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The nonlinear equations for the interaction between Langmuir waves in a plasma are used to deter
mine the complete form of the quasistationary turbulence spectrum Wk. It is assumed that the sta
tionary source produces turbulent energy in the region of very large wave numbers k and the en
ergy is subsequently transmitted to the region of the fundamental turbulence scale L =21T/k0 , where 
it is damped. The turbulence spectrum in the region of large values of k is calculated for various 
values of the plasma temperature and turbulence production power Q. An approximate analytic de
pendence of the fundamental turbulence scale on Q is found: L = const · Q112 <V-l>, where v is the 
exponent in the turbulence spectrum Wk ~ k-v in the range of small k. The effect of fast particles 
accelerated by turbulence on the spectrum of the latter is investigated. Self consistent distributions 
of fast particles and turbulent pulsations are found. For a sufficiently high level of the plasma 
turbulence the fast-particle spectrum should have the form f( E) ~ «. The condition for vanishing 
of the maximum in the turbulence spectrum due to absorption by fast particles is found. 

THE quasistationary spectrum of Langmuir turbulence 
of a plasma was calculated infl1 in the asymptotic 
region k » k0 = 21T/L, where L is the main scale of 
the turbulence. The calculation ofr 1J was limited by the 
assumption that k « k* = Yswovi/v~, and the turbu
lence spectrum depends on the presence of fast parti
cles accelerated by the turbulent pulsations[ 2J only if 
k* > wo/c. (For a hydrogen plasma and Te = Ti, this 
condition yields Te < 12 eV .) The purpose of the pres
ent paper is to construct the complete picture of the 
spectrum in the entire region of k, including k > k*' 
and for both a sufficiently cold plasma (k > w0 / c) and 
a sufficiently hot plasma (k* < w0 /c), and also to de
termine the main turbulence scale L as a function of 
the generation power Q, which equals the flux of the 
turbulent energy along the wave--number spectrum 
under stationary conditions. We also investigate the 
influence of fast accelerated particles on the turbulence 
spectra and determine the criterion for the vanishing 
of the maximum of the spectrum in the main turbulence 
scale obtained infl1. The main premises of the present 
work are the same as inPl. Namely, it is assumed that 
the generation occurs at large wave numbers near 
1/Ae, where A.e = ve / wo is the Debye length, and that 
subsequently the energy of the turbulence is trans
formed, in the region of small k down to k*, via scat
tering by ions and electrons, and when k < k* it is 
transformed as a result of four-plasmon processes. 
The fastest process is isotropization of the pulsa
tionsr3'41, and we shall therefore consider here the 
case of an isotropic three-dimensional turbulence. 

1. INTERACTION OF SHORT-WAVE LANGMUIR 
PULSATIONS ( k » k* ). 

In the region k >> k* it is necessary to take into 
account the following types of nonlinear interactions: 
1) four-plasmon processes of nonlinear scattering of 
Langmuir waves into Langmuir waves, 2) induced 
scattering of Langmuir waves by plasmon electrons, 

3) induced scattering by plasma ions, 4) decay of Lang
muir waves into ion-acoustic waves (l'- l' + s). 

Unlike in the region k « k* (see [11 ), in the region 
k » k* the four-plasmon interaction is strongly sup
pressedr4'51. If the turbulence spectrum is sufficiently 
smooth (as is the case for stationary turbulence), then 
the effective increment of the energy transformation 
due to the four-plasmon interaction is estimated at(4J 

1 ( W1 )~(me)';, v<'> ~ --wo - - (H,)-5, 
4-35 nT, m; (1.1) 

u = W 1 /nTe. 

