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The characteristics of a gas laser with optical feedback between the opposed waves strengthened by 
means of return mirrors are investigated. The dependence of the difference of the opposed beam in­
tensities and frequencies on the magnitude and relative phase of the coupling coefficient are derived. 

THE ring laser first studied by Rosenthal[ 11 was used 
to investigate certain p,roblems of electrodynamics in 
noninertial systems, [ 1 the interaction of light waves in 
nonlinear media, [ 31 and other subtle effects. However 
the precision of such experiments was significantly lim­
ited by physical phenomena due to the internal proper­
ties of the ring laser itself and mainly to the difference 
between the real and ideal optical resonator. 

In the idealized ring laser (without back scattering) 
the natural osciliations are represented by waves trav­
eling in opposite directions around the ring. The fre­
quency difference between these waves is due to the 
phase independence of the optical ring resonator that 
can be caused in turn by rotation of the laser or by 
non-reciprocal effects in its elements (Faraday effect, 
Fizeau-Fresnel effect, and Langmuir effect in the laser 
tube with de excitation of the discharge).[ 41 The ring 
resonator can have different Q factors for the opposed 
waves. The effect of the Q-factor difference caused by 
an amplitude-sensitive non-reciprocal element on ring 
laser characteristics was studied earlier in [ 5 • 81 • How­
ever the results of these efforts are only qualitative be­
cause the true value of the loss difference cannot be 
determined independently and because such a difference 
is unstable. 

Detailed analysis shows that the instability of Q­
factor aoo the opposed wave frequency differences, usu­
ally observed in the ring laser, is mainly due to the 
coupling between the opposed waves via scattering on 
the optical inhomogeneities of the resonator. 

The present work deals with the theoretical and ex­
perimental investigation of the effect of the coupling on 
the ring laser characteristics. We have studied experi­
mentally the behavior of the ring laser with coupling 
specially enhanced by means of "return" mirrors. The 
coupling parameters (amplitude and phase) were con­
trollable. The results of the experiments are compared 
with theory. 

1. THEORY OF A RING LASER WITH COUPLED 
OPPOSED WAVES 

The presence of coupling between the opposed waves 
in a ring laser (linear in amplitude of the electric 
field) results in a situation in which traveling waves are 
no longer the natural oscillation of the laser. Each op­
posed wave is a combination of two waves with different 
frequencies associated with different natural oscilla­
tions of the ring laser similar to the normal oscillations 
of two coupled circuits. Although the ring laser, just as 
any oscillator, is essentially a nonlinear system, the 

concept of normal oscillations in such a laser is never­
theless a fairly useful way of interpreting the basic 
phenomena of coupling through scattering. 

We consider a ring laser with linear polarization of 
radiation, working in a single-mode regime. The elec­
tric field in its resonator can be represented in the 
form 

(1) 

The equations for slow complex amplitudes E:1: of the 
opposed waves are obtained as usual by substituting the 
above expression into the wave equation and separating 
the harmonics 

(2) 

Here A11:1: and fo are pass bands aoo the frequency dif­
ference of the opposed waves for an optical resonator, 
without taking back-scatter coupling of the opposed 
waves into account. The complex coefficients K, 0!, and 
{3 determine the polarizability of the active medium and 
depend on the working transition parameters, the iso­
topic composition of the active gas, aoo the deviation of 
the mean resonator frequency with respect to the gain 
maximum. The specific form of these coefficients that 
depeoos on the order of approximation chosen in the 
computation of the nonlinear polarizability of the active 
medium is not significant in this work. Therefore it is 
not given here and the reader is referred to the sources 
that contain these computations. [ 7 ' 31 The coupling coef­
ficients of the opposed waves are expressed in terms of 
complex (taking phase shift into account) back-scatter 
coefficients r:~:, the length of the ring resonator perim­
eter L, and the velocity of light c: 

(3) 

