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The complex dielectric constant connected with the Bragg interband transitions is calculated. The re
sults are compared with the experimental data for the interband dielectric constant and interband con
ductivity of a number of metals. The contribution of the Bragg interband transitions to the dielectric 
constant at low frequencies is determined for aluminum, lead, and indium. The contribution is of the 
order of 10-100. 

T 0 obtain the characteristics of the conduction elec
trons of metals and alloys by an optical method, one 
uses the results of measurements of the optical con
stants in the long-wave region of the spectrum, i.e., in 
that region where the real interband transitions can be 
neglected. However, even in this region there is a 
strong influence of the virtual interband transitions on 
the dielectric constant. It greatly exceeds the corre
sponding influence in dielectrics, since in metals there 
exists for a large number of electrons energy gaps of 
the order of 0.1-1 eV, which is smaller by a factor 10-
100 than the gaps in dielectrics. These gaps in metals 
are connected with Bragg planes. 

In this paper we determine the contribution of the 
Bragg interband transitions to the complex dielectric 
constant of metals. We show that the contribution of the 
virtual interband transitions to the real part of the di
electric constant of the metals reaches a value ~ 10-
100 in the long-wave region. For alloys and transition 
metals, for which the effective collision frequencies of 
the conduction electrons are large, the indicated virtual 
transitions exert a strong influence on the optical prop
erties. r 1 ' 21 

INTERBAND TRANSITIONS CONNECTED WITH 
BRAGG PLANES11 

As is well known/ 41 the linear polarizability of a 
quantum-mechanical system can be represented in the 
form 

( ) ~ [ (E ] (di)nm(dk)mn 
')(ik ro = LJ po ,.)-po(Em) ------.-. 

En -Em+ lifo)+ lli\' n,m 
{1) 

Here Xik is the linear polarizability tensor, En and 
Em are the energy levels of the system unperturbed by 
the external field, (di)nm is the matrix element of the 
i-th component of the dipole moment per unit volume, 
(p0)nm = 6nmp0 (En) is the density matrix of the unper
turbed system, Onm is the Kronecker symbol, liw is 
the energy of the quantum of incident light, and 1/v is 
the relaxation time. 

Formula (1) is obtained by the kinetic-equation 

I) A more complete derivation of all the formulas, together with 
the results of numerical calculations, is given in [ 3 ]. 
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method for the density matrix in the relaxation-time ap
proximation. The Hamiltonian of the interaction is taken 
in the dipole approximation. 

Let us apply formula {1) to interband transitions con
nected with Bragg planes. Being interested principally 
in polyvalent metals, we assume that the Bragg plane 
intersects the sphere of the free electrons. 21 We as
sume that the planes act independently. Confining our
selves to transitions to the closest unfilled band, we de
note the lower band by the index 1 and the upper one by 
2. Starting from the weak-coupling approximation, we 
assume that the wave functions of the electrons are 
equal to a sum of two plane waves whose wave vectors 
differ by an amount equal to the reciprocal-lattice vec
tor. A comparison with experiment, which will be re
ported later, shows that this model agrees sufficiently 
well with the real situation. 

In a metal,· the sum over n and m in (1) includes 
both summation with respect to the lower and upper 
states for each electron and summation over all the 
electrons, i.e., 

2 2 

~ -----.~ ~ )2d3p/(2rrh)". 
n,m n=1m=1 

The integration is carried out over the entire volume 
enclosed by the Fermi surface. 

For the wave functions lf!n of the electron in the 
lower and upper bands (n = 1, 2) we have the expres
sions:[ 51 

1jl, = a~'exp(ipr/n)+a~'exp[i(p-2pg)r/h], {2) 

an<1> = 2-'1•(1 + X2 + (-1)nXy1 + X")-'1•, (3) 

an(2) = an<1>(X + (-1)"-y'1 +X2), (4) 

X= 7nr~gi (pg- P.L)· (5) 

Here p 1 is the projection of the momentum p on the 
normal to the Bragg plane, Pg is a vector perpendicu-

2> We do not consider in this paper the case when the Bragg plane 
does not intersect the free-electron sphere, as is the case, for example, 
for metals of the first group. It is easy to generalize the results to in
clude this case, too. 
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lar to the Bragg plane, Pg is equal to the distance from 
the center of zone r to the Bragg plane, Vg is the Fou
rier component of the pseudopotential and corresponds 
to the given Bragg plane, and m is the mass of the free 
electron. 