In the case of induced scattering by ions, only pulsa
tions whose wave-number difference is much smaller 
than k* interact effective in the region k > k*. It can 
be stated that in this case the spectral redistribution 
occurs in physically infinitesimally small Ll.k (Ll.k 
« k* ), and is therefore differential for a broad spec
trum Ll.k ~ k. From the general expression for scatter
ing by ions [ 31 

IJN(k) = N(k) ~ Tiwo(Te/Ti) 
i)t 8 men0v;(1+Te/T;) 2 (1.2) 

1 N(k')dk'(kk')'k'•-k• ( w-') 
X J (2n}"h k'k'2 I k'- k I exp - 2k_2vi2 ' 

k.... = k- k', W- = Wk- (J)k• = 3/,ve2 (k2 - k"') / Wo, 

Ve=l'Te/m,, v;=fT;/m;, 
assuming 

- ~exp (-~ )-+ ll'(w) 
}'2nv;3k 3 2v 12k 2 

and integrating with respect to the angles for isotropic 
turbulence, we obtain 

(1.3) 

where 

(1.4) 
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Integrating with respect to the angles the well known 
expression for scattering by electrons[ 3 J 

iW(k) = ~N(k) ~ N(k!)dk1 (kk,) 2 [kk,j2 (k,•- k•), (1. 5) 
at 2m.noulo (2rr)'/, k2kt2 lk- kd' 

we obtain 

(1.6) 

where 

Assuming that the spectrum is continuous and sig
nificant changes of the spectral density of the turbu
lence Wk occur in an interval ~k of the order of k, 
we find that four-plasmon interaction can be neglected 
practically always when k > k*' since y< 4l < y<il. 
Scattering by electrons dominates over scattering by 
ions if 

k > k,. =( !!!::_)'"( 1 + r. )-'/; _!_. 
3m; T; ')... 

The decay processes of the Langmuir waves into ion
acoustic waves (l- l' + s) are possible when Te 
>> Ti. We consider below only the case Ti ~ Te. 

2. SPECTRUM OF PULSATIONS IN SCATTERING BY 
IONS 

The general equation describing the change of the 
spectral density of the turbulence energy in the regions 
k* < k < k**' with allowance for scattering by ions, 
generation of turbulence, and scattering resulting from 
pair collisions, is of the form 

awk awk v. 
-=D1W•-+YkWk-- Wk-y,W" at ak 2 ' 

where lie = wo ln A/n0 ;>,.~ is the frequency of the 
Coulomb collisions, ln A is the Coulomb logarithm, 

(2.1) 

Yk is the instability increment (the Landau damping is 
negligibly small in the region under consideration), 
and rs takes into account the absorption by the fast 
particles accelerated by the turbulence. Since it is our 
purpose to explain the qualitative picture of the turbu
lence spectrum, we confine ourselves first to the sim
plest case, when ys = 0 (or, more accurately, yo 
» ys), i.e., there are no fast particles, and the incre
ment Yk is constant in a certain interval of wave num
bers ~kg1l: 

fl. 
Yk- Yo \0, 

Let us examine Wk 
be of the order of ve). 
have 

kg <k< kg+ M,, 
k <kg. k > kg+ Mg. 

(2 .2) 

inside the interval ~kg (yo can 
In the quasistationary state we 

(2 .3) 

')The quantity 'Yo plays the role of the effective increment for iso
tropic pulsations. Since, by virtue of the fast isotropization of the pul
sations, all the oscillations with close values of k turn out to be on par, 
although the excitation usually occurs at definite angles (for example, 
relative to the beam), to obtain 'Yo it is necessary to multiply the insta
bility increment by the ratio of the phase volumes ink-space of the 
oscillations that are excited to the total number of oscillations having 
the same value of k. 

Integrating (2.3) with allowance for the boundary condi
tion Wkg + ~k_g = 0, we obtain in the interval ~kg a 
linear form or the spectrum: 

(2 .4) 

On the boundary of the interval under consideration, 
at k = kg, we have 

W,g = (yo- v, ( 2);\,.kg ( D, 

We note that the total power of the generation sources 
of the waves is connected with yo and ~kg by the 
formula 

(2.5) 

We now consider an interval in which there is no 
generation of waves ( k < kg ). The solution (2 .1) for 
k <kg in the quasistationary case, joined together 
with the solution in the neighboring region (2 .4 ), will 
then take the form 

yo;l,.k8 "• 
Wk" = --- -D (kg+ t..kg'r- k). 