Considering that the opposed wave amplitudes E:1: 
are not natural functions of the ring laser in the pres­
ence of back scatter, we introduce new functions <8:1: 
that convert into the amplitudes of normal oscillations 
of the corresponding linear system when the sum of 
opposed-wave intensities I tends to zero: 

(4) 

The denominator 
1 [ Av+- Av-D (to, AI)= 2 i/o- ----'.,,...,2-- (a-p)M 

(5) 
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in contrast with the usual conversion to normal oscilla­
tions in a linear system, is a function of the intensity 
difference of opposed waves ~I= IE+I 2 - IE_I 2, in ad­
dition to being a function of the difference frequency f0, 

so that the relation between the opposed-wave ampli­
tudes and the normal oscillation amplitudes turns out to 
be nonlinear. 

Substituting (4) into (2) we find the equations for the 
normal oscillation amplitudes in the ring laser: 

a+aJ) ta±D 

rs~ = 4(/o,l, M)/8±- D3(1 + la+a-/DI"> 18± =F D"(1 +,la+a-/DI") rs>· 
In the case of a linear system the transformation into 
normal oscillations leads to the diagonalization of the 
matrix of the system in which the constant natural fre­
quency values determine the frequencies and attenuation 
of the normal oscillations. In the case of a nonlinear 
system an analogous transformation in general does not 
yield a separation of equations, since the function D(f0, 

~I) depends on the opposed-wave intensities and conse­
quently on the normal oscillation amplitudes. However 
we show below that, given sufficiently large values of 
the difference frequency f0 relative to the coupling co­
efficients, the terms containing derivatives of the func­
tion D(f0, ~I) in the right-hand side of (6} turn out to be 
small. Neglecting these terms, the equations for normal 
oscillations in the ring laser can be written in the form 

(7) 

These equations differ from the usual equations of nor­
mal oscillations in a linear system by the fact that the 
natural values 

4=f-[ -i\v +2x-(a+ p)l ± 

(8) 

are not constant but are functions of opposed-wave in­
tensities and thus of normal oscillation amplitudes 18±. 

We consider the stationary two-frequency regime, in 
which both normal oscillations are excited. The solu­
tion of (7} can be written formally in the form 

iS±= l§~exp{~A± dt}, 

where 18 ~ are complex constants that coincide in the 
zeroth approximation with the normal oscillation ampli­
tudes. Since the opposed waves represent a mixture of 
normal oscillations with a frequency difference f, their 
intensities are periodic functions. Accordingly, the nat­
ural values ~± are also periodic functions. Expanding 
them in a series of harmonics of the difference fre­
quency f and substituting into (9), we find 

{ 1 - • 1 (n) } 18±=18±•exp 41lf+- ~ 7n'-± einft • 

f n=-~ 

(10} 

It is obvious that the necessary condition of stability of 
the two-frequency regime is represented by the equa­
tions 

Re A:bO) = 0, (11) 
which lead to equations for the determination of the con­
stant components of the sum and difference of the inten­
sities 

Re (a+ P}Io = 2x-Lh, (12} 

Re rv [ i/0 - Av+-; Av- -(a- p)M r- 4a+a-}
0 
= 0; (13} 

The imaginary parts of the constant components of the 
natural values determine the frequencies of normal os­
cillations and consequently the difference frequency 

J= Im{V[ ifo- av+-;10\v- (a-p)MJ' -4a+a-t (14} 

Considering that the normal oscillation equations in 
form (7} are valid only for sufficiently large f we ex­
pand (13) and (14) into a series of reciprocal powers of 
the difference frequency, retaining terms of the order 
of f;1• Then we find the constant component of the in­
tensity difference from (13} 

/H o = ..,.-..,...------,. 1 [ Av+-Av_ +2Im{a+a-}J. 
Re(a- p) 2 /o 

In the same approximation (14) yields the difference 
frequency 

2Re{a+a-} 
/=/o-Im(a-p)Mo+ . 

