. Fiz. 57, 1274-1279 (October, 1969) 

Noncollinear antiferromagnetism is also possible when the thermodynamic potential lacks a term that 
is linear in the magnetic moment. The required conditions are then an anomalously small negative co­
efficient A2 of the quadratic term and a positive fourth-order term. This situation is possible in heav­
ily doped antiferromagnetic semiconductors because of competition between direct antiferromagnetic 
exchange and the indirect exchange via conduction electrons that tends to establish ferromagnetic or­
der. The coefficient A2 is positive for small concentrations, but a sign reversal occurs with increase 
of the latter. Transition to the noncollinear state near the vanishing point of A2 can be interpreted as 
a second-order isothermal phase transition. The derivative of the electron chemical potential with re­
spect to the concentration is discontinuous at the transition point, with resulting singularities of elec­
trical quantities (a jump of the thermoelectromotive force, etc.). These phenomenological considera­
tions are confirmed by a microscopic calculation for the case T = 0, and the critical concentration is 
calculated. 

IT is well known that the noncollinear magnetic struc­
ture found in some antiferromagnetic dielectrics is as­
sociated with the fact that their symmetry allows the 
thermodynamic potential to include terms that are lin­
ear in the magnetic moment. [ 1 ' 21 In the present work 
noncollinear structures of a different type are investi­
gated. These are possible even when the thermodynam­
ic potential lacks terms containing odd powers of the 
moment, if the coefficient of the fourth-order term is 
positive and the coefficient of the quadratic term is neg­
ative but anomalously small. This situation is realized 
in heavily doped antiferromagnetic semiconductors as a 
result of competition between direct antiferromagnetic 
exchange and the indirect exchange via conduction elec­
trons that tend to establish ferromagnetic order. No 
special crystal symmetry properties of a crystal are 
presupposed here. It is only essential that the current 
carriers should not be in a magnetic polaron state.[ 31 

The theoretical possibility of noncollinear structures 
resulting from competition between direct and indirect 
exchange has been discussed by de Gennes[ 41 on the 
basis of experimental data in [51 • However, the analy­
sis in l 41 was incorrect, as it included unjustified lim­
itations on the type of the initial antiferromagnetic or­
dering as well as a conflict between the result of the 
quantum-mechanical calculation and the symmetry 
properties of the system. 

We assume that the transition of an isotropic anti­
ferromagnet to the ferromagnetic state with increasing 
carrier concentration n proceeds via a gradual in­
crease of the angle 9 between the moments of the two 
sublattices. Neglecting magnetic anisotropy, the ther­
modynamic potential ~ depends only on 9, of which it 
must be an even function, and on the angle a = (1r - 9)/2, 
which is proportional to the moment: 

ID(n, T, a) = ID0 (n, T) + A2(n, T)a2 + Ai(n, T)a4• (1) 

Here ~ is always an extremum when a = 0. 
For low concentrations n the antiferromagnetic state 
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is stable, i.e., A2(n, T) > 0. Thus noncollinearity can 
appear only beginning at some critical concentration 
nA when the sign of A2(n, T) is reversed while 
A4(nA, T) remains positive. If A2 is analytic in n near 
nA and the linear term of the expansion does not vanish, 
the uncompensated magnetic moment should be propor­
tional to ..Jn- nA· The derivative of the electron chem­
ical potential with respect to the concentration will be 
discontinuous at the critical point nA; this should be 
manifested by singularities of the electric properties 
of the crystal as functions of the concentration. We 
thus find here essentially a second-order isothermal 
phase transition of the second kind, characterized by 
the fact that it is realized not in an individual sample, 
but in an ensemble of samples having different concen­
trations. With further increase of the concentration an­
other phase transition of the same kind occurs-from 
the noncollinear to a completely ferromagnetic state. 

To confirm the foregoing phenomenological analysis 
and to calculate the critical concentrations at T = 0, 
we shall now perform a calculation on a microscopic 
model. We consider a simple cubic lattice of magnetic 
atoms with spin S that interact with the conduction 
electrons. The system is described by the customary 
Hamiltonian for the s-d model: 

.U =-A] (sSg)aa•a'(gcr)a(gcr') 

+B ~a'(gcr)a(g+ ~cr)-:] (SgSg+a). (2) 

Here s and Sg are the spin operators of a conduction 
electron and an atom having the index g; a*(ga) and 
a(ga) are the creation and annihilation operators of a 
conduction electron with spin projection a on the atom 
of index g. The index ~ represents the numbering of 
the nearest neighbors of the given atom. It is assumed 
that the integral of exchange between a conduction elec­
tron and magnetic atom (A) considerably exceeds the 
half-width 61 B I of the electronic band. The Bloch inte­
gral B, in turn, considerably exceeds the exchange in­
tegral J between magnetic atoms. We consider only the 
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case A> 0, since the conditions for the production of 
magnetic polarons are then less favorable than for 
A< 0.[ 3 ] 