D, 2 I 
(2.6) 

If we neglect collisions, then w~1 = const. Extrapolat

ing the solution (2 .6) to the point ~, we obtain 

yo;l,.kg "• 
W."" Wh. = ---n;-- 2D, (k8 + M 8 - k.). 

This spectrum should be joined together with the spec
trum obtained in [Il for k << k*. 

The solution in region III ( k0 « k « k*) was ob
tained in[ll and has a power-law character, wk ~ k- 11 , 

where v = 2 .84 for a sufficiently high level of turbu
lence. We note that this value of v is obtained only if 
one can neglect the nonlinear scattering by the ions 
compared with the four-plasmon processes: 

u>162(kl..) 3, (2.7) 
Ve 

where u = wl/nTe. If (2.7) is not satisfied, the v in
creases to v = 4. Extrapolating the power-law form 
of the solution up to the points k0 and k* and joining 
with the solution (2 .6) at the point k*, we obtain 

w!"= w.( :· r =[ Yo~~g - 2:;1 
(kg +Mg- k,) ]( ~ y. (2.8) 

Thus, when k = k 0 we have an estimate of the values 
Wk at the maximum of the spectrum: 

Wmax = W. (k. ( ko)• 

Going over to the region IV of very small k < k0 , 

and recognizing that Wk should vanish when k - 0, 
we can propose the dependence of Wk on k in the 
form 

(2.9) 

We note that although actually the form of the spectrum 
when k < ko is obviously not so simple, (2 .9) suffices 
for qualitative estimates. The obtained spectrum is 
shown qualitativ<!ly in Fig. 1 (curve a). 

On curve a of Fig. 1, region I corresponds to gen
eration of turbulence, region II to its transfer by the 
ions, region III to the asymptotic spectrum obtained 
in[ll, and region IV to the main scale of turbulence, 
where there is a maximum; this maximum was quali-
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FIG. I 

tatively described in[1J. It should be noted that a spec
trum of the type shown in Fig. 1 with a maximum ko 
can exist if vekg/2 y0 t.kg « 1 (we bear in mind that 
t.kg ::::: kg). This means that the power of the sources 
Q is so large that Wk, while decreasing with decreas
ing k, does not vanish in region II: 

v.zk; v6Zkg'A 27m,nov.'(1 + T./T1) 2 (2 .10) 
Q>~= 2 :rtU>o3 • 

A decrease of the source power corresponds to a 
deeper minimum of the spectrum at k* (curve b in 
Fig. 1 ). In the case opposite to (2 .10 ), we have curve 
c of Fig. 1. Figure 1 does not show the region of the 
largest k > k**, since it is assumed that the source 
of turbulence is located at k << k**. If the source is 
located at k > k**' the spectrum of the stationary 
turbulence is determined by Eq. (1.6 ), which we trans
form into a differential equation by canceling out Wk, 
multiplying by ka (a = - 1, + 1 ), and differentiating 
with respect to k the required number of times: 

cPWh 21 d2Wh 46 dWh 10Wh 
2 dk3 +k dJc2 + ~dk+~ 

7 d1d1d21d1d. 
= -5""4u.'dk k dk k dk2 k dk k dk k·yk, 

a' = 6/sv;y2n / m.nowo2• 

In the region where there is neither absorption nor 
generation of turbulence ( Yk = 0 ), the e_quation has . 
three linearly-independent solutions Wfl1 = const · k - 111, 
i = 1, 2, 3, where 111 = % and 112,3 = ( 5 ± ill)/2 are 
the roots of the equation 2v 3 - l5v2 + 29v - 10 = 0. 