/o 

(15} 

(16} 

To estimate the magnitude of neglected terms when 
going over from the exact equations (6} to the normal­
oscillation equations (7) we must analyze the variable 
components of the sum and difference of the opposed­
wave intensities. It is sufficient to consider only the 
first-order correction to the intensities that is linear 
with respect to the coupling coefficients. We substitute 
the expressions for normal oscillations (9} into (4} and 
write the sum and difference of the intensities in terms 
of normal oscillation amplitudes and of natural values. 
We then expand all expressions in reciprocal powers of 
the difference frequency leaving only terms of the order 
of C 1• Considering (12}-(14) we find 

I= frs!l• + 118~1 2 - ( 118~1 2 + ifS-~I 2)Re(a + p) S ltdt 

21/8~~1 - + . } 
--'--1;----"- {fir cos ft + a; sm ft , 

(17) 

Here I1 and ~I1 are variable components of the sum 
and difference of the intensities, and a notation is intro­
duced for the combinations of coupling coefficients 
a~ = Re {a+ :1: a_} and a[ = Im {a+ :1: a_}. Substituting 
the expansions of the sum and difference of the intensi­
ties in terms of difference frequency harmonics into 
these equations and equating the coefficients, we find 
the expressions for normal oscillation amplitudes in the 
zeroth approximation 

(18) 

Taking (18} into account we then find the first harmonics 
of the variable intensity components 

(19) 

(20) 
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The beat phases C{J1 and C{J2 depend on the amplitudes 
and phases of the coupling coefficients and on the rela­
tions between the difference frequency and the param­
eters Re (a± {3)1 0• For the sake of simplicity, (19) and 
(20) were derived on the assumption that the constant 
component of intensity difference is small in compari­
son with that of the sum. 

The resulting expressions are used to estimate the 
range of applicability of the developed theory and of ~e 
concept of normal oscillations in a ring laser. For this 
purpose we consider the neglected terms in (6) 

( 
<1+<1- )-•:!.!:__E_c;:::: a± (a-~)Al c;::::: 

1+ D D D I I 

(21) ~ !1± (a-~)foi(ar+)•+(a; )" cos(ft+q;.). 

~ 1 if +[Re(a- ~)/o]2 

In the case when f >> Re (a - {3)1 0 this expression as-
sumes the form 

[ (a- ~)loi(ar+)'+(a; l']ccs(ft+rp2), (22) 
a± I I 

i.e., the coupling coefficients between the nor~a~ oscil­
lations turn out to be small, of the order of f , m com­
parison to those between the opposed waves. If the 
strong coupling condition 1<71 >> Re (a- {3)1 0 is satis­
fied in this case, the normal oscillation equations re­
main valid with this accuracy up to f ~ <7, i.e., up to the 
stability limit of the two-frequency regime, and the cor­
rections to the natural values compensating for the neg­
lected terms are of the order of C 4 • In the converse 
case of a weak coupling I <71 << Re (a - {3)1 0 when the 
difference frequency lies in the region I <71 << f 
<< Re (a - {3)1 0 the neglected terms result ~~ correc­
tions to the natural values of the order of f • There­
fore the expression for the amplitude and frequency 
characteristics derived above is not applicable to this 
frequency range. 

These limitations of the difference frequency have a 
simple physical sense. Indeed when the beats period is 
small in comparison with the relaxation times of the 
sum and difference of intensities [Re (a + {3)1 0 ] -t and 
[Re (a- {3)1 0 ] -\ normal oscillations become independ­
ent and behave just as in the case of a linear system. 
Conversely when the opposed-wave coupling is weak, ' . the two-frequency regime is stable at low frequencies 
when the beats period is longer than the relaxation 
times and normal oscillations are found to interact 
strongly throughout the nonlinear medium. In this case 
the normal oscillation concept itself loses its meaning. 

