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At external field microwave frequencies close to the electron Langmuir frequency, parametric instabil-
ity of a plasma occurs at comparatively small values of the external field strength. Expressions are
derived for the plasma oscillation increments and frequencies. Relations between the amplitudes, which
determine the phase shift of the high frequency plasma waves relative to the phase of the external field,
are also obtained, The threshold values of the microwave field strength are determined in a broad
range of parameters. Values of the perturbation wave vectors characteristic of the beginning of insta-

bility are also determined.

IT is known that in a plasma situated in a strong high-
frequency (RF) field, under certain conditions, insta-
bility sets in with respect to growth of oscillations of
the longitudinal electric field.!*™®! In this case, as
shown by one of the authors!*®! the threshold intensity
of the external RF electric field, at which such an in-
stability can arise, decreases when the frequency of the
external field approaches the electron Langmuir fre-
quency. Bearing in mind the anomalous character of
the interaction between the external field and the plas-
ma, connected with the development of instability and
with the occurrence of the turbulent state of the plasma,
it is of particular interest to consider the criteria for
the development of instability in the case of very weak
fields, when it is difficult to expect any anomalies what-
ever from the point of view of the usual ideas. In this
connection, we shall study below the parametric prop-
erties of a plasma situated in a spatially-homogeneous
electric field whose frequency is close to the electron
Langmuir frequency. The amplitudes of the excited os-
cillations will be assumed to be small, and the wave-
lengths of such oscillations will be assumed not to ex-
ceed the wavelength of the external field and the char-
acteristic dimensions of the plasma inhomogeneity,

thus justifying the assumption that the external field and
the plasma are homogeneous. At the same time, bear-
ing in mind that the relatively long-wave oscillations
grow when the external-field frequency approaches the
electron Langmuir frequency, we shall assume the
wavelength of this oscillation to be much higher than
the electron Debye radius and the amplitude of the elec-
tron oscillations in the external RF field.

It turns out in this case that perturbations of zero
frequency arise in the plasma, and also perturbations
with the frequency w, of the external field. For the
minimum threshold value of the external field at which
such oscillations become unstable we get the following
relation, which depends on the frequency vej of the
electron-ion collisions:
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= Vei /2.

If the collision frequency is not too high, then the
minimum threshold intensity of the external field for a
strongly non-isothermal plasma is given by
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which are valid under conditions corresponding to the
decay of a wave of frequency w, and zero wave number
into plasma and ion-acoustic waves, and in this case
the growing oscillations are those having frequencies
wg and wg — w,, where wg is the frequency of the ion
sound.

In the opposite case of h1gh colhsmn frequencies,
Yei > V2 wij [In (wp,e/wp,i)] ~*/% the minimum thresh-
old intensity of the external fleld is reached when krpe
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In this case waves with frequencies w, w + w,, and
w — w, are excited, and the amplitudes of the oscilla-
tions with frequencies w *+ w, are approximately equal.
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1. In accordance with the usual premises of the the-
ory of parametric resonance in a plasma, the spectrum
of the longitudinal oscillations and the corresponding
instability conditions for a fully ionized plasma situated
in a homogeneous monochromatic RF field,

(1.1)

are determined by the condition that a solution exist for
the system of equations for the amplitudes of the elec-
tron and ion charge densities pe and p; in the follow-
ing expansion of these densities in terms of the harmon-
ics of the external-field frequency (a =i, e)
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Being interested in the weak-field case, when the veloc-
ity of the electron oscillations in the pump field is small
compared with their thermal velocity, it suffices, for
oscillations with wavelength exceeding the electron De-
bye radius, and with frequency w and decrement y that
are small compared with the frequency of the pump
field w,, which is close to the electron Langmuir fre-
quency wle = (4we ne/me)l/ to retain only to the ze-
roth and first-order amphtudes in the expansion (1.2).
Accordingly, the expansion (1.2) for the electrons and
ions can be written in the form
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Here e, ej, mg, and mj are the charges and masses of
the electrons and ions, and rg = eE(,/mew0 is the ampli-
tude of the electron osc111at10ns in the RF electric field.