The root v1 satisfies the condition for the locality 
of the energy transfer along the spectrum, namely 
when 2 < 111 < 3 the main contribution to both the first 
and the second integral terms of (1.6) is made by the 
region k1 close to k. Only the solution 11 1 corresponds 
to a spectrum that does not depend on the source of 
turbulence, i.e., it justifies the assumption made 
above concerning the existence of a region with Yk 
= 0.2) 

2>For each of the v2 3, one of the integrals in ( 1.6) diverges, i.e., 
strictly speaking, these ~olutions are not solutions of the integral equa
tion (I .6). But the equation ( 1.6) itself is valid only in a limited region 
k,.. * < k ~ I /'Ae. Depending on the boundary conditions in this interval, 
i.e., on the excitation and attenuation of the turbulence, one could also 
take into account the solutions v2, 3• If, however, the generation occurs 
at values of k that are close to I /Ae, by virtue of the fact that the energy 
is transferred in the direction of smaller k, the divergence of the fJrst 
integral ( 1.6) at large values of k would denote that the spectrum cannot 
be determined without allowance for 'Yk· Therefore the solutions v2, 3 

call for an allowance for 'Yk· It is easy to obtain the solution of ( 1.6) 
with allowance for 'Yk for different cases of plasma instability (in par
ticular, two-stream instability, anisotropic instability, etc.), which, 
however, are not written out here. 

3. MAIN TURBULENCE SCALE 

The results make it possible to estimate k0 • Let us 
write down the energy balance equation for the waves, 
taking into account such processes as linear genera
tion and absorption of waves in pair collisions. The 
nonlinear processes of four-plasmon decay and non
linear scattering by ions redistribute the energy over 
the spectrum, and it can be readily shown that they 
drop out when the balance equation is set up. (Non
linear scattering by ions leads to a small energy ab
sorption, which is neglected here.) 

The balance equation, from which we determine ko, 
obviously is of the forll! 

~t8 +Ah.8 k 1+Lik8 

S Ve s Ve Q= yoWhdk=- Whdk=2W1• 

h 2 0 g 

(3.1) 

The integral on the right side of (3.1) corresponds to 
the rate of energy absorption in paired collisions over 
the extent of the entire spectrum Wk. Breaking this 
integral up into terms corresponding to regions I, II, 
III, and IV, and using the concrete formulas for Wk in 
the corresponding intervals, we can readily obtain an 
expression for the main scale of the turbulence k0 (in 
the simplifications we neglect ve /2 yo, k* /kg, 
(k*/k0 ) 11-\ and vekg/2y 0 t.kg compared with unity): 

(3.2) [ v + s k.v. ]1/(v-1) 
ko= k, . 

(s+1)(v-1) !J.k9yo. 

We note that in practice a maximum of the spectrum 
occurs near k0 only if (3.2) yields a ratio (k*/k0 ) > 5. 
If we specify not the generation increment yo but the 
source power Q, then (3 .2) can be rewritten in the form 

k = k. [~ (1 + T./T;) 2 ( v -f:s )2 v,}m.novez .]lf2(v-1) (3.3) 
2:rt (s+1) 2 T./T; v-1 woQ 

or in terms of the total energy of the Langmuir turbu
lence W l = 2Q/ ve: 

k = k [~ (1 + T./T;)~ ( v + s )2~ nmeVeZ]iJJ(v-1)-
• 2:rt (s+1) 2 T./T; v-1 w0 WI (3.4) 

( 
'V e nmeve2 )t/2(v-1) 

-k, 0,1--W1 
Wo 

We see thus that at a sufficiently high source power, 
when condition (2.10) is satisfied (assuming v = 2.84), 
the main turbulence scale depends on Q like k0 

~ Q-o.Z7, or in the general case k0 ~ Q-1/2<11- 1>, i.e., 
the maximum of the spectral density Wk at k0 in
creases with increasing Q and shifts to the left. 

The change of the form of the spectrum at several 
values Ql > Q2 > Q3 corresponding to the curves a, b, 
and c, can be seen from Fig. 1. 

4. THE INFLUENCE OF FAST PARTICLES ON THE 
TURBULENCE SPECTRUM 

According to[2,1], the acceleration of fast particles 
by Langmuir turbulence is quite effective, and there
fore absorption of pulsations by the accelerated parti
cles can become appreciable. This in turn changes the 
plasma turbulence spectrum. The influence of fast 
particles appears only when k > kc = w0 /c. Therefore 
the value of the ratio kc /k* is important. The region 
kc < k < k* exists only in a cold plasma, and the in
fluence of the fast particles in this region was investi
gated in[ll. We consider here the influence of fast 
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particles on the spectrum in the region k > k*, both 
in a hot and in a cold plasma. If kc < k*, then the fast 
particles play an important role in the entire region 
k>k*. 

