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The problem of the scattering of a sound wave by thermal fluctuations of deformations and tempera
ture in an isotropic solid is solved. An expression is obtained and analyzed for the spectral intensity 
of scattered sound. Numerical estimates are given for the value of the sound intensity scattered by 
the temperature branch of combined temperature and sound oscillations. A comparison of this value 
with the value of the sound intensity scattered by the acoustical branch is given. 

THE circle of phenomena which have been studied to 
date in nonlinear acoustics is limited basically to non
linear interactions of acoustical waves with one another. 
Remaining unconsidered has been an entire class of 
acoustical phenomena, the characteristic feature of 
which is the nonlinear coupling of the sound waves with 
waves of another kind. Inasmuch as such waves can 
have a different dispersion dependence than that of 
sound waves, it is clear that even this fact can intro
duce new features in similar interactions, compared 
with purely acoustical interactions. For example, it is 
known that one of the reasons which inhibit the exist
ence of interaction of a limited number of harmonic 
sound components in one direction is the weak disper
sion of acoustical waves. In the consideration of the 
interaction of sound with excitations of a different 
nature, which have a strong dispersion, no such prob
lem arises. If it proves possible to produce scattering 
of sound from some sort of excitations having a reso
nant character, then such scattering will obviously be 
analogous to Raman scattering of light. 

1. The purpose of the present work is to consider 
sound scattering from the temperature branch of joint 
fluctuations of oscillations of temperature and deforma
tions, i.e., to analyze the spectral composition of the 
scattered sound, to estimate its intensity and the pos
sibility of its experimental observation, to compare the 
temperature scattering with scattering from the 
acoustical branch, and to ascertain what evidence one 
can obtain on material constants on the basis of the 
temperature scattering of sound. 

As is known, [ll the temperature branch is charac
terized by a dispersion relation that differs essentially 
from that of the acoustical branch. In particular, this 
leads to the result that, in contrast with the scattering 
of sound by sound, where the scattered sound of a given 
frequency travels along a definite direction, the sound 
scattered from the temperature branch and having a 
definite frequency can travel along various directions. 
Here, as will be seen from Eq. (23), by comparing the 
intensity of the scattered sound in directions of, say, 
90 and 180° with respect to the incident sound, one can 
deduce the value of some combination of the nonlinear 
moduli A, B, C of the substance from (1 ). The line 
width of the scattered sound allows one to determine 
that parameter of the material which is a criterion for 
the adiabatic character of the sound propagation. 
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2. In the solution of the problem, we start out from 
the nonlinear sound equation, supplemented by the non
linear equation of heat conduction. Such an equation 
can be wrl.tten down by using the form of the free en
ergy fT per unit volume of the material as a function 
of temperature T and of the deformation tensor Uik· 
In this case, we take it into consideration that the de
formations are accompanied by a temperature change 
(see[ 2l ). Let the body be assumed to be undeformed in 
the absence of external forces at some temperature 
To. We shall assume that the temperature change 
T - To accompanying the deformation and the deforma
tion itself are small. Then, by expanding the energy fT 
in a series in powers of T - To and Uik and retaining 
the first nonlinear terms, we have 

f1T = f1To(T) -lia(T- To)uu + 1Miui-+ ~-t(UtA- 1/s6;Auu) 2 

- xae(T- To) 2uu + 1/2x~(T- To)u,f + ~-t'V(T- To) (u;A - 1/s6;kuu)2 

+ 1/sAU;>.Ui!Uk! + Bu;A2uu + 1/aCu1i". (1) 

Here fro is the free energy of the undeformed body, k 
the isothermal compression modulus, 1J. the shear 
modulus, a the coefficient of thermal expansion, and 
E, {3, y, A, B, C are nonlinear coefficients. 

From (1) we have the nonlinear sound equation 

P ~~ -( «+ ~) V(Vu)-ll~u+xaVT=F(r;t), (2) 

where 

Here and be low, the difference T "'" To is denoted by 
T. 