In the approximation of expansions (1.3) and (1.4), the
dispersion equation of the longitudinal oscillations, ac-
curate to terms quadratic in the RF field intensity E,,
can be written in the form!®?

e(o + iy, k) (krg)?
“dei(w + iy, K)[1 + Seo(0 + iy, k)] 4
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X[ g0 + ooy, k) e(0 — 0ot iy, k)

Here éea(w, k) is the contribution of the particles of
type a to the ordinary linear longitudinal dielectric
constant
e(w, k) =1+ dzc(w, k) + Sei(w, k). (1.6)

As will be shown later, the frequencies of the excited
oscillations turn out to be either much smaller or much
larger than the increment (decrement) y.

When y << w, the following inequalities are satisfied
for growing plasma oscillations (at a small amplitude
E, of the RF field)

(1.7)

where v = (Tp/m,)"/* is the thermal velocity of the
particle of type a. In addition, we shall assume that the
wavelength of the excited oscillations is small compared
with the electron mean free path:
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and the frequency of the ion-ion collisions is also rela-
tively small:

4 V:—'L—ei‘niL

u)-{—w]
i

s =3 (1.9)

Here L is the Coulomb logarithm.

In accordance with inequalities (1.7)—(1.9), and also
bearing in mind that |w + wy| >> kvpe, We can write the
following expressions for the partial contributions to the
dielectric constant:
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Under conditions when v turns out to be much larger
than the frequency w, it is necessary to consider exci-
tations for which, besides (1.7), there is also satisfied
the inequality

|o =+ iv|<€ kvr.. (1.13)

When (1.13) is satisfied, we can use for the partial per-
mittivities the expression

(1.14)

Simultaneously with the dispersion equation (1.5),
we can write the following relations for the amplitudes

Seq(w + iy, k) = 1/ krps2.
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Here w + iy is the solution of the dispersion equation
(1.5). Relation (1.15) reflects the quasineutrality prop-
erty of the low-frequency long-wave oscillations. For-
mulas (1.16) and (1.3) make it possible to determine the
relative magnitude of the amplitudes corresponding to
the harmonics w + w, Thus, for example, if e(w + iy
— wy, k) K €(w + iy + wy, k), then the spectrum of the
electron-density oscillations (and accordingly of the
oscillations of the electric field in the plasma) contains
principally the frequencies w and w — w,. To the con-
trary, if €(w — wy + iy) =~ €(w + wy + iy), then the oscil-
lations with frequencies w — w, and w + w, have ap-
proximately equal amplitudes.

It turns out that the dispersion equation (1.5) has
both periodic (y << w) and aperiodic (y >> w) solutions,
Let us consider first the relatively simple case of
aperiodic instability.

2. The hydrodynamic theory of parametric resonance
ina plasma”’ 2) has predicted the existence of aperiodic
instability at w, < wle. Similarly, our dispersion equa-
tion (1.5), which takes into account a large group of ki-
netic effects, also leads to such an instability, provided
the difference between the frequency of the external
field and the frequency of the longitudinal plasma wave



PARAMETRIC EXCITATION OF

is negative in this case
(2.1)

For the growth increment of the perturbations we
have

Awp = 0o — (01 + oL + 3krplore) ™.
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Here wg = wpjkrpe is the ordinary frequency of the
ion-acoustic oscillations, and

RER
V_V 8 ks,.DeseXp<
Equating the increment (2.1) to zero, we obtain an equa-

tion for the limit of the aperiodic instability:
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This relation differs from the hydrodynamic result
of Nishikawa?! in that the thermal motion of the ion is
consistently taken into account. We note that in a real
plasma the threshold value of the wave vector may turn
out to be the decisive plasma dimension or the charac-
teristic inhomogeneity scale (I) of the electric pump
field (1.1). It is then necessary to substitute in the right
side of (2) 1/1 in place of k, and this determines direct-
ly the threshold value of the pump-field intensity.