2. THE EXPERIMENTAL SETUP AND 
MEASUREMENT METHOD 

The experimental setup is shown in Fig. 1. The opti­
cal ring resonator consists of three mirrors 1 situated 
at the vertices of an equilateral triangle about 1 m on 
a side. Two mirrors of the resonator are flat while the 
third is spherical with a radius of curvature of 16m. 
Two gas discharge tubes 2 with Brewster windows are 
filled with neon (natural isotopic mixture) and helium 
(He3 isotope) in the ratio 1: 5 at the total pressure of 
about 1 Torr; the tubes generate at the wavelength of 
0.63 Jl.• The tubes are excited with an RF oscillator. 
The opposed-wave frequencies are separated by "non-

FIG. I 

reciprocal" element 3 based on the Faraday effect. ( 4 J 
The free regions of the optical resonator are filled with 
dust-free air and sealed. The perimeter of the optical 
resonator is adjusted with an electrostriction device 
that controls the position of one of the resonator mir­
rors. 

Two "return" mirrors[SJ are used to produce be­
tween the opposed waves an optical coupling that is con­
trollable in magnitude and phase. These mirrors are 
installed outside the optical resonator to reflect pre­
cisely backwards (toward the opposed waves) the beams 
emerging from the resonator. One return mirror 4 is 
mounted on the electrostriction device 5 to vary its dis­
tance from the resonator. Polarizing filters 6 are 
placed in front of the return mirrors to control the 
magnitude of the optical coupling coefficients. 

The generation regime of the ring laser is moni­
tored with Fabry-Perot scanning interferometer 7. The 
effect of the interferometer on the laser is eliminated 
by a decoupling system consisting of polaroid 8 and a 
i\./4 plate. 

The beats between the opposed waves of the ring 
laser are picked up with symmetric photomixer 9 and a 
photoelectron multiplier. The beat frequency is meas­
ured precisely with electronic frequency meter 10, 
whose output is connected to printer 11. Low-precision 
beat frequency measurements are performed with 
pointer-type frequency meter 12 connected to recorder 
13. The constant components of the opposed-beam in­
tensities are recorded with a photomultiplier andre­
corders 14 and 15. 

An air-core electromagnetic is used to generate the 
magnetic field at the non-reciprocal element. The field 
can be reversed periodically in time with the operation 
of the electronic frequency meter which periodically 
measures the beats frequency. 

All measurements were performed in single-mode 
generation regime; the mode frequency before each 
measurement cycle of several minutes was set to the 
center of the Doppler curve with the scanning interfer­
ometer, using the following method: We determined tw.o 
neighboring values of the voltage on the electrostriction 
device of the optical resonator, at which two modes with 
equal emission intensity are generated. A voltage equal 
to the mean of these two values is then applied to the 
electrostriction device. The variation of the perimeter 
of the optical resonator does not exceed 0.1 i\ per cycle 
of measurements. 
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3. RESULTS OF MEASUREMENTS 

The values of coefficients r± of the external coupling 
can be varied with polarization filters within the limits 
from 0 to -10-<~. The maximum values of r± obtain­
able without polarization filters and with precise align­
ment of the return mirrors are 

r+ ext = r_ ext = (2 ± 1) ·10-l, 

This was determined by direct measurements of the 
transmission of the optical resonator mirrors. The 
back-scattering coefficients r + int and r _ int due to 
the scattering of light on the optical resonator inhomo­
geneities are considerably smaller than these values. 