At this point, we shall stop to consider the effects 
of just this interaction, between the fast particles and 
the Langmuir turbulence. When account is taken of the 
absorption of the waves by the fast particles, Eq. (2.1) 
for Wk assumes in this region the form 

oWh oWh n wo3me ( mawo2 ) v. (4 1 ) -=D1Wh----=---- Za2/" -- Wh--Wh, • 
ot ok T2 nok2 " 2k2 2 

where a = e or i: ma is the mass of the fast particle 
of type a, and Za is its charge. fu the quasistationary 
case we have 

c1W11 = n COo3m._!_ ~ Zaf!Ja( maCOo2 ) -t-~. (4.2) 
ok "f2 n0k2 D1 " . 2k2 2 

We can see from (4 .2) that the influence of fast parti
cles reduces to the fact that Wk decreases with de
creasing k. To find Wk it is necessary to solve in 
general the self-consistent problem, writing down the 
equation for the distribution function in the quasista
tionary case 

of" a a f" a - f" 
-,=0=-Dz--=-+-vemeVe3 Tma=-, (4.3) 

at oe ae "fe 08 1e 

Dz= 
2"f2 no 

and solving simultaneously (4.2) and (4.3). fu the 
quasistationary state we obtain from (4.3) 

of• -/" 
Dz--= + 'Vemave3Tma---=- = const. 

ae ys f8 
Changing over from the variable k to the variable 

(4.4) 

E: = mawg/2k2, and neglecting the last term of (4.2) 
(assuming absorption by the fast particles to be more 
appreciable than absorption in collisions), we obtain 
(in the case of one type of fast particles) 

8W(e) f"(e) 
--= -!la--==-' 

88 1e 

( r ) a /"(e) /"(e) 
.l W(e)de --~-+TJ-~-= const, 

oe "fe "fe 
(4.5) 

where 

If it is recognized that the turbulence spectrum 
vanishes when k > kg, it is easily seen that the con
stant in (4.5) must be set equal to zero. Thus, this 
system reduces to the equation 

• 
( S W(e)ds)b"W(e) +TJ 8W(e) =0. 

8e2 08 
(4.6) 

Without solving (4.6) in the general case, let us 
analyze the effect of the interaction of the fast particles 
with a developed Langmuir turbulence in two limiting 
cases. 

We assume first that the absorption of the Langmuir 
waves by fast particles changes the Langmuir wave 
spectrum little. We can then seek the solution of (4.6) 
in the form 

W(s) = Wg +A(e), !1(8) ~ W 8• 

From (4.6) we readily obtain an equation for A(E:): 

eA"(e) + Pt1'(e) =0, 

P = 'fJ I Wg = 2}'2ln A·m .. wo2 / nZ,,ZWg. 
(4.7) 

One of the two integration constants of the last equation 
is obtained from the boundary condition A = 0 at 
k =kg, and the other can be readily obtained if it is 
recognized that 

"' 
nt = S f(e)de, (4.8) 

•• 
where n1 is the total number of fast particles with 
energy E: , with 

m .. wo2 mr.c2 
--<e<eo=--
2ki 2 

per unit volume, and also that 

t1'(e) = oW(e) =- fla/(8)/-{e = Cte-~(1- p). 
08 

From this we get 

Wh= Wg+ ~~"(: - ~)(1- p)-{ t :: rH> -cc rH>] 
1(4.9) 

/(e)= nle.-1 ( ~ - p ) ( :· r·'·. (4.10) 

It is easily seen from (4.9) and (4.10) that the as
sumption A « W g is satisfied when {3 = 'fl/W ~ < 1 for 
n1 1J. al .[Eo << W g· In other words, for a suffic1ently 
large spectral energy density of the Langmuir waves 

keWg 2"f2 m.. Ve 'Ve --> --------, 
n0T • nZ .. 2 me c roo 

(4.11) 

the solutions (4.9) and (4.10) are valid for n1 such that 

"fe-;- W gke ( c ) 2 mo: 12 
ni~W8-=no-- --

fla noT. Ve . m; 27 (1+T./T;) 2 
(4.12) 