For wavelengths shorter than the characteristic di-
mension of the inhomogeneity, an analysis of formula
(2.5) is somewhat more complicated. The threshold
value of the field (1.1) and the value of the wave vector
at which the instability becomes possible are deter-
mined by the frequency difference between the external
field w, and the plasma frequency wp = (whe + L)/

Let us discuss certain consequences that follow from
(2.1)=(2.5) for a transparent plasma (w, > wp). We de-

note by kgt the value of the wave vector at which both
terms in the right side of (2.4) are equal to each other.
Then, at sufficiently long wavelengths (k < kg¢) of the
growing perturbations, and at sufficiently small fre-
quency deviations,

Wo — 0p < ¥/20pksPrpe,

we obtain from (2.5) the following simple formulas for
the threshold values of the wave vector and the pump
field intensity (see [®):
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If the pump field is only slightly higher than threshold,
when y << y << ¥, we have for the oscillation ampli-
tudes u&’ =iu§ ™, thus indicating a phase shift of /4
for the excited RF oscillations of frequency w,, relative
to the phase of the pump field. We present also an ex-
pression for the maximum increment, if this increment
is described by formula (2.2), as well as the correspond-

ing value of the wave vector

(2.6)
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It is similarly easy to obtain an expression for the max-
imum increment in the case of formula (2.3). Thus,
when

0o — 0p << 0p(0Li [ OLe)?

we get
Ymax =~ (DLirE/VgrDe- ‘

At shorter wavelengths (k > kgi) we can neglect the
collisions. This means simultaneously that one should
speak of large detunings, when

Wp 3> 00 — 0p > 320pksrpd.

For the threshold values of the pump field and of the
wave vector we then obtain the following formulas:

2
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It follows therefore that the threshold pump-field in-
tensity increases exponentially with increasing frequen-
cy deviation. Finally, for pump fields exceeding (2.8)
we have ul ~ u's?, meaning that the phase of the RF
oscillations is shifted by 7/2 relative to the phase of the
pump field.

In concluding this section, let us touch upon the case
when the pump-field frequency w, is smaller than the
plasma frequency. If at the same time wp — wy<vej /2,

then obviously expressions (2.6) and (2.7) hold for the
threshold and for the maximum increment. With fur-
ther decrease of the frequency, the field threshold value
(1.1), as follows from (2.5), increases in proportion to
‘he square root of the frequency deviation:

Eo, thr = 4[(nele + n:iTs) (0p — wo) [ wp]".

3. Let us consider almost-periodic oscillations
whose frequency w greatly exceeds the increment 7.
As will be shown here, such oscillations can grow only
in the transparency region of the plasma, when the fre-
quency w, exceeds the plasma frequency Wp- Assum-

ing inequalities (1.7)=(1.9) to be satisfied and substi-
tuting in the dispersion equation (1.5) the expressions
(1.10)=(1.12) for the partial permittivities, we obtain a
system of two biquadratic equations for the frequency
and for the increment. Solutions of this system of equa-
tions are expressions for the spectrum of two branches
of periodic oscillations, one of which, as will be shown
later, corresponds (in the limit of low intensity E,) to
the Langmuir RF oscillations:

032 = (Awo)2 + 72 — Y2 (1 — f1) [(Awo)* + ¥ — 02], (3.1)
ve=[ys(1 — 1) =¥ + )]/ 2f+ (3.2)
whereas the other branch corresponds to the low-
frequency ion-acoustic oscillations:
02 = o+ 2(1 — f-) [(Awo)? + ¥* — o], (3.3)
v-= 131 —7) —v(1+f)]/2f- (3.4)

The function f, in expressions (3.1)—(3.4) for the spec-
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trum of the periodic oscillations can be written in the
form
2 2y Y2
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The low-frequency (yg) and the high-frequency ()
damping decrements are then given by
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The increments (3.2) and (3.4) are positive, i.e., they
correspond to growing oscillations only when f, <1,
which calls for Aw, > 0. This leads to a limitation on
the region of admlssmle wave vectors of the growing
oscillations k’rpe < 7 (w, — wp)/wp. Further, y,>0

only in that wavelength region where yg > y. To the
contrary, y_> 0 if y > ys.

In the near-threshold region of instability, we can
write relatively simple general asymptotic formulas
for the limit of the instability region. Considering the
branch w_, we assume that ¥ >> yg. It is then obvious
that 1 —f_ <<'1 near the threshold for the buildup of
such oscillations. Accordingly, expanding (3.5) in pow-
ers of rg, we obtain

2
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Equating y_ to zero, we obtain in place of these two
equations the following equations for the limit of the in-
stability region:
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Equations (3.10) and (3.11) define in the (E,, k) plane the
limit of the instability region. The minimum (threshold)
value E; j, will be realized at a wave vector value
Kihr which we shall call the threshold value.