The nonlinear contribution Q(r; t) to the equation 
of heat conduction can be obtained by using the follow
ing: the nonlinear part of the energy (1 ); the fact that 
the heat conduction coefficient is generally a function 
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of temperature and pressure, the heat capacity is a 
function of temperature, the heat flow at sufficiently 
great temperature gradients ceases to be a linear func
tion of the temperature gradient. As a result, we get 

iiT Cp- Cv 0 (OUt) pc.-+p---- -x!'J.T=Q(r,t) 
ot a at a xt 

8 ( OUt ) 0 ( Ou; ) OU; =-ali.T- --- -(ali.-yf.t)To-;:---
Ot OXt Ot OXk OXk 

+( 7<~ _ ~ I1Y)To!!_ ( OUt) ~Ut + I1YTo _& ( ou1 ) ou, 
3 at OXt OXi ot ax, OX; 

"' T [ aT &u1 + T a ( au1 )] -2n;ea o -- --
at axz at i1xl 

- pc.J...TaT + xvl7i.[( v OU!) VT + a_ul I':J.T] 
ot OXi OXi (4) 

+xii{(VT) 2+ Tl'l.TJ+xq;(V I VTI VT +I VTJI'l.T). 

Here ;\., v', li, cp are nonlinear coefficients, Cp and 
cv are the heat capacities. 

3. We shall assume that a longitudinal wave is in
cident on some volume V (the scattering volume), in 
which there exist thermal fluctuations of sound and 
temperature. 

ko 
Uo= Jkol uoexp{i(kor-root)} 

As a consequence of the nonlinearity which the 
medium possesses, the incident wave interacts with 
the fluctuations in the given volume, being scattered 
by them. Since the nonlinearity of the medium is 
usually small, we use the method of perturbation 
theory to find the scattered wave. We construct first 
the Green's function of the linear set of equations cor
responding to the set (24) and (4). We change over in 
(2) and (4) to the Fourier transforms u(r; w), 
T(r; w), F(r; w), and Q(r; w): 

pro2u(r; ro )+ ( 7C + ~ ) 1v ( Vu(r; ro)) + 111':J.u(r; ro)- li.aV T(r; ro) 

=-F(r;ro), (5) 

iropcvT(r; ro) + xi':J.T(r; ro) + irop Cp- Cv Vu(r; ro) =- Q(r; ro). 
a 

It is convenient to represent the set (5) in matrix form: 

£.(;) = ( ~;) . {6) 

The meaning of the operator Lr is clear from (5). 
We now define the Green's function (the Green's 

matrix) in the following way: 

~ 1 ~ (p1(r-r1
; m; ro)) (ml\(r-r1

)) ( 7) 
LrG1(r-r; m; ro)=Lr ( _ '· . ) = 0 • 

qi r r, m, w 

- 1 - ( Pz(r-r1 ;ro)) ( 0 ) (8) L,Gz(r-r;ro)=Lr ( 1 ) = •( 1) • q2 r-r,;ro .ur-r 

Here m is an arbitrary vector. Then the solution of 
the set (5) is represented in the form 

( u) (' l(P1 [r-r';F(r';ro);ro]) (p2 (1·-r';ro)) } 
T = - ~ d"r' l qdr- r'; F (r'; w); roj + q2 (r- r', ro) Q (r'; ro) · 

v ~) 
Integration in (9) is carried out over the scattering 
volume V. In what follows, we shall write down the 
expression for u( r; w) only. We transform it to the 
Fourier transforms of the Green's functions 
P1(k; m; w) and Pa(k; w) and the functions F(k; w) and 
Q{k; w): 

v (' ' 
u(r; ro) = - (2n)d d3ke•k• {pt[k; F (k; ro); ro] + p2 (k; ro) Q(k; ro) J· {10) 

{The expression (10) can be obtained by carrying out 
the Fourier transformation directly in {9 ).) 

