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The electrical conductivity coefficient of a weakly ionized plasma, a, is expanded in powers of the con­
centration of the neutral component N: a= a0 (1 + c 1N + c2N2 + c3N2 ln N), where ao is the electrical 
conductivity in the Lorentz approximation. The corrections to a0 take account of the nonideality effects. 

IN a weakly ionized perfect plasma the electrical con­
ductivity is determined by the solution of the kinetic 
equation with account of the scattering of the electrons 
on the neutrals in the binary approximation. When the 
density is increased, the binary approximation becomes 
insufficient. When the wavelength of the electron is 
comparable with the average distance between the scat­
terers, the electron moving in an external field inter­
acts simultaneously with many particles. 

Kohn and Luttinger[11 have solved the problem of the 
electrical conductivity of a metal caused by the scatter­
ing on impurities. They obtained corrections to the col­
lision integral due to non-binary scatterings. The sub­
sequent papers used the Green's function method. In the 
general theory of slightly non-equilibrium processes the 
electrical conductivity is given in terms of the two-par­
ticle Green's function according to the Kubo formula. [2• 31 

Along this line, Abrikosov and Gor'kov[41 and Edwards [51 

have calculated the residual resistance of a metal, and 
Konstantinov and Perel'[31 and Perel' and Eliashberg[61 

have determined the electrical conductivity of a fully 
ionized plasma. 

We shall consider a weakly ionized plasma under 
conditions where the wavelength of the electron X. and 
the scattering amplitude .fq are comparable with ~1/3 , 
where N is the concentration of the neutral particles. 
The problem consists in the description of transfer in 
the medium of these particles. The concentration of the 
free electrons n will be assumed known, since the prob­
lem of the number of carriers and their mobility can be 
solved separately if the effects of nonideality are not 
too large. 

Assuming that X.qN < 1, we obtain an expression for 
the electrical conductivity in the form of an expansion 
in powers of the density. The first term of the series 
corresponds to the known formula for a Lorentz gas. 
We obtain the explicit form of the corrections to this 
formula. The limits of applicability of the formula are 
discussed. 

BASIC EXPRESSIONS 

The general expression for the conductivity in a 
spatially homogeneous electric field has the form [31 

( eft ) 2 1 p~pv' R R d3pd3p' 
cr"v(w)= - J -_-[Kw(w)-Kpp•(O)]--.-, 

m Htl (2nn) 6 
(1) 

where w is the frequency of the field, and p and p' are 
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the momenta of the electrons; KC-p, is the retarded two­
particle Green's function, 

"" 
K:p•(w) =) eiwtK:p•(t)dt, 

R i 
Kpp•(t) = he(t)([ap.+ap•(t), ap+ap(O)]_), 

ap and ap are creation and annihilation operators, and 
( ... ) denotes the statistical average over an equilib­
rium state of the system. 

For the calculation of KC-p'(w) we use the tempera­
ture dependent graph techmque. [71 K1P'(w) is the ana­
lytic continuation of the function Kpp'(wn) from the dis­
crete points on the imaginary axis iwn = (2n + 1) JTi/ J3, 
n > 0, to the real axis of w. We have 

-~ 

Kep•(wn) = -1- ~ exp(iw,;r)Kpp-(-t) d-r, 
2 fl 

Kw(<)= (T {ap•+ap•(<)aprap(O)}), 

where J3 = 1/T is the inverse temperature. 
For the description of the electron-atom interaction 

we introduce the Fourier component of scattering po­
tential between the electron and the atom V q. Since the 
energy transfer between the electrons and the atoms 
can be neglected, the problem reduces to the study of 
the motion of the electrons in a field of fixed scatterers. 
The Hamiltonian has the form 

p p,q 

where Ep = p 2/2m, and Uq is the Fourier component of 
the scattering field, which depends on the coordinates 
of the scattering centers ri: 

" 
Uq = ~ e-iqri l/(1• 

i=i 

For not too large N one can assume that the atoms 
are distributed randomly, and average the Green's func­
tion over the ri. [51 The problem becomes spatially 
homogeneous. For the averaged one-particle Green's 
function Gp(wn) we have the equation 

[(Gg'>)-1 -~p]Gp=i, (2) 

r..l0 >( ) - (' -1 -f wn - lwn- Ep + Jl) . The self-energy part ~ is 
g1_ven by a sum of graphs, some of which are sho!n in 
F1g. 1. The solid line corresponds to G<0>(w ) the d tt d 
lines to N I Vq 12 • By I Vq 12 we understand he~~ (afte~ e 
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FIG. I 

summation over a definite subset of graphs[4• 51 ) the 
square of the exact amplitude for scattering on a single 
center. Depending on the number of vertices in the 
graph, we have for ~ 

~=~2+~·+ ... (3) 

The first term in {3) corresponds to the approximation 
of binary scattering. 