For the branch w,, we assume y << yg, which calls
for the inequality 1 —£f, << 1 in the near-threshold re-
gion. Accordingly, using the expansion of (3.5) in pow-
ers of rg, we obtain

ot = (dan)*+ ¥ — Bl(Ao) + ¥ — o), (8.12)
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The limit of the instability region is then determined by
the equations
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(e = (3.14)
\ krpe /1im Ys
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In the particular case Aw, = wg >> ¥, formulas (3.10)
and (3.14) coincide with each other; when the ion-ion
collisions are neglected, they coincide also with the re-
sults of 7!, Formula (3.10) with ¥ >> wg is similar to
that obtained by Nishikawa'®! for a partly ionized plas-
ma.

The main content of the exposition that follows is
connected with a detailed analysis of the instability re-
gion, and also with the study of the near-threshold re-
gion. It should be noted, however, that formulas (3.1)-
(3.5) make it possible to move quite far away from this
region. For example, in a suff1c1ent1y strong field,
when B, < @ < 1 and ax> (1-x)? we get (3.1)~ (3 2)

02 ="[(Awo)? + ¥ + 0], (3.16)
SR ks s BRI
i 2 273
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x {4 (T } . (3.17)

Finally, with increasing field, the increment increases
and the condition on which the derivation of formulas
(3.1) and (3.5) is based no longer holds.

It is seen even from (3.17) that y_ does not depend on
y or Ys at a sufficiently large value of Aw, and when
the field greatly exceeds the threshold. This result can
be obtained, obviously, from the dispersion equation
(1.5) by neglecting completely the dissipative effects
corresponding to the so-called hydrodynamic approxi-
mation. The general solution of (1.5) in such an approx-
imation yields

0? = [ (Awg)? + 02 + oA (4 + ad) ],

v =""2[0:A00 (4 + o) — 02 — (Awo)2]™, (3.18)

where @, = (k- rp/krpe)’(w,/Aw). It follows from this,
in particular, that at small «, the instability takes
place near wave vectors satisfying the condition Aw,
= wg, which corresponds to the decay instability.t# ®1
With increasing a,, the picture changes. Thus when
0o >16 and Awy = wg We get w ~y~ w ao . Obvious-
ly, under such conditions it is meaningless already to
speak of decay instability.

It follows in particular from (3.18) that
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4. Let us consider in detail the parametric buildup
of oscillations with spectrum w_. Assuming that the
temperature of the electrons is not much higher than
the temperature of the ions, e} Temg << e’ Tjm;, we
can immediately obtain from the condition y > yg an in-
equality whose satisfaction means that the plasma insta-
bility can be connected only with the buildup of this
branch:

oL?

Vei > V_ kstrDe Y (4. 1)
Here
04" pe® Ure (_ 0sf \
Ye=1+ gt rpi? vy Zkszirzl ’
and
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is the wave vector at which the two terms in y [Eq.

(3.7)], due to the Cerenkov effect and to electron-ion

collisions, become equal. If the inequality (4.1) is not

satisfied, then in the wavelength region
? Vei®Le
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(where
ky ~ o t[2In (0re / ©ri) ]

is the wave number at which decrement yg [Eq. (3.6)]
becomes comparable with the contribution made to y
by the Cerenkov effect) the instability can be connected
only with the buildup of the branch w, , and outside this
interval (where y > yg), it can be connected only with
the buildup of the branch w_. We have already pointed
out a limitation on the oscillation wave vector imposed

by the deviation from resonance % wpk rDe < wy— Wpe

Therefore, discussing the instability for different wave-
lengths, we consider by the same token different values
of the frequency deviation.

