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A theory of magnetic-resonance saturation in a solid body is developed for the case when exchange 
interaction exists between the spins. The analysis is based on the three-reservoir model in which 
an exchange reservoir is introduced along with the lattice and the Zeeman system. The calculations 
are based on the method of setting up the non-equilibrium density matrix. Expressions are obtained 
for the imaginary part of the complex magnetic susceptibility and for the line width. The results 
obtained can be applied to NMR in solid He 3 and to EPR in a nonmetallic crystal containing magnetic 
atoms. 

J. The theory of saturation of magnetic resonance in a 
solid with allowance for the dipole-dipole (d-d) interac­
tion between the spins was given in the papers of Red­
field[1J and Provotorovr21 • It is assumed in these papers 
that only d-d interaction occurs between the spins. 

Ol'khov and Provotorovr 3 l considered the saturation 
of resonance in a paramagnet with exchange interaction 
greatly exceeding the Zeeman energy (which is realized 
above the Curie point in the case of a ferromagnet). 
Equations of the Bloch type with equal times of longi­
tudinal and transverse relaxation are obtained for the 
magnetization. This is connected with the fact that the 
system is actually isotropic, in view of the smallness 
of the Zeeman energy. 

There are encountered, however, important cases 
(NMR in solid He 3, EPR in a nonmetallic crystal hav­
ing a large concentration of magnetic atoms) in which 
the exchange interaction greatly exceeds the d-d inter­
action, but is smaller than or of the order of the Zee­
man energy. 

Many experiments were performed on the solid He 3 

for the purpose of determining the influence of the ex­
change interaction on the longitudinal and transverse 
relaxation of the nuclei (see, for example,[ 41 ). To ex­
plain the experimental data, one uses the so-called 
three-reservoir model, in which an exchange reservoir 
connected with the exchange degrees of freedom is in­
troduced besides the lattice and the nuclear Zeeman 
system. 

Studies were also made of EPR in nonmetallic 
crystals with large magnetic-ion concentration. It is 
well known that the exchange interaction (between 
identical spins) leads to a narrowing of the resonance 
line[ 5 l, 

We note the following limitation. For solid He 3 , the 
exchange reservoir can be introduced only when the 
condition[ 4 J JTc > 1 (J-exchangeconstant for the 
nearest neighbors, Tc-correlation time for atomic 
diffusion) is satisfied. A similar limitation holds also 
in the case of a crystal with a large concentration of 
magnetic systems. 

The present paper is aimed at an investigation of 
the influence of exchange interaction on the saturation 
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of magnetic resonance. We consider the case when the 
exchange interaction is smaller than or of the order of 
the Zeeman energy. For concreteness, we shall speak 
of the case of a system of nuclear spins. 

2. We start from the premise that the presence of 
a strong exchange interaction in the system gives rise 
to a time scale T which is much smaller than the 
other characteristic times of the system (the time con­
nected with the d-d interaction, or the time which is 
reciprocal to the transition probability due to the al­
ternating field). This circumstance allows us to per­
form the analysis on the basis of the method of con­
structing a non-equilibrium density matrix, developed 
by Zubarevr 61 • 

Since this method is valid for times larger than T, 

we can obtain equations of motion for the statistical 
mean values of the operators that commute with the 
interaction responsible for the small time scale, In 
our problem, this condition is satisfied, generally 
speaking, by the total spin operator 1a = ~ J? (a = x, 

1 
y, z, and li is the a-th projection of the spin operator 
of the nucleus located in the i-th site of the lattice) and 
by the exchange-interaction operator. 

The total Hamiltonian of the system is written in the 
form 

where d'6z is the Zeeman energy of the nuclei, J'6E is 
the exchange Hamiltonian, J'6d is the Hamiltonian of 

(1) 

the d-d interaction, and d'Gzf is the energy of the inter­
action of the nuclear spins with the alternating field. 
We have left out the interactions of the lattice with the 
nuclear spins and with the exchange degrees of free­
dom, since these will be taken into account phenomeno­
logically. 