The energy diffe renee between the upper and lower 
bands can be represented in the form 

where ng is the number of physically equivalent Bragg 
planes. We confine ourselves below to cubic crystals 
only. 

E2 -E1 =till= lirogl'1 + X2. (6) Fermi surface 

Here liwg = 21 V g 1. 
The matrix element of the dipole moment is 

eli 
(d;}nrn= im!l.E (Pi)nm. 

Using the wave functions (2)-(4), we get 

P12 = p,(1 +X")-'1•, 

(7) 

(8) 

From the expression obtained for the momentum ma
trix element it follows that the interband transitions 
produce only an electric field having a component per
pendicular to the atomic planes corresponding to the 
Bragg plane. The polarization vector connected with 
the indicated transitions is also perpendicular to the 
atomic planes. 

For electrons in a metal, p0 (E) is a function of the 
Fermi distribution. Since AE >> kT, we get p0(EJ 
- p0(E1) = 1 for the points of the ring produced in the 
reduced-band scheme by the intersection of the Fermi 
surface with the plane x = const, and is equal to zero 
outside this ring, see Fig. 1. Thus, d3p = Sdp 1 , where 
the area of the ring is 

s = 2:n:mliwg'J'1 + X2• 

For the linear polarizability connected with one 
Bragg plane, we obtain from (1) 

e2 Ps 
)(g = -4 2~2 -I, 

:rt n Wg 

(9) 

(10) 

r ax ( 1 1 ) 
I=J (1+X2)''• l'1+X2-w'-iv' + l'1+X2+w'+iv' · (11) 

Here w' = w/wg and v' = v/wg. The upper limit can be 
taken at infinity, since we assume that 

Pg(2pg- PF)/m IV g I >> v', where PF is the rings of the 
sphere of the free electrons at a concentration equal to 
the valence concentration. The quantities I, w', v', and 
v should have an index g, since they are different for 
physically non-equivalent Bragg planes. We shall omit 
the index g whenever this does not lead to confusion. 

Let us take an arbitrary system of rectangular coor
dinates and consider a crystal of arbitrary symmetry. 
We renumber all the physically equivalent Bragg planes, 
introducing the index G. For different systems of phys
ically equivalent Bragg planes, we use the index g. In 
terms of this notation 

)(ik = s xif= ~ )(g ~ (SgG8i) (SgG8k). (12) 
g G 

Here SgG is the unit vector normal to the atomic 
planes corresponding to the Bragg plane G from the 
system of planes g; &.j_ is the unit vector of the i-th co
ordinate axis. For a cubic crystal 

(13) 
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FIG. 1. Intersection of the Fermi surface and a Bragg plane. The 
shaded section represents the phase volume of the electrons for which 
the energy gap is AE .;;; hwg + h 11. 

FIG. 2. The functions 11 (w') and 12 (w') at 11' = 0.1. 

Let us consider the action of a system of physically 
equivalent Bragg planes. The contribution of the inter
band transitions near these planes to the complex di
electric constant E' is determined by the formulas 

e' = 4ltx = e - i 4rrcr ' 
(!) 

e2 ngpg 
e= ----I~o 

3:rtli2 (J)g 

e2 
a = 12:rc2/i2 ngpgi2, 

I, = r ___ ("'-l'1_+-=X"=-=(l)_;,,)_dX __ _ 
(1 + X")''•[('y1 + X2- ro') 2 + v'2J 

oo (l'1 + X" + ro') dX 

+ ~ (1 + X2)''•[(l'1 + x2 + ro')2 + v'2J ' 

oo dX 
I2 = w'v' ~ r --------===:------

\ ~ (1 + X")'i•[(l'1 +X"- ro')2 + v'2] 

(14) 

(15) 

(16) 

(17) 

.. dX 

- ~ (1 + X")''•[(l'1 +X"+ ro') 2 + v'2J } · (18) 
0 

An expression for the interband conductivity a was 
obtained in [ 51 • It differs somewhat from the expres
sion obtained in the present paper. The difference is 
connected with the fact that in [ 51 we used an interac
tion Hamiltonian H = (g/mc)p· A, where A is the vector 
potential of the electromagnetic field. Terms of order 
A 2 were neglected, so that the expressions obtained in 
[ 51 do not hold when w' < 1- v'. In the region w' ~ 1, 
the two expressions are close to each other. In addition, 
in [51 they discarded the second term in the integral I 2, 

which is immaterial for a. However, failure to take in
to account the analogous term in E leads to an appreci
able error. 