We begin our discussion with the case of sufficiently
long waves, k < kgt, when the contribution to y by the
Cerenkov effect can be neglected. In such a relatively
broad region, we first consider the subregion of wave-
vector values for which

wo — 9p (1 + 3/ok?rp?) << vei. (4.3)
Formulas (3.10) and (3.11) then take the form
( kr5_>2 _ 1 ys(vei +4os?)*
\krpe /tim 2 Veio2og-Awo (4-4)

(0-2)y= 02 + Y2veiys.
These formulas become particularly simple in the limit
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We emphasize that for ion-acoustic frequency to oc-
cur it is necessary, strictly speaking, to satisfy the
non-isothermal condition |ej| Tg >> |e|Tj. Relations
(4.5) and (4.6) make it easy to find the threshold values
of the pump field, when the contribution made to yg by
the Cerenkov effect on the ions can be neglected (thlS is
poss1b1e in any case, when |ej|Te/|e|Tj > In (e Teém;/
e’T{mg)). Thus, the m1n1mum of Eg lim, defmeii E)y
(4. 5), occurs when Kihr = 'De [2(wo — wp)/9wp | /

] Y2

and is given by the expression
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Similarly, we get from (4.6)

(4.7)

@ — @p < Vei,
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We present an expression for the maximum incre-

ment in the near-threshold region, when expression
(3.9) can be used, i.e., for fields at which ¥ pax < w,
vei/8. For frequency deviations that lead to the thresh-

old (4.8), the maximum increment is reached at ky ¢
= Kk¢hr and equals

+o 2],

o 8 wri?
P

VeiVii®Le

< @) — 0p < Vei. (4.8)
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For frequency deviations corresponding to the thresh-
old (4.7), we can use the same expression, but in fields
greatly exceeding the threshold value, recognizing that

00 — 0p <€ 2VePOLe [ 80L? B Kmax™ rpe [ (wo — 0p) / 30p] "

With the aid of (1.7) we can easily determine the ra-
tio of the amplitudes u,(s =1 in the expansion (1.3). Bear-
ing in mind that in the case under consideration we have
Aw, <K 7, we get

uf;“) Awo— 0 —i(y-+ v)

C Aeoto-F+i(v-+7)

This ratio means that at pump-field values exceeding
the threshold the spectrum of the excited oscillations
contains (besides the frequency w_) also harmonics
w_ £ wy, with equal amplitudes.

Going over into the subregion of waves that are
shorter than (4.3) (but assuming, as before, that k
< kg¢), we must consider larger frequency deviations:

(4.11)

(4.10)

u(—i)
e

Vei << wo — 0p < owpksPrped.

We turn first to the case when at threshold values of the
fields the acoustic frequency is small compared with
the decrement 7 and the Cerenkov effect on the ions
can be neglected in yg. With the aid of (3.10) and (3.11)
we obtain the following threshold characteristics for



564

different values of the frequency deviation:

( TE ) 16[ 3 rpiViiVei® ]l/z
T'pe/ thr 5 L5 rplforwri?(0— op) ’
04 (kgy) = Y1505 (kg ) VerViiTpi® [ Tne? (4.12)
when
Vei ©— ® 6 7DiViiVei
_l< 0 P R Di"ViiVei , 4kstzrDez
5 20, 2
OLe ©p 5 rplori 2
and
(T.E )2 32 TDi2ViiVei o (ka) ko)
-— = 5 ’ —(Fthr) = ©s
Tpe” thr 573 rpefo L (0o — ®p) thr (4-13)
when
wre 9 rploLd wp 8 oL 2

These two thresholds are reached for a wave number
satisfying the condition Aw, = 1gj/2V3 at w,— wp
>> vej. For fields leading to the increment vy 45 < w,
Vei/8, we get in this case from (3.9)

V3 r — ot (00— 0p) 0ri®

Ymax = ? (4. 14)

s
pe? Vei®

where TE thr is determined by (4.12) or (4.13), depend-
ing on the’ frequency deviation, and kmax = kthy. Since
in this case w_ < v, the harmomcs with frequencies
w. + w, have, in accord with (4.2), equal amplitudes.

We note that both the formulas (4.7)-(4.9) and their con-
tinuations (4.12)—(4.14) into the region of larger fre-
quency deviations (when w, — wp < Vi wre /8wi,)

show that the threshold for the buildup of oscillations
decreases and the maximum increment increases with
increasing frequency deviation.