We introduce the notation wo = yH and W1 = yH1 
(y-gyromagnetic ratio, H-main field, directed along 
the z axis, 2H1-amplitude of the alternating field with 
frequency w, applied perpendicular to H). We intro­
duce further the average quanta of the exchange and 
d-d interactions, respectively, by means of the follow­
ing formulas (we assume t1 = 1 ): 
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(2) 

(in the formula for wd we take J'6d to mean the secular 
part of the d-d interaction). We choose J'6E in the form 

:J/JE = ~ ~~ J;);lj, (3) 
ij 

where Jij is the constant of exchange interaction be­
tween the nuclei located in the i-th and j-th lattice 
sites. Simple calculation yields 

l•lE 2 = !_/(/ + 1) ~~ J;/. (4) 
2 . 

.I 

We further have wd ~ yHd, where Hd is the local 
field due to the d-d interaction. (An exact expression 
for Wd can be found, for example, in[71.) 

Since the operator Jli'zf commutes with deE, the 
picture of resonance saturation depends strongly on 
the ratio wdwd· The saturation picture depends 
strongly also on the ratio w0 /wE. If this ratio is suf­
ficiently large, we can neglect the cross relaxation 
transitions due to the nonsecular terms of the d-d 
inter action. 

We confine ourselves throughout to the high-temper­
ature approximation for the Zeeman and exchange 
energies. The specific heat of the lattice is assumed 
to be sufficiently large, and the change of the lattice 
temperature is neglected. 

3. We consider first the case w1 « Wd· Let, in 
addition, wo/ WE be so large that the nonsecular part 
of :Jfd can be neglected. We change over to a rotating 
system of coordinates, with the x axis along the ro­
tating field H1. The secular part of the d-d interaction 
is combined with the exchange interaction, and the 
corresponding reservoir is called the exchange reser­
voir (E). We introduce further, as separate subsystems, 
the lattice reservoir (L) and the nuclear Zeeman 
reservoir (Z). The energy of interaction of the spins 
with the alternating field does not commute with the 
energies of the Zeeman and exchange reservoirs, so 
that the alternating field tends to bring these two sys­
tems into equilibrium with each other. 

We denote by f3L, {3z, and f3E the reciprocal tem­
peratures (in energy units) of the reservoirs L, Z, and 
E, respectively. Without first considering the lattice, 
we compile for our system the nonequilibrium density 
matrix, and we find d{3z/dt and df3E/dt (in analogy 
with the procedure used in[ 8 ' 9 l). Then, followingr 2• 10l, 
we add phenomenologically the terms due to the inter­
action with the lattice, and obtain 

d~z= -2W(w-wo)(~,- ~E)--1 -(~,-Wo-W ~L), 
dt T,L :uo 

d~E ~E- ~L 
-=2aW(w-wo)(~,- ~E)----, 
dt TEL 

where TzL and TEL are the relaxation times of the 
Z and E parts with the lattice, a = ( w - wo )2/ wfi;, 

(5) 

W( w- wo) in the probability of the transition (per unit 
time) due to the alternating field: 

W('w- wo) = _1l_w,2.r(:u- wo), ( - 1 f~ \[+J-(t)) iwt d (6) 
2 " <p w)-- z;:t}oc (IJ+j2) e t, 

cp ( w - w0 ) is the normalized line-shape function, rt 
= Ix ± nY, and (A) = Tr A/Tr 1. 

It is easy to obtain the stationary solution of the 
system (5 )1l: 

w0 2aWTEL + 1 
~z= ~Lw0 -w 2WT,L+2aWTEL+1' 

Wo 2aWTEL 
~E = ~L luo- w 2WT,L + 2aWTEL + 1 

(7) 

For the imaginary part of the complex susceptibility 
we can use the expression 

!! .", ~,- ~E 
x (w)=z-xo(wo-w)cp(w-wo)-R-·-

~-L-

(8) 

( xo-statistical susceptibility). We obtain 
l1 kwE2 

x" ( ((;) = 2 XoWo q: ( (i)- Wo)2WT,L [ ( (J) - wo) 2 + kwE'l + kwE' ' (9) 

where k = TzL/TEL· 
In the case of strong exchange narrowingf 71 

W f2 W w,' f=wd2 (10) 
W(w-wo)= o (w-wo)2+f2 o= 2.f WE 

Since Wd <<WE, we find that I'« Wd· Further, we can 
assume that kwfi; >> r 2 • 

Taking (10) into account, we can transform (9) into 

n [ kwE2 ]''• x"(w)=~xowo l''(2W 1' +1)(;;vV 1' +k ·-/f2) q:'(w-wo), 
0 zL 0 zL lil>. · (11 ) 

where 
• 1 r· 

q; ( w - wo) = -,----,--.,~,-­
n ( w - w 0)' + I"2 • 

(12) 

The saturation line width I'* is given by the formula 

f' 2 = kwe' 2WoTzL + 1 (13) 
2WoTzL + kwE2/f 2 

According to (13), r :S I'* :S (kwE/12 • Let us con­
sider particular cases. 