Figure 2 shows the experimental values of the beats 
frequency f (curve a) and intensity I. (in relative 
units) of one of the laser beams (curve c) for a maxi­
mum external optical coupling between the opposed 
waves as functions of relative phase l/J of waves re­
flected from the return mirrors. The sinusoidal func­
tion f(l/J) (curve a) is almost symmetrical with respect 
to the straight line drawn through the value of beat fre­
quency f0 assumed in the absence of external optical 
coupling (i.e., when both return mirrors are covered). 
The period of the sinusoid corresponds to a change in 
the position of the movable return mirror of .:\./2. The 
amplitude of the sinusoid df = (fmax- fmin)/2 gives 
the maximum deviation of the beat frequency that can 
be observed for a given coupling coefficient. The fre­
quency deviation df is a parameter that is independent 
of the phase of the reflected waves. The frequency de­
viation for curve a in Fig. 2 equals 

11 fi = 1.1 kHz 

An analogous curve b was obtained with asymmetric 
optical coupling between the opposed waves (the fixed 
return mirror was completely covered). In this case 
the maximum beat frequency deviation is 

11/2 = 0.1 kHz 

It is of interest to note that the sinusoid (curve b) is 
shifted towards the low frequency range when the cou­
pling is strongly asymmetric (r+ = r+ int << r_ 
= r-ext>· The sinusoid c representing the variation of 
the intensity component I+ (1/J) of one of the beams of the 
ring laser with symmetric coupling was obtained simul­
taneously with curve a and is shifted relative to the lat­
ter by dl/J ~ rr /5. 

Figure 3 shows the maximum beat frequency devia­
tion as a function of the product r+r- of the external 

optical coupling obtained in our experiments. The value 
of df was obtained for each value of the product by 
scanning one of the return mirrors with the electro­
striction device driven by a sawtooth voltage with an 
amplitude of 400 V and a frequency of about 0.03 Hz at 
a beat frequency 10 Hz. The filled circles were obtained 
by varying r+ (scanned return mirror), and the light 
circles by varying r _ (fixed return mirror). As we see 
from Fig. 3, the maximum deviation of the beat frequen­
cy for high values of r+ r- is directly proportional to 
their product (both filled and light circles lie on the 
same straight line). Figure 3 also shows that the cir­
cles obtained with varying r _ due to reflection from 
the fixed return mirror at low values of the product lie 
above the straight line through the origin of coordi­
nates. This is explained by the presence of internal op­
tical coupling between the opposed waves. This did not 
appear in the series of dots because the observed beat 
frequency deviation with fully covered scanning return 
mirror is by definition equal to zero for any values of 
r+r _. 

The obtained data can be used to obtain the magnitude 
of the coefficient of internal coupling between the op­
posed waves assuming that with a fully covered fixed 
return mirror 

l1fo ~ ar+int r_ ext ~ 0,06 kHz 

where r _ext is the ~aximum coefficient of external 
coupling, equal to 10 4 in this case (the transmission of 
a fully open polarizing filter is 0. 5). Hence for the 
back -scatter coefficient we find 

r_ int ~ 0.8·1o-s. 

A close value of the internal coupling coefficient can 
also be obtained, taking (2) into account, from data of 
the above experiment performed without polarization 
filters in front of the return mirrors 

r_ int = r- ext 11/2 /11/I ~ 0.5 ·10-s. 

The difference of frequency of the opposed waves 
(beat frequency) can b~ measured by varying the mag­
netic field at the non-reciprocal element from the limit 
of the capture region to 60 kHz which is by an order 
greater than the capture region for maximum coupling 
obtained with the return mirrors. 

We investigated the beat-frequency dependence of 
the beat frequency deviation df for maximum (sym­
metric) external coupling between opposed waves. The 
results of the measurements are given in Fig. 4. The 
beat frequency f0 measured in the absence of external 
coupling (with closed return mirrors) is laid off on the 
abscissa axis. The experimental points show a good fit 
with the hyperbolic function shown in Fig. 4 by a solid 
line. 

An analogous dependence was obtained for the con­
stant component of the opposed wave intensity (Fig. 5) 
(dlo is the constant component of the difference and 
I 0 = const is the sum of intensities of the opposed 
waves). 