Let us consider now a case opposite to the one just
considered, when the decrement y = vgj/2 is small
compared with wg at the threshold value of the field. It
is then seen directly from (3.10) that the threshold is
reached under decay conditions, i.e., for kipy =k, de-
fined by the equation

o5 (ko) = Awo (ko) = wo — wp[1 + 3/2koerp?] (4.15)

It is then obvious from (3.8) that w_ = wg and, depend-
ing on the magnitude of the frequency deviation that de-
termines k,, we obtain the following expression for the
threshold:

( TE )2 32 rp? ViiVei
ey
o/ the D Iplwows (ko)’
Vei < kor V 2 rDzz'VumLe 1 (4 16)
o o7 pe <<
20 oL ‘

which is an extension of formula (4. 8) into the region of
large frequency deviations when w, — P~ 3Ve1“’Le/8wL1,

and

( rE >2 — Vin Vei®Li ,
thr ’

Tpe oL

Vei 8 2 rpi?Vii®re Vei®Le

iz’

< e < V 2 Furse. (4.17)

20L; N rpler?Z

This threshold, as will be shown subsequently, is the
smallest for the buildup of periodic oscillations, but the
region of its applicability exists only at not too high
collision frequencies.

The maximum increment in the near-threshold re-
gion (4.16), (4.17) is reached also under the decay con-
ditions (4.15) and equals
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2
_ 1 re?—rg the wows (ko) 1 v
Ymax 3 ot Vor 3 ei-

(4.18)

On the other hand, if the pump field intensity is still
higher, then we get from (3.17)

-
Ymazx = —-——[wows (ko) ],

% 1o F<Ymax < ﬁ)s(ko)-

(4.19)
From (1.16) it follows that under decay conditions Aw,
= wg = w_ the following relations hold for the ampli-
tudes:

w2 =+ (k)P
w7 Ge (k) <t (4.20)
© 5 2 2
e o ¥ (ko) _u)s(ko) TE” 3% (ko)
korodt u(;i) - v-+vs(ko) ore = Tne? <4 orews(ko) (4.21)
lh @5 (ko) ¥2(ko) rg? ms(ko
R e T

Let us discuss these relations, using the following ex-
pression for the energy of the excited oscillations:

1 [/]
Wy = y [Ek|2%[m Ree(o, k)]

Here e(w, k) is the linear longitudinal dielectric con-
stant, and the amplitudes of the excited oscillations Eyx
are determined by Maxwell’s equations in terms of the
electron and ion charge densities.

(0)
k (= e
lkE() 4 { ©) (0) - rE[ué“)— us 1)]}: 4nu, :
2 dei(w 4+ iy)

TKEED =~ 4mp &,

It is easy to see that the left side of (4.20) is equal to
the energy ratio Wi'/W™" of the oscillations with fre-
quencies w_ + w, and w_ — w,, and expressions (4.21)
and (4.22) give the ratios W{;’/Wl‘{'” of the energies of

the oscillations with frequencies w_ and w_ — w, Ow-
ing to the smallness of the frequency w_ compared with
wy, the inequality (4.20) denotes that the number of ex-
cited quanta with frequency w_ + w, is small in com-
parison with those for the frequency w_ — w,. At the
same time, relation (4.22) shows that under decay con-
ditions, when the dissipative processes are negligible,
the numbers of the excited quanta with frequencies w_
and w_ — w, are equal.

Let us consider, finally, the region of shorter waves,
k > kgt, and of the correspondmg frequency deviations

— wp > Yawp kgt rhe. Depending on the collision

frequency, we can encounter here three cases.

If the collision frequency is sufficiently high, vej
> 2wy kgt IDe, then the decrement y always exceeds
wg. It is then easily seen from (3.10) that the threshold
is reached at a wave number kthy ~ k4, defined by the

equation Aw,(k, ) = 7 (k,), and we can neglect in ¥ the

contribution due to the collisions. For in the threshold
value of the pump field we have the following expres-
sion:

e \? vs(Kv) [ Aoo(ky) 12
<_T?):)Lhr 6 ®o [ s (ky) ] '
From (3.9) we find that the maxima of the increment

also takes place at a wave number kpay ~ k,, , and
equals

(4.23)
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o5 (ky) ]2

Awo(ky) (4.24)
Relation (4.10) shows in this case (since w_ << y) that
the harmonics with frequencies w_ + w, have equal
amplitudes.

