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Solutions of the Korteweg-de Vries equation are considered in the form of nonlinear periodic waves 
with very large periods. It is shown that under certain conditions, superposition of such nonlinear 
waves can be regarded as the zeroth approximation of the solution. Corrections to the solution are 
found by perturbation theory. The perturbation is the interaction of resonant nonlinear waves. It is 
shown that if the number of nonlinear waves is large, then their phases are random functions of time. 
A kinetic equation is found which describes the ensemble of nonlinear waves. Some of its particular 
solutions are obtained. A power dependence of the mean wave energy on the wavelength is obtained and 
corresponds to the Kolmogorov turbulence theory. 

1. INTRODUCTION 

IN recent years, a number of researches have been de­
voted to the theoretical and numerical investigation of 
the Korteweg-de Vries (KV) equation: 

ov Ov Ov o3v 
-+-+v-+-=0 
Ot ox Ox Ox3 ' 

(1.1) 

where v is the physical variable of the problem (for ex­
ample, the velocity), x the coordinate, and t the time. 
Interest in the KV equation is associated with the fact 
that many problems describing nonlinear motion in a 
dispersive medium reduce to it.. We refer here to waves 
in a channel of finite depth, ion sound, magnetic sound, 
etc. (see, for example, l1 l ). In a simplified variant, the 
KV equation also describes the characteristic proper­
ties of the initial equations. 1 > The stationary solution of 
the KV equation 

v = v(x -nt) (1.2) 

has the form of a nonlinear periodic wave moving with 
velocity u (in what follows, we shall call this solution 
the S wave). A degenerate case of the solution in the 
form (1.2) is the solitary wave (soliton). A fundamental 
result for the KV equation at the present time is the 
solution of the Cauchy problem for an arbitrary smooth, 
initial profile v(x) bounded in space, obtained by 
Gardner, Greene, Kruskal and Miura. l2 l As t - oo, the 
solution v(x, t) represents a set of a finite number of 
solitons which do not interact wi.th one another, and 
whose parameters are determined from the correspond­
ing equations. A rephrasing of this result is the exis­
tence of an asymptotic (as t - cc·) principle of super­
position for solutions of the type of solitons and the 
possibility of the determination of their parameters 
with the aid of a finite number of integrals of the KV 
equation of motion. l3 l 

We now proceed to the exposition of another view­
point on the possible solutions of (1.1), associated with 
the Fermi-Past- lliam problem. 14l The hypothesis 

1 l An exception is "wave breaking," which is absent in the KV equa­
tion. 
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enunciated by Fermi was that a system (even a one­
dimensional one) of a large number of coupled nonlinear 
oscillators should possess statistical properties in its 
completely regular (non-stochastic) excitation. As a 
consequence, the energy included in the excited modes 
of oscillation should be distributed in the mean uni­
formly over all (or almost all) degrees of freedom, 
similar to what occurs for the Maxwellian distribution. 
Numerical analysis and analytic estimates, carried out 
by Izra'llev and Chirikov, lsl confirmed the considera­
tions of Fermi. However, in the approximation of a 
continual distribution and not very strong nonlinearity of 
the system of oscillators considered inl 4l, it is des­
cribed by the KV equation. lsl If the approximation of 
such a description is not important, then solutions of the 
KV equation of a different type than sound in l2 l should 
exist. That is, such solutions are possible in which 
v(x, t) is a random function of the variables and, fur­
thermore, a function F(v, t) exists which represents the 
statistical distribution function in v which, as t - oo, 

tends to a stationary value, which ensures thermo­
dynamic equilibrium. The considerations just stated can 
be called the problem of finding the stochastic solutions 
of the KV equation. 

Finally, there is one more feature of the solutions of 
the KV equation, closely associated with the Fermi­
Past- lliam problem. Inasmuch as Eq. (1.1) describes a 
definite class of hydrodynamic motions, the stochastic 
solutions should also describe the turbulent motion of 
the medium. The problem of the existence of stochastic 
solutions for the KV equation with strong nonlinearity 
and without the introduction of additional random sour­
ces remains open at the present time. 