The dependence of the integrals (17) and (18) and the 
frequency w' at values of the parameter v' = 0.1 is 
shown in Fig. 2. The increase of v' leads to a decrease 
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and broadening of the maxima, leaving the general form 
of the curves unchanged. 

The asymptotic behavior of the function 11(w') is 
given by 

Jt(o/)= r 
- __::___ if w1 ~ 1 

wl' 

rr 1 
- 1----
"12 ( y1 + v 1' ) 

W 1 = 0. if (19) 

At small values of v', the quantity 11 (0) is practically 
constant, and equals3 ) rr/2. It is seen from Fig. 2 that 
near w' = 1 the function 11 (w') is close to a step func
tion, and the function I 2(w') has a maximum. In the re
gion w' < Wmax the function is practically linear over 
a wide range of 12•4 ) 

Curve 1 of Fig. 3 shows the frequency winax corre
sponding to the maximum of h as a function of 11 1 • The 
shift of the position of the maximum of 12 from a value 
equal to unity increases with increasing v'.5 ) The de
pendence of winax on v' is almost linear and in the re
gion v'"" 0.1-0.2 the shift amounts to 5-10%. Using 
Fig. 3, we can ,determine the value of IV g I 
= 0.51lwmax1wmax· 

Curve 2 of Fig. 3 gives the dependence of the maxi
mum value of 12 on v'. With the aid of this plot it is 
possible to compare the experimental and theoretical 
absolute values of amax· When v' << 1 we have 12 "" 0. 
The asymptotic behavior of the function l2(w') at w' 
>> 1 is given by6 ) 

I n 
12 (w) = -;;/2, 

which leads to the same a(w') dependence as obtained 
in [ 5 J. 

The proportionality of E and a to the quantity w- 2 

at high frequencies should naturally from physical con
siderations. At such frequencies, all the electrons are 
free, and we should obtain the usual Drude formulas. It 
is easy to obtain expressions for E and a in the ab
sence of relaxation. Taking the limit at 11 1 - 0, we ob
tain 

if w 1 <1, 
e= IT~: n;:g -3~;( it~w,_-1) 

1 e2 ngpg 1 'f 1 --------- 1 0) > 1 
3 h2 Wg w'2 ' 

(20) 

a={ 
0 if W 1 < 1, 

1 e2 1 
--ngpg-===-
12 rrh2 W 1fw 12 - 1 

if wl > 1. (21) 

3l We note that the two integrals in I 1 make approximately equal 
contributions at low frequencies. 

4l Although the dependence of I2 on w' is steep in this region, ex
trapolation of this dependence to zero values of I2 gives a value of w' 
much smaller than unity. (This means that the threshold frequency 
Wthr is much lower than wg.) The difference increases with increasing 
v'. 

5l In [ 5) we also determined the indicated shift of the maximum 
as a function of the level broadening "Y'· For small v', corresponding to 
small "Y', the shifts practically coincide. At larger values, however, a 
difference is observed. In [6 ) we obtained too low a shift, owing to 
the factors discussed above. 

6 l When w 1 :;p I the integrals I 1 and I2 do not depend on v', 
which is perfectly natural, since the relaxation processes can be neg
lected at high frequencies (it is assumed that v' :S 1 ). 

Using the asymptotic behavior, as w'- oo, of the 
dielectric constant pertaining both to the conduction 
electrons and to the interband transitions, we can ob
tain the following relation, which is equivalent to the 
sum rule: 

m 
12rrfi2 ~ ngpgWg = N val - N. 

g 

(22) 

The summation extends here over all effective Bragg 
planes intersecting the free-electron sphere. 

In determining the contribution of the interband 
transitions to the dielectric constant at low frequencies, 
it is convenient to use the following formula: 

1 4rc 1 O'max 
e(w)=-li(w)-----. 