If the collision frequency is smaller than the one just
considered (vgj < 2wpjkgtrDe) but satisfies the in-
equality (4.1), then the acoustic frequency exceeds ¥ in
the wavelength region k g¢< k < k, (k;~wave number
at which the acoustic frequency becomes comparable
with the contribution made to ¥ by the Cerenkov effect).
In this case w_ = wg, and the threshold and maximum of
the increment are reached apparently under the decay
conditions (4.15) and are determined by the expressions

(L) = gp 23t
thr

o mo'ms(ko) ’

2
¥ ~ 1 rg?—rE e [
max ~ o 0
16 T‘Dez

T'De

3 kg?rpe? < w< i AT (4.25)
2 ®p 2
1 re?—rs e ©o-0s(ko) 1
max = —— . — 5 (ko). 4.26
v 16~ o2 Tk 7 V) (4.26)

At large pump-field intensities we get Eq. (4.19) for
the maximum of increment. The relations for the ampli-
tudes then take the form (4.20)~(4.22). On the other
hand, in the wavelength region k > k,, i.e., for w, —wp

> %w kz rlzje, we have y > wg and consequently for-
mulas (4.23) and (4.24) hold.

If finally the collision frequency is so small that it
satisfies an inequality opposite to (4.21), then only os-
cillations with the spectrum w, can build up in the
wavelength region (4.2). In the wave-number region k,
< k < k,, i.e., in the case

3o pk12rpe® << o — 0p << 3fowpka?rnd,

we can use the expressions (4.25), (4.26), and (4.27),
and in the case w, — wp > /2wpk; T, formulas (4.23)

and (4.24) hold. In all the indicated expressions we can
neglect the contribution made by the collisions to y g.
We note, however, that in this case the expressions
(4.23) and (4.25) determine the minima of the limiting
value of the pump field only in the region k > k,. In the
wavelength region k <k, there is a minimum of the
limiting value for the buildup of the branch w, (see be-
low).

5. It was shown in Sec. 3 that the buildup of the
branch «. is possible only at wave numbers from which
Ys ~ 7. Such a region exists, as can be readily seen
from (3.6) and (3.7), at low electron-ion collision fre-
quencies, when an inequality opposite to (4.1) is satis-
fied, and in accordance with the requirement Aw, > 0,
at sufficiently large frequency deviations, i.e.,

o — 0p > (3/n)0p (Veiore [ 0LAY )%

We then obtain from (3.13) for the threshold intensity
E, the expression (4.17), which does not depend on the
frequency deviation, with kihy ~ Kk, if

2 e 3 < VeiOLe >2
= I
V P N <
When E, exceeds (4.17), but the increment is smaller

than yg(k,)/4, the maximum of y, is reached under the
decay conditions Aw, = wg, with kpmax = k,, and

‘Mo — Wp

(5.1)

o
L) -
< — ku"rp?
®p 2
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A rE—rh oy onedk)  rR vk
R TR vs(ke) = roe? Orews (ko) (5.2)

For the frequency deviations (5.1) we can neglect here
the contributions to the decrement yg(k,) from the ion-

ion collisions and to the decrement ;(ko) from the Cer-
enkov effect on the electrons. If the field E; is so
strong that wg(k,) > ymax > 7, then we get from (3.18)
expression (4.19) for the increment yp,;x. Bothin this
case and under the condition (5.2), the frequency w,
differs little from wg, as can be seen from (3.12).
Therefore, as follows from (4.16), the amplitude ratio
lug"?/u’ M| is approximately equal to

(v + ¥ (ko)) [ 205 (ko) < 1,

(0)

and for the amplitudes ug )

and u's” we have
vt ouk) e, vtk

kor. ———
( o De) Wre ’ rpe’ (Ouzms(kn) ’

© 5
zl Ue I
| w-v
o

[O7Y (ko) ,

Ore

Vi) e

oulk)
@ et (ko) 2 ’