The method of investigation set forth below will be 
applied to an arbitrary nonlinear medium with disper­
sion, in which solutions of the S-wave type exist. We 
shall show the range of parameters in which one can 
construct stochastic solutions, we shall obtain the kinetic 
equation for the distribution function of states of the sys­
tem, and we shall make clear the properties of some 
solutions of this equation. The resultant stochastic so­
lutions correspond to motions with a large Reynolds 
number. 
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2. THE FUNDAMENTAL EQUATIONS 

We shall write down in brief form the properties of a 
stationary solution of the KV equation which will be used 
essentially. Moreover, we shall also study the case in 
which the length of the S-wave .\ - oo, Therefore, all 
the expressions will be written down in the correspond­
ing approximation. 

The periodic solution describing the S wave in the 
case under discussion has the form 

v=3a·cnft'~a (x-ut);1]. (2.1) 

where en is the elliptic cosine (here its modulus is 
unity); the quantity a = u- 1 is the difference of the 
S-wave velocity and the characteristic sound velocity 
for the problem considered, the latter velocity taken as 
unity. In the following, a > 0 and a« 1, the latter 
inequality is not necessary; however, the KV equation 
usually has physical meaning only for small a. By vir­
tue of the periodicity of (2.1), it can be expanded in a 
Fourier series: 

Here N is the characteristic number of harmonics an in 
the S-wave spectrum. For n > N, the amplitudes of the 
expansion fall off exponentially as exp (- n/N). As 
k- 0, we haveN- 00 • The number N can be given still 
another meaning. According to (2.1), the width of the 
humps in Fig. 1 is equal to ~ 1/£, and their separa-

,, 
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FIG. 1. Profile of two S waves and their overlapping. 

tion is .\, According to the last equality in (2.2), N is 
equal to the ratio of the distance between humps to their 
width. We also write down the value of the Fourier 
amplitude an: 

an~ 3a/ N (n~N). (2.3) 

The Hamiltonian formalism for the KV equation looks 
like the following. We introduce the Hamiltonian 

~= lim-1-1 dx[~(!::...);~. -~v3 -~v•] 
L-oo 2£ -L 2 ox 6 6 

1 .. 
= - 2 ~ dq(1- q2)v(q)v(-q) 

-x 

1 .. 
-6-~ dqtdq,dqav(qt)v(q,)v(qa)ll(qt+q2 +q3), (2.4) 

where the expansion .. 
V=~ dqeiqxv(q), v(-q)=v'(q). (2.5) 

is used. Equation (1.1) is equivalent to the following 
canonical equations of motion: 

dv(q) . ~~~ dv(-q) . b~ (2 6) 
~=!Qllv(-q)' -d-t-=-!Qbv(q) ' • 

and the time derivative of the arbitrary functional P is 
computed from the formula 

dP=oP+i~q(~~-~~)dq 2.7 
dt ot llv(q) llv(-q) bv(-q) llv(q) · ( ) 

3. STATEMENT OF THE PROBLEM AND THE EX­
PANSION PARAMETER 

Let H5 = H5 (k5 , u5 ) be the Hamiltonian of the S wave 
v5 (x- u 5 t). In view of the nonlinearity of the KV equa­
tion, the superposition 

B 

v=] v, (3.1) 

is not a solution of Eq. (1.1). Below, we shall show that 
if the condition 

a.~1, N,>1 (3.2) 

is satisfied for all s (these relations denote the "close­
ness" of v5 to solutions of the "soliton" type), then Eq. 
(3.1) can be used as a zeroth approximation, the correc­
tions to which are computed with the help of the corre­
sponding perturbation theory. 2 > 

We apply the following limitations to the packet (3.1) 
of S waves: 

1. S « N. 
2. Different values k5 of the wave numbers differ 

from one another by the quantity ~k: 

k>l'>.k;?k/ N, (3.3) 

where k and N are certain values of k5 and N5 and are 
characteristic for the packet. The meaning of the in­
equality (3.3) will be revealed below. For simplicity, 
we also take ~a/ a ~ ~k/k. 

3. The numbers k5 are incommensurate, so that to 
each q of the discrete series of values entering in the 
expansion of the quantity v in zeroth approximation one 
can ascribe one and only one index r, which indicates 
that the given wave number belongs to the spectrum of 
the r-th S wave. 