In the absence of saturation, i.e., when 2WoTzL 
« 1, I'*= I', x"(w) =7'21TXoWocp(w- Wo). 

When the condition 1 « 2W0TzL « kwE:/r 2 is 
satisfied, we get 
1'' 2 = 2WoTzL[2 = w,2T,Ll', x"(w)=; XoWo<p'(w-wo) (2W:T,L)'Iz 

On the other hand, if 2W0TzL » kwfi;/I' 2 (i.e., 
wf » wE: /I'TEL)2l, then 

(14) 

n ( kwE2 )''• 1 ( ) f''= kwe', x"(:u)=-XoWo'l''(w-:uo) -- ---. 15 
2 f2 2WoTzL 

Thus, the dependence of the line width r* on H1 
should have the following form: when H1 increases, 
the line width I'* first remains constant, then in­
creases, and ultimately reaches saturation3l, 

4. We shall assume that wolwE is sufficiently large, 
but consider now the case w1 >> Wd· We change over 
again to a rotating system of coordinates with the x 
axis along the rotating field H1. (The operators of the 
spin components in this coordinate system will be 
designated by Ix, IY, and Iz). As the subsystems we 
consider the lattice (L), the exchange reservoir (E), 
and the nuclear Zeeman system in the summary effec-

1>In [ 11 ], the expression for i3E was used to explain certain features 
of dipole polarization of nuclei. 

2>Consideration of this particular case is valid if the condition 
I'TEL ~ (wE/Wd) 2 is satisfied. 

3>When 2W0T zL = kwE2/T2, the quantity x" becomes smaller tnan 
its unsaturated value by a factor (I'* /I'2) (2kwE2) 1i 2• It is difficult to 
observe the region of width saturation at large values of this quantity. 



SATURATION OF EXCHANGE NARROWED MAGNETIC RESONANCE LINES 673 

tive field (Z). The secular part of Jed will now play 
the role of the perturbation energy. Discarding again 
the terms connected with the lattice, we obtain 

:le= (wo-w)l'+wtfx+:Je"+:Jed. (16) 

We proceed to an effective coordinate system with 
z axis along the effective field[7 J (we denote the spin 
components in this system by Ix, Iy, lz). The transi­
tion is effected by means of the transformation 

[, =['cost} -[x sin tr, lx = [z sin tr + [x cos tr, ly = [u, (17) 

where 

cos~=wo~Ul, sinfr=- ~~ , !J2=(w0-w) 2+wt2 (18) 

the Hamiltonian takes on the form 

(19) 

As already noted, the small time scale r is due to 
the exchange interaction. The spin-lattice and d-d 
interactions give rise to a slow variation of the thermo­
dynamic quantities. Since the operators 1± do not 
commute with the Zeeman energy, the mean values of 
these operators change within a time of the order of 
1/ w, which can turn out to be smaller than T. We 
shall therefore write out the generalized integrals not 
for the operators J±(t) in the Heisenberg representa­
tion, but for the following operators 

(:Jez = niz), for which the rapid change due to the 
main field is excluded. 

Using Zubarev's method[6 J, we write down the 
equation of motion 

(20) 

al_±'(t) =K±(t), d:Je,(t)=K,(t), dJ'eE(t) ~ ( 
---= KE(t) ~ -K, t), 

ut dt dt (21) 
where 

K,(t) = -iei., 1[:Je,, :Jed]e-i.7£t. 