In the principal approximation with respect to B/A 
the wave function of an electron interacting with a mag­
netic subsystem is obtained in the form of an expansion 
in the eigenfunctions of the Hamiltonian of intratomic 
exchange [the first term in (2)]: 

V s + 1/2 + l ( 1 ) .P=~cg(l) 2S+l 6 Sg',l±-z a'(g,±1g)IOITI6(S1•,S). 
<±JgJ rn (3) 

Here o(x, y) is a delta function representing a discrete 
argument having the value 0 or 1, and I 0) is the vac­
uum electron function. The magnetic state of atom g is 
described by the variable S~, which is the spin projec-

tion of this atom on the direction of its average moment. 
The symbols ± 1g designate the the possible values of 

the conduction-electron spin projection on the average 
moment of atom g. The projection J of the combined 
(atom plus electron) moment appears in Clebsch-Gor­
dan coefficients of (3), and can have only the values J+ 
= S + 1/2 and J = S- 1/2. 

The selection of (3) as the wave function signifies, 
first, that we neglect zeroth spin oscillations, which are 
unessential for the present problem. Secondly, it is im­
plied that for atoms which are free of conduction elec­
trons the spin projection corresponds to the ground 
state of the magnetic subsystem (Sf= S). From a rigor­
ous point of view, when a conduction electron passes 
through an atom the spin projection of the latter can be 
changed. Therefore the true wave function should con­
tain fluctuating terms as well as terms describing elec­
tronic translational motion that does not affect the mag­
netic ordering. The additional terms would describe 
the motion of a quasi-oscillator electron[SJ accom­
panied by the destruction of magnetic order in a very 
small region and the subsequent restoration of this or­
der when the motion is reversed. However, a calcula­
tion shows that the quasi-oscillator states contribute 
only a small admixture and can actually be neglected. 

When we assume that the x axes of all local systems 
of coordinates coincide while the z axes of neighboring 
atoms form an angle (}, then we have the following rela­
tions between the electron operators in the different co­
ordinate systems:[ 7 l 

a· (g + Ci, ig+d)= cos : a'(g + t;, ig) + isin fa· (g + Ci, -ig), 

8 9 (4) 
a' (g + Ci, -ig+d) = i sin-2 a'(g + Ci, ig) +cos -a' (g + t;, -ig). 

2· 

We take + (} as the angle through which the z axis of 
the second magnetic sublattice is rotated with respect 
to the z axis of the first sublattice. Then -(} is the an­
gle through which the z axis of the first sublattice is 
rotated with respect to the z axis of the second sublat­
tice. 

We assign to each atom an "isotopic spin" with the 
projection T = + 1 or -1, depending on whether the 
atom belongs to the first or second sublattice. The co­
efficients cg of the wave function (3) are obtained in 
the form 

Cg(lm) = eikgc(-r8, m), m = ±. (5) 

With the aid of (2)-(5) we derive the following "bi­
spinor" Schrodinger equations: 

E ( +) B e iT:Byk e c -r, = cos-y.c(-<,+)+--=::::-sin-c(--r -) 
2 )'2S+1 2 ' ' 

E ( ) · B · e By" 9 c <,- = n sm-ykc(-<,+)+--cos-c(--r -) 
2 2S+1 2 ' ' 

(6) 

In writing (6) we have used the condition IBI >> IJI. 
The energy spectrum of a moving electron consists of 
two bands with an identical dependence of energy on the 
quasimomentum: 

E±(k) = -IJ±Yk 

{ bt2 + 2b22 + b32 1 }''• 
B±=IBI 2 +2(bt-b3)[(bt+b3) 2 +4b.2]'"' 

e e o 
bt = cos 2 , b2 =(2S + 1)-'1• sin 2 , b3 = (2S + 1)-1 cos 2 . (7) 

If (} = rr (in collinear antiferromagnetism) these bands 
are degenerate. Each bandwidth is 1/v'2S+T of the 
maximum electronic bandwidth that is attainable in fer­
romagnetic ordering. As the angle (} diminishes one of 
the bands is broadened while the other contracts, so 
that the narrower band may be neglected at small val­
ues of(}, 