We write down the Hamiltonian (2.4) in the form 

~=~~ H,+HI, (3.4) 

where 
H,=-{-~ dq,(1-q,2)v(q,)v(-q,)-

- ~ ~ dq,dq,' dq,''v ( q,) v( q/) v( q,") II ( q, + q,' + q,"), 

1 ' 
H1 =- 6 ~ ~ dq,,dq,,,dq,,v(q,,)v(q,,) v(q,,)b (q,, + q,, + q,,), 

S!!S2,8:1 

(3.5) 

The prime on the sum indicates exclusion of the number 
with S1 = s 2 = S3. Integration is carried out in H5 over 
the values of q belonging to one and the same s; con­
versely, the indices for q in H1 show that the volumes 
of q refer to different s. We estimate Hv taking v 5 as 
given by Eq. (2.1). Let the periods of the S waves differ 
by 

(3.6) 

i.e., by more than the width of the hump. In this case, 

2lThe expansion in the exact stationary solutions of the nonlinear 
equation was used in [.:~). The possibility of application of the weak 
coupling theory to problems of strong turbulence is connected with 
such a form of the expansion, as we shall see below. [ 8 ) 
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as is seen from Fig. 1, coincidence of the humps belong­
ing to different s takes place roughly every N periods. 
This means that the overlap integrals that determine HI 
have the order of S/N, which is small in view of the 
limitation 1. Limitation 2 is equivalent to (3.6), since 
t.k = k2t..i\ :;::, k2/v'Ci. Finally, limitation 3 allows us to 
write down the canonical equations for the Fourier 
harmonics v(qs) belonging to a particularS wave, 
similarly to (2.6): 

dv(q,) . fJ;}Iff dv(- q,) . fJJiff 
-d-t-='q'Bv(-q,) '---;u-=-tq, liv(q,) · (3.7) 

Thus, in accord with (3 .4), the Hamiltonian of the prob­
lem is equal, in zeroth approximation, to the sum of the 
energies of each of the S waves, and the perturbation HI 
takes into account their interaction, which is of the order 
of St.k/k: 

Actually, the right hand inequality should be the more 
stringent, and we shall make it more precise later. 

We set 

v(q,) = a(n,)ein,•',, a(-n,) = a'(n,), q, = n,k,. (3.8) 

In the zeroth approximation, in accord with (2.2), 

dfJ, I dt = w, = a,k,, (3.9) 

and us = us(Hs, ks)· It is convenient in what follows to 
consider each of the S waves as a degree of freedom of 
the packet (3.1), characterized by the variables energy 
and phase, (Hs, Js)· 

4. RESONANT PROCESSES AND THE CONDITION OF 
RANDOM PHASE FOR S WAVES 

We consider the change in the variables (Hs, .lls) as­
sociated with account of interaction of the S waves. Ac­
cording to (2. 7) and (3 .4), 

dH,=i sq,(~~- /iH, fJHI )dq,. 4.1) 
dt flv(q,) 6v(- q,) liv(-q,) !lv(q,) ( 

In view of the smallness of HI, we can use the zeroth 
approximation for o Hs/ov(± qs)· Taking into account the 
expressions (3.7)-(3.9), we get the following: 

dH,=-ia, ~q,[v(-q,) fJH1 v(q,)~Jdq,. (4.2) 
dt liv(-q,) llv(q,) 

In (4.2), we discard those terms which can lead to 
resonances and, consequently, are of higher order. For 
this, we note that 

fJHI 1 "" I ov(q,) = -2LJ J dq,dq,,dq,,v(q,.,)v(q,,)fJ(q,+q,,+q,,) (4.3) 
S1,S2 

and exclude the case s = s1 = s 2 • With each factor v(qs) 
there enters in (4.2) the factor exp (-iusqst). It then 
follows that the simplest resonances take place when the 
following conditions are simultaneously satisfied: 

q, + q,, + q,_ ·= 0, 

u,q, + u,,q,, + u,_q,, = 0. (4.4) 

However, the latter is possible only when all the num­
bers of the triplet {s, s1, s 2) are different. 

A resonance of the type 

qo + q,, + q,, + q,, = 0, 
Usq.s + Us 1qs 1 + Us/is1 + Us3qs3 = 0 

can occur even when a pair of the numbers si are iden­
tical; however, it is connected with the interaction in 
second order in HI and gives a contribution that is 
smaller than (4.4). Thus, in (4.2), we should discard 
the terms corresponding to a resonance of the type (4.4), 
in which harmonics of three different S waves enter. 