U>g lzmax 
(23) 

Here amax and 12 max are the maximum values of a 
and 12 at a given v'. The use of this formula requires 
no identification of the observed band of the interband 
conductivity a. 

Calculations show that the following relation obtains 
between the jump of the dielectric constant Emax 
- Emin and the maximum value of the conductivity 
amax pertaining to the given interband transition: 

Wg~l!~ Emin = _Jt max_-=-!___~__!!!_!_'!_!_~ 0.95. {24} 
4;r Omax - /2 rnax 

Relation (24) is valid when 0.04 < 1/ 1 < 0.6. A more ex
act formula for the quantities (11 max - I 1min )/12 max 
is given in [ 3 J. 

The results enable us to determine v' from the shape 
of the experimental plot of a(w). To this end, it is nec
essary to choose v' such as to obtain the best agreement 
between the theoretical contour and the experimental 
band. Since this is a very laborious task, we can use a 
simpler but less exact method, in which v' is deter
mined from the value of the frequency wa correspond
ing to the quantity a(wa) = Cl'amax· Figure 4 shows the 
dependence of v' on the quantity 1 - walwmax (here 
wa < Wmax ). Curve 1 corresponds to a = 0. 5 and 
curve 2 to a = 0. 7. If the investigated band is well iso-

FIG. 3. Dependence of the fre
quency shift corresponding to the 
maximum interband conductivity 
(curve I) and the maximum value 
of the integral 12 (curve 2) on v'. 

12ma:r 

FIG. 4. Illustrating the determi- o.J 
nation of v' from the shape of the 
interband-conductivity band. Curve 
I - cx = 0.5; curve 2- cx = 0.7. 

W~a.I 
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lated from the other interband transitions, then we can 
use any curve. When several bands are superimposed, 
it is necessary to use the curve corresponding to the 
least distorted part of the investigated band. 

In concluding this section, let us estimate the num
ber of electrons that determine the interband-conduc
tivity band near the maximum. We take into account the 
electrons from which the energy gap is 6-E s tiwg + tiv. 
It is obvious that these electrons are contained in the 
volume shown cross hatched in Fig. 1. The concentra
tion of such electrons, when account is taken of one 
Bragg plane G from the system planes g, is equal to 

m2 C:Og2xs, --
Nga=---- dX.Y1+X2, 

4n21i pg 0 

(25) 

where X0 = -./2vg -./1 + 0.5vg. An estimate of this quan
tity for lead at T = 4.2°K yields the values N111 G 
~ 7 x 1020 em - 3 and N200 G ~ 5 x 1020 em -3• Since the 
concentration of the valence electrons for lead Nval 

023 -3 
= 1.34 x 1 em we see that NgG << Nval· In other 
words, different electrons take part in the interband 
Bragg transitions connected with different planes. 

COMPARISON WITH EXPERIMENT 

Let us compare the results with experiment. In the 
visible and the near infrared regions, experiment re
veals for metals bands of interband conductivity, which 
can be set in correspondence with bands associated with 
Bragg planes.[ 6 - 81 For a comparison of the form of the 
experimental and theoretical bands it is convenient to 
use the {200} band of aluminum. This band is sufficient
ly far from the other bands and lies in the region where 
the contribution of the conduction electrons is small. 

Figure 5 shows the comparison of the experimental 
and theoretical shapes of the {200} band of aluminum. 
We see that the experimental points obtained on the 
basis of [ 81 agrees sufficiently well with the theoretical 
curve. For the indicated band, v~00 = 0.13. 

We have determined from the data of [ a-sJ, for the 
experimentally obtained bands, the Fourier components 
of the pseudopotential V g· They turned out to be much 

smaller than the corresponding components determined 
in [51 • In addition, the experimental shape of the bands 
was used to determine the effective collision frequen
cies llg· From the values of Vg and llg we calculated 

O"g max· The latter are compared with the experimental 

values of ag max in Table I. 7> It follows from this table 

that the theoretical values of <Tg max for the principal 
bands of the interband conductivity exceed the experi
mental ones by a factor 1.5-2.8 > 

The disparity obtained in this paper between experi
ment and theory may be due to the following. The wave 
function of the electron can be represented as a sum of 
two plane waves only in first approximation. The use of 

7> In [5 ), an error has crept in the numerical calculation of the 
coefficient (1/12)e2 /1r2 h2 • All the calculated values of~ max in [ 5•7 ) 

must be multiplied by 4. 