In accordance with the condition I B I >> I J I a mag­
netic moment should begin to appear when the number n 
of electrons per magnetic atom is much smaller than 
unity. In our investigation of the electronic spectrum 
we are thus able to limit ourselves to a quadratic dis­
persion law. The angle 0! is assumed to be so small 
that the bottom of the narrower band lies below the 
Fermi level. The carrier concentrations in the broad 
band (n+) and in the narrow band (n_) are determined 
from the condition that the electron chemical potentials 
in these bands are equal: 

6(B+- B_) + B-(6n2n_)''• = B+(6n2n+)'", n = n+ + n_. (8) 

The total energy of the system consisting of mag­
netic atoms and conduction electrons is given for a 
single unit cell by 

E1 (a) ~ -6IJIS2 cos2a-6[B+n+ + 11-n-]. (9) 

For small angles 0! (9) in conjunction with (7) and (8) 
reduces to a series that is represented by (1), with the 
following coefficients: 

8IBIS2 (n- nA) 
A 2 (n) ~ - nA'"(2S + 1)'" ' 

nA ~ 0,15 [I ~ I 
40IJIS' 

A,(nA) ~ nA'h(2S + 1) ' 

(2S+1)r. (10) 

Equation (1) is also valid for states close to collinear 
ferromagnetism when 0! is replaced by (}I 2: 

3IBIS 
A 2 (n)= S+ 1 (n-n.-), A4 (n.-)~2IJIS2, 

4IJIS(S + 1) (11) 
n.-= IBI 

Equations (10) and (11) show clearly that nA and nF 
are critical concentrations for transitions from a non­
collinear to a pure antiferromagnetic and a pure ferro­
magnetic state, respectively. In accordance with I B 1 

>> I J I the first of these concentrations is considerably 
smaller than the second. If we assume S = 1 and 
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I B/J I = 10 (in which case magnetic polarons are evi­
dently not realizedl 31 ), we obtain nA ~ 4 x 10-3, while 
nF cannot be attained within the applicability limits of 
the present modeL 

Equations (10) and (11) show that at the critical 
points the derivative of the electron chemical potential 
J1. with respect to concentration is discontinuous. The 
value of the derivative is lower in the noncollinear re­
gion than in the collinear region, because in the former 
the bottom of the broader carrier band is lowered as n 
increases, with a corresponding effect on the chemical 
potential. A calculation shows that for reasonable val­
ues of B/J the relative discontinuities of dJ1. /dn are of 
the order of unity at the critical points. 

The discontinuities of dJ1. /dn lead to analogous dis­
continuities of the thermoelectromotive force, which ac­
cording to the Mott relation is proportional to 

d dn 
-Ina-. 
dn d11 

At the critical points the sign of the thermoelectromo­
tive force can be reversed along with that of dJ1. /dn. 
The curves representing the dependence of the work 
function and of the conductivity a on n should exhibit 
"breaks" at the critical points. In the case of the con­
ductivity this effect is accounted for by the direct de­
pendence of the effective mass on concentration and by 
the dependence of the relaxation time on the difference 
between the Fermi level and the bottom of the band. 

An external electric field will enhance the carrier 
concentration in a surface layer having thickness of the 
order of the screening length, so that if the concentra­
tion is below nA in the bulk it can exceed nA at the 
surface. Since indirect exchange is of short-range 
character in narrow bands, l 81 an electric field can 
generate a surface layer having a non-zero magnetic 
moment. 

The foregoing considerations can be extended di­
rectly to noncollinear structures of other (e.g., heli­
coidal) types. Our model, which is based on the nearest­
neighbor approximation, does not enable a decision as 
to which of two structures-weakly ferromagnetic or 
helicoidal-is favored energetically. This question can 
be answered easily by including interactions with next­
nearest neighbors. For example, if the corresponding 
Bloch integral is negative while the exchange integral 
is positive, a weakly ferromagnetic structure is fa­
vored. 

It is extremely important that, according to the fore­
going results, a transition to the noncollinear state is 
possible only beginning at a certain critical concentra­
tion of current carriers, whereas according to c 41 any 
small concentration should permit noncollinearity. The 
data given in Goodenough's bookl 91 show that we can 
now consider that experimental work has established 
reliably the transition of the antiferromagnetic crystal 
LaMn03 to a weakly ferromagnetic state for sufficiently 
heavy doping with electrically active impurities. A 
weakly ferromagnetic transition has been observed in 
doped FeS2 and NiS2• l 101 The data in l 91 show that NiS2 

is antiferromagnetic. Investigations of several other 
materials have not detected noncollinear structures 
even in cases of heavy doping. We can account for these 
negative results by assuming that the critical carrier 
concentration at which such structures begin to be pos­
sible are practically unattainable (or had not been at­
tained) in these materials. 

The author is indebted to V. L. lndenbom and L. V. 
Keldysh for discussions. 
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