Substituting (4.3) in (4. 2) and taking the foregoing 
into account, we get 

+a' (n,)a(n,.)a(n,,)exp{i(n,fJ,- n,,fJ,,- n,,fJ,,) }. 

cSn sks -nsL k Si-n szk S2 +c .C.}. (4.5) 

Here {3 is a normalization constant connected with the 
transition from integration to summation; the numbers 
ns. change from 1 to oo; c .c. means terms that are the 
cofuplex conjugates of the preceding terms; the function 
on .i\ ±n k -n k must be understood here and be-s s S 1 s 1 S 2 S 2 

low as the Kronecker symbol. The system (4.4) must be 
supplemented by equations for the change in phase .lls, 
which, in first order perturbation theory, retain the 
form (3.9), with the only difference that now the Hs de­
pend on t in correspondence with (4.5). 

' ........ 
' '"-:-----n,zwsz=usz?sz 

as/ws/ fil.s/ =ns/usJ 

FIG. 2. Scheme of overlapping of resonances between three S waves. 

We investigate the change of the quantities (Hs, .lls) 
as a consequence of the resonances, similar to what 
was done inl9 J. Change of Hs under action of process 
(4.4) leads to a change in the frequency Ws because of 
nonlinearity and, consequently, to a violation of the con­
dition (4.4). In this connection, the maximum possible 
change of energy takes place because of the resonance, 
which change we shall denote by oHs, and the maximum 
change in frequency associated with it is: 

(4.6) 

The solid arrows connect the frequencies of the har­
monics entering in the resonance (4.4). 

We now introduce the distance between the resonan­
ces ns, equal to the value by which one must change ws 
in order that a resonance of type (4.4) be possible with 
the possible values of the wave numbers in the spectrum 
closest to qs1 and qs2 (for example, the process shown 

by dashed arrows in Fig. 2). Under the condition 

(4.7) 

the harmonic with number ns is constantly in resonance 
with some pair of harmonics (ns1, ns2 ) and a process of 
type (4.4) is constantly sustained. In this case (seels,gJ) 
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the change in phase J 8 with time can be regarded as 
random. 

We shall make an estimate of the parameter K8 • For 
this purpose, we note that the process (4.4) can be re­
written in the form 

n,k. ± n,,k,,- n,.k,, = 0, 

nsVs ± n.c,\s 1 - ns2Vs 2 = Q (ni > 0), 

Vi= kiUi = k;(U; -1). (4.8) 

In the sum (4.5) we remove the term corresponding, for 
example, to the minus sign in (4.8). This term is pro­
portional to 

where 

dfJ, I dt = v, (H,). (4.9) 
From (4.5) and (4.6) we obtain the estimate 

[ dv, J ''• 
nsf!HUs = n 8{h's ~ ns2S2ks-an3 • 

dH, 8 

Transforming in (3.5) from integration to summation, 
assuming that a 8 << 1, we have 

dH, I dv, ~ -y!i,. (4.10) 

We then get, by using the expression (2.3) for a(n8 ), 

ceed to the derivation of the fundamental kinetic equa­
tion ("master equation") for S waves in the random 
phase approximation. 

We introduce the distribution function f(t, H, 8), 
where (H, 8) denote the set of all variables 
(Ht, ... , Hs; 81, .•. , 8s)· The Liouville equation for f has 
the form 

!!!_ " of o~ _ ~a~ _ 0 
ot + :3 'as, aH, :3 "' oH, oe8 -

s 8 

or, after substituting (3.4) for H, 

of+ v,!!...= ~ v,(fJH1!1.__ oH1 _of). 
ut , as, , ae, au, au, d9, 

We expand fin a Fourier series: 

I 

f(H,e, t) = :3 ( j<mJ(H, t)exp[ i(m, 9- ~ vdt) J 
{m} 

+ j-(ml(H, t)exp[- i( m, 8- ~ vdt) ]) 

j<m) = (f-{m)) •, 

(5.1) 

(5.2) 

where the summation is carried out over all possible 
sets of numbers {m} and 

( m, q;) == :3 m,q>,. 
r 

Inasmuch as, in accord with (4.8), 

Q = a!lk + kf:.a, 

(4.11) In the substitution of (5.2) in (5.1), we take it into account 
that the frequencies lJ change, according to (4.11), by an 
amount 

it is then easy to write the criterion (4. 7) in explicit 
form: 

K=(!_n}!_)'2 ;>1 (n~N), 
N l'!k 

(4.12) 

where the subscripts are omitted for convenience. It 
follows from (4.12) that the criterion for stochasticity 
for some n < n0 cannot be satisfied and, conversely, for 
sufficiently large n, close to N, it is always satisfied. 
In the optimal case, substituting (3.3) in (4.12), we have 
simply 

K = S'n'">1. 