S) A theory based on allowance for the transitions near the sym
metry points leads to theoretical values that are lower than the exper
imental ones by a factor 5- 10 (9 ]. 

tJfCS:ma:r 
I 0 

1.75 

FIG. 5. Comparison of the ex
perimental and theoretical shapes of u. 5 
the {200} band of aluminum. Solid 
line - theoretical curve at r/ 2oo = 
0.13; points- experimental values. o 25 
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Table I. Comparison of theoretical and experimental 
values of <Tmax 

I I Bmd 

'h"'m=·•V 
IV gl, ev\ 

13 max 
1014 sec-1 

M•-tai T,"K in~es v• 

I theor exp 

AI 295 200 1.50 0.13 0.70 73 47 

4.2 Ill 2.07 0.11 0.97 77 32 

Pb 
200 1.48 0.24 0.64 41 13 

78 Ill 2.14 0.16 0.98 61 29 
200 1.38 0.2.'; 0.60 40 12 

293 Ill 2.24 0.26 0.96 45 28 
200 1.08 0.44 0.42 28 12 

{ 
4,2 Ill 1.48 0.23 0.65 51 34 

In 200 0.60 0.38 0.24 33 30 
295 

I 
Ill 1.26 0.31 0.53 42 26 
200• 0.56 0.40 0.22 31 22 

• In the determination of v' for this band, we took into account the fact 
that in the region 0.3 - 0.4 eV there is an additional contribution of the in
terband transitions, not connected with this Bragg plane. 

Table n 
Metal I T,·KI i::1i 2EngPg"lg, N vai-N, 

t022cm-3 1022 cm-3 

AI 295 6.0 8,7 

{ 4.2 9.5 9.7 
Pb 78 9.2 9.5 

293 8.2 9.1 

In { 4.2 5.5 I 5.4 
295 4.7 4.3 

. 
I 

a more accurate wave function leads to a dependence of 
the energy gap not only on p 1 but also on p 11• Allow
ance for this dependence leads to a decrease of the the
oretical value of a. This circumstance is particularly 
important in the region of intersection of several Bragg 
planes. 

Let us compare the sum rule (22) with experiment. 
The results of such a comparison, given in Table II, 
show that for Pb and In formula (22) is satisfied at all 
temperatures. Thus, there are no significant interband 
transitions in these metals, other than those considered. 
For Al, the contribution from these transitions is some
what smaller than the difference Nval - N. The reason 
for this is not yet clear. 

Let us examine the connection between the jump 6-E 
= Emax - Emin and <Tmax· In the presence of several 
close bands, the values of E'g overlap, making the sep
aration of 6.€ difficult. However, it is possible to sep
arate the jump 6.€ for tin and lead at T = 78°K. We 
then obtain 
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~ Emax- Emin = ~0.7 for Sn 
4n <1max l0.8 for Pb. 

The obtained values are in good agreement with the the
oretical value 0.95. 

It follows from the considered theory that for aniso
tropic single crystals the different bands ag are ex-

cited by light of different polarization. This was ob
served for Zn and Mg single crystals. [ 10 - 121 This cir
cumstance is used to identify the bands. 

On the whole, it can be assumed that the experiment 
confirms well the model under consideration. 

Let us calculate the contributions of the virtual inter
band transitions to the dielectric constant at low fre
quencies. The results of such a calculation are given in 
Table III. It is seen from Table III that the contribution 

Table III. Contribution of the virtual interband 
transitions to the dielectric constant 

of a number of metals 

Metal T,°K e(O) 

A1 295 26 

42 9 
Pb t 78 10 

293 15 

In { 4.2 45 
295 40 

of the indicated transitions to E is of the order of 10-
100. If it is recognized that when ve ~ 1015 sec-1 the 
contribution of the conduction electron to the long-wave 
region is Ee ~ l<f, it becomes clear that allowance for 
the virtual interband transitions is essential even in the 
long-wave region. 

In conclusion, we are grateful to L. V. Keldysh for a 
number of valuable remarks made during the discussion 
of the present work. 
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