(22) 
In the high-temperature approximation, the density 
matrix takes the form ( E - +0 ): 

p = (Sp 1) -1{ 1- h-h- f4.L- p,:Je,- [~EJ'6'E (23) 
0 

+ ~ e"dt[h_K+(t)+h-rK-(t)+(p,- PE)K,(t)l}· 

The quantities ly,, f3z, and f3E can be expressed in 
terms of the mean values of the operators I~, ~. and 
deE. It is easy to find that (A denotes the mean value 
of the operator A) 

J±' = -ho/lhl 2), :JG, = -p,(J'e,2), JGE = -~E(JfeEZ). 

It is also easy to calculate the mean values of the op­
erators :K±, Kz, and KE. We average further equations 
(21) and express the time derivatives of h±, {3z, and 
f3E in terms of ly,, j3z, and f3E· Further, we take into 
account phenomenologically the interaction between the 
exchange reservoir and the lattice. On the other hand, 
the direct relaxation of the nuclear Zeeman system 
with the lattice in a rotating system of coordinates is 
neglected (see below). We thus obtain 

dh± h± h+ ~l ( PE - p,) 
-=--.-+-+ ' 
at l'v T; T, 

(24) 

The kinetic equations are given by the following formu­
las (concrete expressions are given for the case 
0 «WE) 

1 ° 1 
_1_=--\ e''(K+Kc(t))dt:=::;-(1+cos2 tr), (25a) 
Tv \1!+1 2)_:_, - 21"x 

(25b) 

1 1 1 5• 1. 
- = --,-,--- e''dt(K ... K,(t)):::::; -smitcos-&, (25c) 
T, , !+1 2) Q -~ - 2Tx 

1 1 s 1 
-= --> e'' dt\K,K,(t)) = ·- sin2fr, 
T,E (:Je,2 _,, 2Tx 

(25d) 

" 
(' . " t "if t ( ) 

T ---2- .\ e''dt([lx• .7t'd]e' E [lx, .7t'd]e·• E). 26 
x (Jx) ' 

(expression (26) wa~'obtained and investigated in [12• 131 ). 

Let us examine the stationary solution of (24). We 
obtain Ix = 0, f3z = f3E = f3L, and 1x = Iz sin J. We 
further have 

Nyfx 1 I, sin it 
x.'=--=-Nv--··-

2H. 2 n. 
( N is the spin concentration). Calculation yields Iz 
= -n( I~ )f3L· The quantity x" can be determined by 
using the energy balance[7 J 

" 2 _ M 0 - 2H1x.' ctg tF H 
2wx. H 1 - J"L , 

where M0 is the equilibrium magnetization, and TzL 
is the relaxation time of Iz. Finally we obtain 

x.' =- ~ Ny2f(l + 1) pr., 
6 

" Nf " 
X. = - 2T'Lwl2 t'L· (27) 

Thus, in the case when w1 >> Wd, we find that x' 
does not depend on H1 , and x" is proportional to H12 • 

Neglect of the direct relaxation of the system Z 
with the lattice in the calculation of lz and inclusion of 
this relaxation in the calculation of x " do not contra­
dict each other. We have carried out a calculation in 
which we added to the second equation of the system 
(24) a term describing the relaxation of the system Z 
with the lattice. The result reduces to (27) if the con­
dition 0 2 « kwE is satisfied. This condition canal­
ways be regarded as satisfied if the volume interaction 
is sufficiently large. 

5. Let us consider now a case when the ratio 
wo/WE is not so large as to be able to neglect the 
cross relaxation transitions due to the nonsecular 
terms of the d-d interaction4 ). If the nonsecular terms 
are retained in J6d, the changeover to a rotating sys­
tem of coordinates does not lead to a Hamiltonian that 
is independent of the time. If, however, w 1 < Wd, then 
the alternating field can be regarded as a quantum 
subsystem. Then, following[ 9 J, we can obtain a system 
of equations for f3z and f3E in the laboratory frame 
(terms connected with the interaction with the lattice 
are again taken into account phenomenologically): 

4>0n the other hand, we assume that w(wE is not small enough not 
to be able to separate the d-d interaction into secular and non-secular 
parts. If w 0 <'ii: WE, the analysis given in [3 ] is valid. 
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afi, I Wo -· W ) f3,- fiE {iz- {iL 
-=-2W(w-wo) f3,---f3E ------,--, 
dt w0 T,E T,L 

df3E= ZW(w _ wo) u;o(wo- w) ( fi, -~~~E) _{iE- f3, _f3E- {iL , 
~ ~ ~ ~ ~ 

(28) 