This means that in fact, all the harmonics of the S wave 
have random phases. 

The time of randomization of the phase T n of the 
harmonic with frequency nw is determined fromc 91 : 

Tn ~ (NSQ ln K)-1• 

It follows from (4.7) and (4.12) that the number of over­
lapping resonances, equal to v'K, leads to an effective 
increase in the small parameter of the problem. The 
condition of smallness of HI should now have the form 

82IN~1. 

Actually, the change in a is equal to 

- - /';.k 
/';.a~ l'K 6a = ayKSk ~ aS2jN, 

and the inequality written down above immediately fol­
lows from the condition t.a « a. 

5. THE KINETIC EQUATION FOR S WAVES 

The results of the previous section allow us to pro-

/t,.v=SviN (5.3) 

as a consequence of the resonances. Equation (5.3) 
means that the effect of the resonances is revealed in the 
next order of smallness of the parameter S/N, accord­
ing to which the expansion is carried out in the deriva­
tion of the kinetic equation. This allows us to use in what 
follows a diagram technique of the same type as in the 
work of Prigogine- Brout. ctoJ 

From (5.1), (5.2), and (3.5), we have 

+ i~ m,( e,- ~ v,dt )}a'(n,)a(n,,)a(n,,) [ nv a~l] jim) 

- i {[ nv 0~ ]a"(n,)a(n,,)a(n,,) }exp{i[n8] 

I 

+ i ~ m,( 0,- ~ v,dt)} jlmJ) flcnhl +c.c. 

=- ~ i ~ ~ {[ nv a: J a'(n,)a(n,,)a(n,,) 
s,s1,s2 n~,n 81 ,r1 82 

(5.4) 
F""' j<0l(H, t), 

where the notation 

[nQ] == n,Q,- n,,Q,,- n,,Q,,, 

is used. Each exponent of the type exp (in8 8 8 ) we shall 
represent by thin lines included within two heavy lines. 
Thus, for example, the transition 

(01->- Ins> 
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FIG. 3. Diagrams of the simplests 
transitions: a-<oi ->Ins>, b-<ns 1-> 
I ns1>+ I s2s. 

is shown in Fig. 3a for ns = 3. The process (4.8) is 
shown in Fig. 3b. The set of thin lines, bounded by the 
two heavy lines, refers to a fixed S wave and can be 
called the strong coupling element, since a change of 
any of the Fourier components a(ns) leads to a change 
in all the remaining Fourier components of the same 
S wave. Summation in (5.4) over ni takes into account 
the effect of the strong coupling within the i-th S wave. 
The vertex on the diagram 3b takes into account the 
weak coupling (~ S/N) between three strong coupling 
elements. We shall further express F from (5.4) in the 
form of a formal series in powers of HJ, discard the 
principal terms of the series and consider the initial 
conditions 

j(rnl(t = 0) = F(t '= 0) llm, o, 

corresponding to the random phases 8. An example of 
the principal terms in second and fourth orders is shown 
in Figs. 4a and b, respectively. Omitting the standard 
contributions, we obtain the following kinetic equation: 

a:r = 6rr S S [ nv a! j la'(n,)a(n,,)a(n,,) I' 
s, s1, Sz n,, ns 1, n,2 

Xll([nv])llrnkl [ nvi:1~]F, (5.5) 

where the a(ni) are expressed as functions of the H1. 
We introduce the action variation Is with the help of 

the relation 

(5.6) 

With accuracy up to a numerical coefficient of order 
unity, we obtain the following 

a= (HI k)''•. (5.7) 

Substitution of (5.7) in (5.6) gives the coupling 

H = kl3, a= 12• (5.8) 

Moreover, in accord with (2.3), 

an= a/N=l/ak = kl. (5.9) 

We now assume that the amplitudes an are exponentially 
small for n > N. This allows us to limit the summation 
over ~in (5.5). Substituting (5.6), (5.8), (5.9), in (5.4), 
we finally obtain 

aF N,,N,l,N'a i) 

at = 6,-c S S [ n {}]] G,,,,, 
s, s1, s2 n,, n 81 , n 82 

Xll([nkl2])1lrnkl [ n 0~ ]F, 
where Ni = vai/ki = Ii/ki, 

(5.10) 