Figure 6 shows the values of fmax and fmin ob­
tained for various values of f0 in the case of a strong 
symmetric coupling between the opposed waves. It is 
obvious that the frequency characteristic (f as a func­
tion of f0 ) of the ring laser with a coupling between the 
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opposed waves corresponding to an arbitrary fixed 
value of the relative phase lf! of reflected or back­
scattered waves can pass through any point of the 
shaded region. The difference of values corresponding 
to the boundaries of the region comprises 1T. 

4. DISCUSSION OF RESULTS 

In a large-perimeter ring laser the single-mode re­
gime is inevitably associated with a small pump excess 
over threshold and consequently with low intensity of 
emission. Therefore the condition of strong coupling of 
the opposed waves is usually satisfied even in the case 
of internal coupling through scattering on inhomogenei­
ties of the optical resonator, and all the more so in the 
case of enhanced coupling as used in our experiments. 
This consideration allows us to propose a simple physi­
cal interpretation of the experimental results from the 
viewpoint of normal oscillations. 

The characteristic feature of all the effects con­
nected with back scattering is that their attenuation is 
inversely proportional to the difference frequency (see 
(15) and (16)). Such a relationship is clearly apparent 
from Fig. 5 for the constant component of the intensity 
difference and from Fig. 4 for the frequency deviation. 
This effect is due to the fact that the scattered wave in­
cident on a "foreign" system is amplified to a magni­
tude of the order of I a 1/f, then again scattered and 
added in its "own" system to the primary wave. This 
changes the resonance frequency and the Q-factor of 
the primary wave. The double scattering is also asso­
ciated with the dependence of the coupling effects on the 
product of the coefficients of scattering into opposed 
waves. 

The inversely proportional dependence on the differ­
ence frequency enables us to separate readily the cou­
pling effects from those caused by the difference in Q­
factors of the opposed waves as discussed in c5 • 6 J. We 
note that in c 5 J the instability of the results seems to 
be attributed to the coupling of opposed waves, although 
this work was marked by a large frequency difference 
and an artificial introduction of a considerable loss dif­
ference. At the same time, the measurements in c 6 J 

were carried out with a comparatively small difference 
frequency, so that the entire observe opposed-wave in­
tensity difference and frequency deviation could have 
been explained by opposed-wave coupling via scattering 
rather than by the difference in losses of unknown ori­
gin, as assumed by the authors. 

According to the formula for the constant components 

j,kHz 

FIG. 6 

of intensity difference (15) the opposed wave coupling 
via scattering causes an additional difference in the Q­
factors of normal oscillations and correspondingly to 
the difference in opposed-wave intensities. This re­
sults in a phase non-reciprocity of the active medium 
which in turn leads to an additional difference in the op­
posed wave frequency. This effect is shown in Fig. 2, 
where we see a phase shift between frequency deviation 
and a change in the constant component of intensity dif­
ference depending on the relative scattering phase. The 
magnitude of this shift can be readily evaluated by com­
paring (15) and (16) which can be rewritten in the form 

1 21 cr+cr-1 . 
!'ilo = sm1jl, 

Re(a- ~) /o 
(15') 

Im(a- ~) 2lcr+cr-l . + 2jcr+cr-l M= ='I' ~~ 
Re(a- p) /o /o (16') 

where lf! is the sum of the scattering phases. Hence we 
see that the observed phase shift depends on the coeffi­
cients that describe the nonlinear polarizability of the 
active medium 

tan x = Im (a-~) /Re (a-~). (23) 
In the natural mixture of neon isotopes used by us, 

tan x >'::: 1. 5 near the gain maximum, which is in good 
agreement with the observed phase difference AI/! 
>'::: 1T /5. 

In conclusion the authors thank V. K. Prosvetov and 
S. S. Fedorov for the design and assembly of the exper­
imental setup. The authors are also grateful to I. I. 
Yudin for computation of the coefficients characterizing 
the polarizability of the active medium. 
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