The integral over the two-particle Green's function 
in (1) can be written in the form 

S d'p' 
--tz-pp'KP'P(wn) = p2T ~ Gp(wk)Gp(Wh + Wn}[1 + Ap(Wk, Wn}], 
(2n )' k (4) 

S d'p, 
pAp(Wk, Wn) = --~-. Dp,-p PtGp,(wk)Gp,(Wk + (J;n)[1 + Ap,(Wi<,Wn)]. 

(2nn) 1 {5) 

It is clear that Ap(wk, wn) depends weakly on p, so that[4J 

{6) 

The four-pole function Dis given by a sum of graphs, 

D=D2 +D4 + ... 

some of which are shown in Fig. 2. 

-r7' 
' I 

L 
a b c 

FIG. 2 

(7) 

d 

The calculation of the electrical conductivity reduces 
to the calculation of the contribution of the graphs of the 
type shown in Figs. 1 and 2, their summation over Wk, 
and analytic continuation. 

CALCULATION OF THE ELECTRICAL CONDUCTIVITY 
In first approximation in the scattering terms {~ 2, D2) 

we have expressions for Gp(wk) and Ap(wk, wn) of the 
type obtained earlier[4J in the calculation of the residual 
resistance of a metal: 

G~) ( Wk) = [ i ( Wk + n; sign Ulk) + fl - Ep r' ' (8) 

I fzv, [ Oln sign( ffi1< + ~n )+ ftvt rl, lwhl < (!); 
Ap(Wk, !On)= 

!On 
0, lwhl > z-· 

(9) 

Here v and vt are collision frequencies: v = Nqv, vt 
= Nqtv, v1 = v- vt, v = p/m; q and qt are the electron­
atom scattering cross section and the transport cross 
section, respectively. 

In this approximation, the electrical conductivity 
must be given by the known formula for a Lorentz gas. 
Let us find it. To this end, we first cast the integral 
over the function Kpp'(wn) in the following form, using 
(9): 

The summation in {10) goes over all wk. The analytic 
continuation of the function 

Fp(iwn)= T~ Gp(Wk)Gp(Wk + Wn) 
h 

from the points iwn, n > 0 to the real axis of w is car­
ried out by the method developed in [6J. We obtain 

1~ 
Fp(w)=- C da[ cth~·ImGpR(a)GpR(a+ oo) 

2nl, 2T 

+cth a2~ 00 ·ImGpR(a+oo)·GpR(a)J. 

Using Hv, w « T in our calculations, we find 

1 d'p' , K , :u _ ihvt 2 iinp 
J (2nh) 3pp PP ( ) - oo + ihv, p iiev · (11) 

As a result we obtain the Lorentz formula for Re a(w):[6 J 

(12) 

The system is isotropic and in (12) a(w) = axx(w); np is 
the momentum distribution function of the electrons. 

Let us now turn to the calculation of the corrections 
to the Lorentz formula in the next approximations in the 
density N. The electrical conductivity depends on the 
momentum distribution of the electrons and on their 
mobility. We recall that these two quantities are deter­
mined by different processes. If the concentration of 
the electrons is not too small, np is established through 
electron-electron collisions and has Maxwellian form 
{the corresponding criteria are given below). At the 
same time the mobility is governed by collisions with 
the neutrals and must be determined. We shall there­
fore seek only Im ~p, which is responsible for the 
"damping." 

The quantity ~4 consists of two graphs, and ~6 of ten. 
It turns out that some of the graphs of ~6 diverge. We 
avoid these divergences by summing over such subsets 
which lead to the replacement of the lines ot>o> by Gt>21 • 

An example is given in Fig. 3, where the heavy line cor­
responds to Gp21 • This procedure has an obvious physi­
cal meaning. 

FIG. 3 

In this way part of the graphs for ~6 reduce to ~4 with 
Gp01 replaced by Gp21 • The remaining graphs, such as the 
one of Fig. 1c, are calculated independently. The values 
~p(wk) are taken at the poles of the corresponding 
Green's functions. As a result, we obtain in third order 
in the collision frequency 

Im~p = Im~zp {1 +at tzv -(az+-1-In 16ep)(!!!_)2
}, (13) 

~r 128 hv Ep 

1 g"' ada ----
a1 =- --[(ll'1-2a+a2 1+2)In(IY1-2a+ a2 1+2) 

8n 1- a 2 
u 

-(ll'1-2a+ a2 l-2)1n(IY1- 2a+ a21- 2) 
6.3 

-(3 + a)ln(3 + a)-(a-1)ln(a -1)] ~-; 
8n 

i2 -
az = ~ s dz ]n2 r::_ + z ~ 3,3 . 

4 0 z )'2-z 4 
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Expression (13) has been obtained under the assumption 
of short-range electron-atom interactions. Therefore 
I Vp 12 has been regarded as a function which depends 
weakly on p. The scattering was taken to be isotropic. 