We note that when {3 « 1, the fast-particle distribution 
function takes on the form 

/(e) ~ yg:- (4.13) 

Assume now that the absorption of the Langmuir 
waves greatly changes the spectral energy density Wk 
in the interval II (Fig. 2), and the spectral energy 
density of the Langmuir waves is sufficiently high 

~SW(8)de~rJ. (4.14) 

The last condition is similar to {3 « 1, and for esti
mates it can be replaced by (4 .12 ), bearing in mind in 

FIG. 2 
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FIG. 3 

place of Wg a certain average spectral energy density 
in the interval II. 

Under the condition (4.14), we get 

/(e) ~ye;- W(e) = c2- CI!J,a8. 

On the boundary of region II we have Wg = C2 

- JJ.aC1Eg, from which we get 

W(e) = Wg + cl!l'>(Eg- e), 

(4.15) 

and the constant C1 is determined from the normaliza-
tion condition 

(if we neglect Eg compared with € 0). As a result we 
obtain 

It is easily seen that when Wg ::s %n1J1. 01 /«o, i.e., 
when 

Q < 3'rr ( m•)2
( ~)2( ~)2 m;nov.2woZa~(1 + T./T;) 2 (4.17} 

16 ma no c 

the spectral energy density Wk has no maximum at 
k < k*' owing to the absorption of the Langmuir waves 
by the fast particles. 

Figure 2 shows the spectra of the Langmuir turbu
lence Wk of a cold plasma (kc < k*)' in accord with 
the foregoing. Curve a corresponds to the absence of 
fast particles, and curves band c correspond to an in
creasing number of particles at the same turbulence 
generation power Q. The fast particles, according to [lJ, 
have a power-law turbulence spectrum in the region 
kc < k < k* ( 11 ranges from 11 = 2 .84 to 11 = 4 ). 

For a hot plasma, kc > ~, effects of the influence 
of the fast particles on the turbulence, analogous to 
those described above, take place only when k > kc. 
When k* < k < kc, we get the results of Sec. 2, and 
in the absence of collisions Wk is constant. When 

k < k*, the spectrum coincides with that obtained in[ll, 
where in the case of intense turbulence 11 = 2 .84 and 
the fast particles do not influence the spectrum ( 11 can 
be a function of Q only under conditions of not very 
strong turbulence, when the induced scattering is com
parable with the four-plasmon scattering). Qualitatively, 
the spectra of the hot plasma are shown in Fig. 3. 
Curve a corresponds to the absence of fast particles, 
and curves b and c correspond to an increasing num
ber of such particles. 

If the number of fast particles is large, the spec
trum has no maximum (curves d of Figs. 2 and 3). An 
increase in the intensity of the fast particles at such 
a spectrum has little effect on its intensity, since a 
small increase of the slope (an increase of the fall-off 
rate) of the spectrum strongly decreases the effects of 
acceleration and the gathering of energy by the fast 
particles. This is connected with the decrease of the 
acceleration like v~h ( Vph = wo/k); such a process of 
self-regulation of the acceleration can establish an 
equipartition of energy between the fast particles and 
the turbulence. 

Under astrophysical conditions, frequently even a 
small turbulence level (WZ/nTe ~ 10-6 ) effectively 
accelerates the electrons and ions of low energies 
(ions up to 30 MeV). The distribution of the fast parti
cles (sub cosmic rays) in this region should corre
spond to f(E)~ .JE, in accordance with formula (4.15). 
The absence of low-energy subcosmic rays agrees 
with the results of an analysis[sJ based on ultraviolet 
radiation (curve b of Fig. 3 ). 

The authors are deeply grateful to S. B. Pike! 'ner, 
L. I. Rudakov, and G. I. Petrov for a discussion of the 
results. 
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