We find the Fourier transforms p1(k; m; w) and 
p2{k; w) from (7) and (8) after the corresponding 
Fourier transformations. Here it is convenient to 
represent P1,2 in the form of a sum of two vectors: 
P1,2 = P1,211 + P1,a1, where P1,a11 II k and P1,21 l k. As 
a result, we have from (7) and (8), 

PI = Pill + PI.L 

k(km) (k'x- iropc.) + k(km) - k2m 

k 2 (7i. + 411/3)[k2- k,2 (ro)] [k2- kz2(ro)] x k211(k2- pro"/11) 
{11) 

Here k1 and k2 are the roots of the dispersion equation: 

(k•x- iropcv) ( k2- 7C + ~11/3 ro•) -li.irop(cp- c.) 7C + ~11/3 0;(12) 

p [ ')((I) ( 1 1 )'] k1•~-roz 1-i- ---
kad kad Cv Cp 

(13) 

(acoustical branch), 

(14) 

(temperature branch). 
In (13) kad is the adiabatic compressional modulus. 
Formulas (13) and (14) were obtained under the as

sumption 

'Xffi / kladCv ~ 1. (15) 

The condition (15) is the condition for adiabatic propa
gation of a sound wave.Pl We note here that for most 
solids the following inequality holds and will be used 
from now on: 

(16) 

Further, we have 
kili.a 

Pz=Pzu= 
(17) 

P2.L = 0. 

By computing the integral (10) and using (11 ), (17 ), we 
finally obtain the expression for u( r; w) in the wave 
zone: u(r; w) =u 11 (r; w) + u1(r; w); 

V eikr { k(kF(k; ro)) kili.aQ(k; ro) } ( ) 
uu(r·w)=-- + 18 

' 4n r k2 (7C + 411/3) (li. + 411/3) (k"x- iC•>Pcv) ' 

V eikr 1 r k(kF(k· ro)) } 
u.L(r;·ro)=--- F(k;ro)- ' . 

4n r f.t k" 
(18a) 

In (18), u 11 (r; w) is the longitudinal wave, and k =k1 
from (13). (The pole at k = k2 does not contribute to 
the integral (10) in the wave zone.) In (18a), u1(r; w) 
is the transverse wave, and k = w {filii.. In the follow
ing we shall, for simplicity, consider only the longitud
inalwave uu(r;w). 

We shall compute the Fourier transforms F(k; w) 
and Q(k; w) from (18), using (3) and (4). Substituting 
them in (18), we get 

V eikr kok 
uu(r;ro)= uo-----

4n r 7C +411/3 

{ [ 2 li.aroo) x T(q;v) 7C~--~ty-(7Ca-211y)cos2 9+7C~--
. 3 pcv ro 

(19) 

+ E(q; v) [ f.2a cos 9{cos 9(k2 + ko2)- kok(1 + cos2 9)} + e ]} . 
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In (19), we have introduced the following notation 
q = k - k 0, v = w - w0 ; () is the angle between the wave 
vectors of the incident and scattered waves, T(q; v) 
is the Fourier transform of the fluctuating temperature, 
E(q; v)= aun(q; v)/an is the Fourier transform of the 
fluctuation deformation, where n is a coordinate whose 
unit vector is directed along q; 

a= 'k + 7/ 31! +A + 2B, 

e = 'k- 2/sf! + 2B + 2C. 

(Since transverse sound waves are not connected with 
a change in temperature, only the longitudinal wave 
fluctuations are kept in (19 ), for simplicity.) 

Equation (19) is obtained with accuracy to terms 
cont_eining the small parameters ( cp - cv )/ cv and 
Kw/ks_y. It is assumed here that the coefficients {3; y; 
>c; o; kv' a; cpkoa do not exceed a in order of magni
tude. If, in certain cases, this is not valid for all the 
coefficients, then the corresponding terms must re
main. 