Let us calculate Re Ip(wk, Wn). We are not interested 
in the imaginary part of Ip(wk, Wn). The contribution of 
D4 consists of three graphs. A contribution of second 
order in fill/Ep to Re Ip(wk, wn) comes only from the 
graph of Fig. lb. For I Wk I > wn/2 it vanishes. For 
I wk I > wn/2 it amounts to 

The contribution of D4 to Ip(wk, Wn) in the next order in 
fill/Ep is summed with the contribution from D6 • 

The term D6 consists of twenty graphs. Many of them 
do not give a contribution of the considered order in 
fill I Ep. The terms of most importance are the ones of 
the type of Fig. 2, c and d, which are approximately 
given by products of the quantities D4 : 

Do(e) ~ (IVIVvi')-'[D,(6)]'. 

For the other contributions the region of integration 
over the angles is strongly limited, and the integrated 
quantities are small. 

As a result we obtain in third order in fill 

liv (liv)[ n (flv)( 1G"")] Relp(wh,Wn)= ---- ~ --;-- ~ a,+a3 ln~--. 
wn+liv ep 12 ep /iv 

Wn 

lw~l<2' 
;z 

aa= n' +-~, a,=~+~- ~!_---:z'-ln'1~+z dz~n' +0.74_ 
32 64 Hi 16 z 12-z 1G 32 

0 (14) 
The summation over Wk and the analytic continuation 

are carried out in the same way as in the derivation of 
(12). The result for the static conductivity is conve­
niently written in terms of an "effective" collision 
frequency fiVeff: 

( eli ) 2 r d"p &np p2 1 
Recr(O)= ~ J --:-~ ----

m (2nli) 3 &ep 3 liv,1 ' 

[ ( n ) liv ( na1 )( liv )z llvet = llv 1 + - + a, -;:- - a2 +a, -- ~ 
12 "" 12 £p 

t 1 ) ( llv )2 16ep J - a,+- ~ ln--
128 "" liv · 

(15) 

The frequency fiv needed in calculations using (15), can 
be obtained, for example, from experiments on the scat­
tering of electrons on isolated atoms (molecules). 

DISCUSSION 

The expression obtained above for the electrical con­
ductivity coefficient of a weakly ionized plasma has the 
form of an expansion of the vi rial type. It establishes 
the limits of applicability of the Lorentz approximation 
and allows one to calculate corrections to it. Being an 
expansion of the electrical conductivity in the parameter 

liv i ep ~ 'AqN, 

formula (15) takes account of the interference in the si­
multaneous scattering of an electron on several centers. 
We have considered binary, three-, and four-particle 

interactions. Clearly, we have taken even somewhat 
more into account in the summation over several sub­
sets of graphs, since the expansion contains a term 
with N3 ln N. 

Let us discuss the limits of applicability of our re­
sult. 

The plasma must be slightly imperfect, so that one 
can speak of free electrons, the electrical conductivity 
being determined by their mobility. The requirement 
of weak non-ideality is reflected in the inequalities 

e2T- 1n''·' <;; 1, 'AqN < 1, RN'h < 1. (16) 

The first inequality takes account of the Coulomb inter­
action, the second of the electron-atom interaction, and 
the third, of the atom-atom interaction (R is the radius 
of the outer electron shell). When the conditions (16) 
are fulfilled, the concentration of the electrons can be 
determined with the help of perturbation theory, and the 
electrical conductivity can be sought in the form of an 
expansion in the density. In the opposite case, one must 
use a different approach in calculating a. Thus, for ex­
ample, one must consider the fole of the conduction 
mechanism which is caused by the "jumping" of an 
electron from an atom to an ion. l 9l 

The following restrictions are connected with the 
concrete method of including the interaction in a slightly 
imperfect plasma. 

The neglect of the electron-ion scattering is justified 
if 

ne"-
qN>y,An, (17) 

where A is the Coulomb logarithm. At the same time, 
if 

(18) 

(m/M is the ratio of the masses of the electron and the 
atom) the Coulomb collisions between the electrons de­
termine the momentum distribution of the electrons np. 
If the first inequality (16) is satisfied, this distribution 
is Maxwellian. Owing to the short range of the interac­
tion between the electrons and the neutrals, the electron­
electron interaction has no effect on the mobility of the 
electrons in a weakly ionized plasma. 

In Fig. 4 we show, in terms of the coordinates nand 

FIG. 4. Characteristics of a hydro­
gen plasma in equilibrium. Curve I: the 
condition e2r 1n1/3 = I, Curve 2: RN 1/ 3 

=I, Curve 3: qN =I, Curve 4: qN = 
e"T-2 An, Curve 5: the 1000 atm isobar, 
Curve 6: the I 0 000 atm isobar. 
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T, the range of parameters of a hydrogen plasma in 
equilibrium over which expression (15) is applicable. 
For small T it comprises the conditions where the ef­
fects of non-ideality are important. For larger T and 
n the plasma becomes strongly ionized. In calculating 
its electrical conductivity one must delve deeper into 
the interaction than was done in [3 J. Effects of the type 
considered above must be taken into account. 

I thank the colleagues of the theoretical division of 
the Institute of High Temperatures, U.S.S.R. Academy 
of Sciences, for a discussion of the results of this work. 
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