G,,.,, = (k,,k,,k,,J.I,,J,,)', [nkl'] = n,k,I,"- n,,k,,f,,'- n,,k,,J,,', (5.11) 

In the derivation of the kinetic equation (5.10), we have 
actually assumed that the set of S waves remains closed. 
This imposes the following limitations, in addition to 

a b 

FIG. 4. Examples of diagrams which determine the principal terms 
of a perturbation theory series for Eq. (5.4). 

those shown in Sec. 2; 1) we consider such a class of 
initial conditions, in which the statistical weight of solu­
tions of the S-wave type is very large in comparison 
with the weight of the other possible solutions; 2) the 
deviation of the initial distribution function F(t = 0) from 
equilibrium, which causes the right hand side of (5.10) 
to vanish, is rather small. The latter leads to small 
relaxation times in comparison with the time of spread­
ing out of the S waves, which is associated with correc­
tions of the next order of smallness in Eqs. (4.5) and 
(4.9). 

6. PARTICULAR PROPERTIES OF THE KINETIC 
EQUATION AND TURBULENT MOTION 

The equilibrium solution of the kinetic equation is 

F = F(~ H,), (6.1) 
s 

which causes the right-hand side of (5.5) to vanish. It is 
of interest to discuss other possibilities connected with 
the Kolmogorov theory of turbulent motion. As has 
already been noted in the Introduction, the velocity of 
nonlinear waves in real problems has an upper limit, 
above which the wave breaks. We denote by O!c the criti­
cal value of the parameter a, which does not depend on 
s. The motion of the individual S wave with random 
phase can be described in the same way as a Brownian 
particle, which leads on average to an increase in O!s· [llJ 

This process is accompanied by a narrowing of the 
humps of the S wave and the appearance of high values 
of wave numbers q at the expense of an increase in N. 
When as reaches the value O!c, the wave breaks and its 
energy is dissipated into another (multistream) form of 
motion. If the number of breaking waves is small in 
comparison with S, then their reaction on the process 
described by Eq. (5.10) can be neglected. Here the sta­
tionary picture corresponds to a constant energy flow 

d 
dt (Hr) = const == C, (6.2) 

where C does not depend on r, and the brackets denote 
averaging over F{H, t). The expression (6.2) can be 
rewritten in the form 

Sd dH dH H iJF(Ht, ... ,Hr, .. .,H8 ,t) 
Hi... r... s r at C. (6.3) 

The dependence of the average energy 

Er(k,) = (Hr) 

on kr can be estimated from the considerations of 
dimensionality. 

We note that a change in energy over the wave spec­
trum takes place in quite a different fashion than in the 
theory of weak coupling. In the reversal of the r-th 
S wave, the Fourier harmonics corresponding to wave 
numbers nrkr disappear; here nr changes from unity to 
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Nr· Thus the energy is added uniformly over nearly the 
entire spectrum. 

We multiply (5.10) by I~ and integrate the equation 
over all Hs· This gives 

m-1 [ (j ]) - n,,J,, ll,,,)G.,,,,Il([nk/2])1l[nkl n7i] 

NT,N,l,N,2 

= 6:rtm ~ < ~ n,/,m-1 { G,,,,,,ll(n,k,1,2- n,,k,,f,,2 

s 1, Sz nr, n 11 , n 62 

( n,, 0~ - n, 0~ - n,, 0~ ) } ) . 
s1 r a~ 

With the help of o functions, we carry out summation 
over the ni: 

Form= 3, we adjust the right side of (6.4) by a con­
stant which is independent of k, in correspondence with 
(6.2), we seek a solution of the resultant equation in the 
form 

E, = Eok,~. 

From dimensional considerations, we easily find 

(/,) ~ k,-'1•. 

Hence iJ. = -7/8. 

(6.5) 

In conclusion, we call attention to the following cir-

cumstance. The case considered in the research corre­
sponds to weak nonlinearity, the value of which can be 
characterized by the number N of "internal" degrees 
of freedom of the S waves, which correspond in ordinary 
hydrodynamics to a large Reynolds number. We can 
establish the latter in the following way.3 > We construct 
the analog of the Reynolds number for Eq. (1.1): 

R = v /lifJ ~ a f k;2 = N2. 

Thus the expansion in the reduced perturbation theory 
is made over powers of R-112 • 

We express our gratitude to A. S. Bakai:', B. B. 
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