We now find the time average of the intensity of the 
scattered sound, denoting by M and N the coefficients 
for T and E in (19). We have 

I -I . 12- 2 V~ (kok)2 1 
(r)- u(r, t) • - uo (4n)2 (k + 4!!/3)2 (l 

X f ~ dw dw' {M2T(q; w- wo)T' (q; w'- w0) 

+ N2E(q; w- w0)E' (q; w'- '"o)+ MN[T(q; w- w0)E'(q; w'- ffio) 

+ T' (q; :u'- Wo)E ( q; fJJ- ffio)]} e-i(w-m')t. (20) 

From (20 ), we can obtain the following expression 
for the spectral intensity of the scattered wave: 

~ 1 (kok) 2 

/(r; w) = uo2 (4n)2 r2 (k + 4!!/3)2 (21) 

X {M21Tim2 + N21Eim2 + MN[ (TE*)m + (T*E)m]}, 

where the quantities denoted by IT lw 2, IE lw 2, 

( TE* )w, and ( T* E )w are computed in correspondence 
with the theory developed, for example, in[ 3• 4 1. 

As a result, the expression for the spectral intensity 
of the scattered sound I( w) takes the form 

I( ) _ /( _ 2~_1_ (kok) 2 1 
w- wo+'v)- Uo (4n)2 (l (7i+4fl/3)2 n 

X {M2 (v2- WL2)h;k'To2/ pcv 

(v2- wL')' + v"'r'(v2 _ ws'')" 

N' ffiL2 (oos2 -wL2)-r k'T0 

+ (v2-wL2)'+v"'r2 (v2 -w82) 2 7i+4!!/3 

(22) 

The following notation is introduced in (22): 

"= ( xq2 
)-' , ffiL~ = k + 4!!/3 q', 

pCv ' p 

2 kad + 4!!/3 2 
Ws = q; 

p 
k' is Boltzmann's constant. 

4. We now investigate the spectral composition of 
the scattered sound. The essential feature of the spec
tral distribution (22) is that it has two maxima: for 
v = 0 and for v R~ ws. 

We first consider the spectrum close to the first 
maximum. In this spectral region, Eq. (22) is 
materially simplified: 

/(wo+v)=uo2-~ 1 (kok)' 
(4n) 2 r' (7i+4!!/3),2 

-r k'T0' 

X (1 + 2 ') (M 2 +N'a'+MNa). (23) 
l1 '\/ 1 PCv 

We note here that the adiabatic condition (15) is equiva
lent to the condition 1/ T ( wo) << w0 • Taking this condi
tion into account, we can see that the spectral distribu
tion (2 3) has the form of a Lorentz distribution with 
half-width t;., approximately equal to 1/T (wo ), 

(24) 

It also follows from condition 1/r(w 0 ) « w 0 that 
v << ws, WL in the limits of the resonance curve (23), 
which also allows us to obtain (2 3) from (22 ). 

The given case is essentially scattering of sound 
from the temperature branch of the combined oscilla
tions of temperature and sound. Thus the nonlinear 
interaction of sound with the temperature branch leads 
to sound scattering in all directions, with the maximum 
intensity at the undisplaced frequency w0 , while the 
half-width of the line increases with increase in the 
scattering angle, as is seen from (24). 

Let us make numerical estimates. The half-width 
t;. for many materials that are of interest for observa
tion of the effect, can be rather large, for example 
~10-2w 0 • So far as the absolute intensity of the scat
tered sound is concerned, it is determined by the co
efficients a, {3, y, A, B, and C, as is seen from (23). 
Of the three terms in the curly brackets in (23), the 
largest contribution for most materials is clearly 
made by the second term. We shall also estimate it. 
The coefficients A, B, and Care measured for a small 
number of substances, and with great variation.[sJ 
Therefore, we shall assume for estimate that, roughly, 
A~ B ~ C ~ k. We set a~ 5 X 10-5 deg-\ To~ 300°K, 
cv ~ 0.5 cal/g-deg, and V ~ 1 cm 3• Since the interac
tion depends strongly on the energy of the incident 
wave, it is appropriate to take as the incident wave 
hypersound of high frequency, f ~ 10 10 Hz. We then 
obtain the following estimate for the ratio x of sound 
power scattered in all directions and integrated over 
all frequencies (in the frequency range considered) to 
the intensity of the incident sound: 