( WE ) 2 
TEz=TzE ~ , 

(29) 
1 +r' Spd&d"'Xd-m(t) . 

f(mw) =- 1 ezmwt dt, (30) 
2n -·oc Sp Xd"' ar&d-m 

X~ is that part of the d-d interaction which changes 
the projection of the total spin by m. Expression (29) 
for TzE was obtained earlier in[ 13' 14 l. In the limit 
when the cross relaxation transitions can be neglected, 
the system (28) reduces to a system of equations ob­
tained by transforming the system (5) to the laboratory 
frame. 

Let us consider the particular case when the condi­
tions TEL» TEv and TzL » TzE are satisfied. It 
is easy to obtain 

, ( ) 'hnxowoulEX<'P' ( w- wo) 

X w = (2WoTE,r,z + wE2x) '"(2W0TzL + x)'1• ' (31) 

x = 1 + kwE2 ( wo2• 

The function cp*(w - w0 ) is again given by formula 
(12 ), but for the width we obtain 

2WoTzL +X 10 (32) 
r'2=r,'wE' , r,=3-r. 

2W0TE,I'12 + '''E'x 

If the condition 

(33) 

is satisfied then formulas (31) and (32) yield 

x"(w)=~xow.'(-"-· -~'I• tp'(w-wo), I'' 2=1'12 ZWoTzL.(34) 
2 2WoT,Ll " 

The result obtained for r* can be easily understood5 >. 
The condition (33) denotes that the probability of the 
transition due to the alternating field is smaller than 
the probability of the cross relaxation transitions (pro­
duced by the nonsecular part of J'6'd), but is larger than 
the probability of the transitions due to the lattice. 
Therefore, during the process of absorption, the Z and 
E systems will be in equilibrium with each other, i.e., 
they will be characterized by a single temperature. In 
this connection, we can assume that there is a single 
system Z + E, for which we can introduce an effective 
time Teff of relaxation with the lattice, and an effective 
probability W eff of the transition due to the alternating 
field (it must be recognized here that the alternating 
field acts directly only on the system Z): 

(35) 

(36) 

Thus, we obtain WeffTeff =WTzL/ K. We can then 
rewrite formula (34) for r* in the form: 

r*2 = 2Wo, eff Terr r,', (37) 

which agrees with the formula for the line width in the 
case of saturation, obtained in accordance with the 

s) A similar situation takes place when the Zeeman system and the 
d-d reservoir are considered with allowance for cross-relaxation transi­
tions between them [1 5 ]. 

simple theory of[16l. 
On the other hand, if 

2WoTEz >(wE/ r,)'x, 

i.e., the probability of the transition due to the alter­
nating field exceeds the probability of the cross relaxa­
tion transitions, the resonance line will not be ob­
served, owing to its excessive broadening. 

6. Quite a few experiments have been devoted to an 
investigation of the relaxation of nuclei in solid He 3 

after application of a saturating field (see, for exam­
ple / 4 ' 121). So far, however, no experiments have been 
reported in which a picture of the stationary saturation 
of NMR in solid He 3 was investigated. 

Many experiments were performed on crystals con­
taining magnetic ions, for the purpose of determining 
the exchange effects. The effect of exchange narrowing 
of the EPR line was fully confirmed. These experi­
ments, however, were performed under conditions of 
weak saturation of the resonance. 

Thus, we are unable at present to compare the 
theoretical results obtained by us with the experimental 
data. 

In the case of a crystal containing magnetic ions, 
the summation in formula (4) is not over all the lattice 
sites, but only over the sites j occupied by the mag­
netic ions. At relatively low concentration of the mag­
netic ions, and when the ions are randomly distributed, 
this sum reduces to a sum over all the lattice sites, 
multiplied by the relative concentration f of the mag­
netic ions. Thus, wE a: f. Depending on the values of 
f and H1 , the situations considered in Sees. 3, 4, and 
5 can be realized in the experiments. 

In the case of solid He\ greatest interest attaches 
to the case when the systems Z and E are strongly 
coupled with each other, i.e., the situation referred to 
in Sec. 5. 
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