(25) 

Account of damping decreases the value of x. One 
must therefore choose a substance where the damping 
of hypersound is sufficiently small. It must be re
marked that the estimate (25) is an average, made for 
parameters that are typical for solid materials. It can 
therefore be supposed that materials will be found for 
which x is larger. In particular, x depends strongly 
on the value of the moduli A, B, and C. The estimate 
(25) was made for A~ B ~ C ~ k. However, in anum
ber of materials, they a~ approximately one order of 
magnitude greater than k, [s,s] and allowance for this 
fact increases the estimated value considerably. 

5. The second maximum of Eq. (22), v R~ ws, repre
sents the case of scattering of sound by sound, well 
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known in nonlinear acoustics. The results of the inves
tigation of this maximum correspond to results ob
tained in previous researches on nonlinear acoustics, 
in which the interaction of the sound wave was con
sidered not with fluctuations of the medium, as in the 
present work,., but with another given sound wave (see, 
for example,l 5• 61). 

Let us compare in magnitude the intensity of the 
sound scattered by temperature waves with the sound 
intensity scattered by the acoustic branch (in the 
latter case, we limit ourselves to frequencies of the 
scattered sound equal to w0 in order of magnitude). 
The calculations show that the scattering by the tem
perature branch is less effective, by a factor 
( cp - cv )/ cv, than scattering by sound. Such a result 
is quite natural if we take the following into account. 
Since it was assumed that the maximum contribution is 
made by the second term in the brackets in (23), then 
the scattering by the temperature wave in the given 
case constitutes scattering not from the temperature 
fluctuations but from deformation fluctuations belong
ing to the temperature branch; however, it is clear 
that the deformation wave will belong to the tempera
ture branch together with the acoustic branch only in 
the case a¢ 0, or, what amounts to the same thing, 
( Cp - Cv )/ Cv ¢ 0. 

6. Thus the scattering of sound by the temperature 
branch has its own features in comparison with the 
purely acoustical interactions. The intensity of the 
sound scattered in this way is a measureable quantity, 
as is seen from (25). In addition to this part of the 
scattered sound, there will also be sound scattered by 
the transverse sound waves, in the various directions. 
(The corresponding formulas have not been written 
down in this paper; the picture of scattering is analo
gous to scattering of a longitudinal sound wave by a 
given transverse sound wave for all possible angles of 
interaction.£5•61). Sound scattered by transverse sound 
waves has an essentially different spectral composi
tion in comparison with the sound scattered by temper
ature waves and therefore cannot mix up the recording 

of the latter . 
Measurement of the width t::. (24) of the line scat

tered by the temperature waves allows us to draw con
clusions on the contribution which the thermal conduc
tion makes to the damping of the sound, inasmuch as 
this contribution is determined by the value of t::. [ 1• 21 
Moreover, it can be supposed that for sufficiently small 
wavelengths, the coefficient of thermal conductivity K 

ceases to be a constant; by comparing the values of K 

computed from the line width and by the usual method, 
we can decide whether the coefficient remains con
stant right down to wavelengths ~10-5 em with which 
we have to deal in the present work. By comparing the 
intensity of the sound scattered in different directions, 
we can obtain evidence on the nonlinear moduli A, B, 
and C. Moreover, the data on the spontaneous scatter
ing of sound by temperature waves allows us to esti
mate the possibility of observation of stimulated sound 
scattering by temperature waves for sound intensities 
actually obtainable at the present time. 
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