Wre

©
(korne)? | o\ = <16

Wy
p

I'pe

i.e., relations analogous to (4.21) and (4.22), We note
that (5.2) differs from the corresponding expression
(4.18) for ypax in that yg is replaced by ¥, and the
expressions for the increments coincide in the region
of E, where y > max {yg(k,), ¥ (k,)}. Thus, if the inten-
sity E, does not exceed greatly the threshold value, so
that the increment is smaller than the larger of the dec-
rements yg and y, then ¥ is proportional to E§ and to
I'", where T = max {yg(k,), 7 (ko)}. On the other hand, if
T < y < wglky), then the growth increment of the peri-
odic oscillations under decay conditions is proportional
to E, and does not depend on the decrements. Such a
dependence on E, and I' was obtained in [®°! for the
increment of the decay instability of the plasma wave
into a plasma wave and an ion-acoustic wave. It should
be noted, however, that the theory developed in our pa-
per is not applicable to the description of the decay in-
stability of the plasma wave, for in this case the wave
numbers of the three interacting waves are approxi-
mately equal, and the condition for the homogeneity of
the ‘‘external field’’ is not satisfied.

If the frequency deviation is larger than (5.2), so
that

W — Wp

(5.3)

3 3
o ksi®rped << < - ki’rpé?,

wp
then, as can be seen from (3.14), the limit of the insta-
bility of the branch w, has two minima, one of which—
the decay minimum—coincides with that described
above, except that in this case the contribution to the
decrement ¥ from the Cerenkov effect on the electrons
is appreciable. The other minimum is connected with
the exponential decrease of the limiting value of E,,
which is proportional to 7, at small wave numbers, and
is determined by a relation that holds under non-decay
conditions:

rg \?
<E> min = 4
The threshold for the buildup of the branch w, is deter-
mined by the smaller of the values (5.4) or (4.25). If E,

'Vei((.l)o - (l)p)s

5.4
mllewsz(kmin)\’s(kmin) ( )

kmin ~ kst.
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exceeds the value of (5.4) but ymax < 7g/4, then we ob-
tain from (3.13) for the maximum increment

1 2 c0s% (km ax
Ymax X —Vei + —zvm——————-——Lm (k ax)'Vs(km )

4 rp? ((Do _ (1)17)3 !
e 4(0o —p)®
T'pe wsz(kmax)(DLi )

The wave number Ky ,x is determined here by (3.14) at
a specified value of E;, and coincides near the threshold
for the buildup of such oscillations with kmin (5.4). At
this value of E,, as can be seen from (3.12), we have

W, Bmax) ~ Awylkmax), and with the aid of relation
(1.16) for the amplitude we get

2P & (v 4 ) 2(00— 0p) <1,

()
_ue_ 2 ~ 4 Ys(kmux) msz(kmax) (Y+ + v)

u(;l) Ore(wo— wp)3

2
kma erez

<1

On the other hand, if the detuning exceeds (5.3), the lim-
it of the periodic instability has two minima, one of
which is reached in the region of instability of the
branch w_ at large wave numbers (see (4.25) and (4.23)
above), and the other coincides with (5.4). The thresh-
old intensity E, is then determined by the smallest of
the values (5.4), (4.25), or {4.23).

CONCLUSIONS

As shown above, in a plasma situated in a relatively
weak RF electric field, an instability is produced
against the buildup of oscillations with frequencies
equal to zero and w,, for which the minimal threshold
intensity of the external field (2.6) is determined only
by the frequency of the electron-ion collisions. We note
that the oscillations with frequency w, can be distin-
guished from the external field by the relative phase
shift near the threshold, which equals 7/4.

An instability connected with the growth of almost
periodic oscillations is possible when w, > wp. Here,
as shown above, depending on the collision frequency
and on the frequency deviation, two possibilities arise.
First, under the decay conditions Aw, = wg, the oscilla-
tions with frequencies w and w — w, increase, with
w ~ wy. Second, a situation is possible in which the os-
cillations with frequencies w + w, and w — w, are ex-
cited, and the amplitudes of the last two are approxi-
mately equal, while the frequency w can greatly exceed
the ion-acoustic frequency even at the threshold.

ANDREEV, KIRYI, and SILIN

The here-investigated oscillation buildup in a plas-
ma, can lead to the appearance of a turbulent state, and
consequently to a nonlinear absorption (and reflection)
of the external field. Such phenomena can be observed
at relatively small and easily attainable external micro-
wave field intensities. An experimental investigation of
the reflection from the plasma of electromagnetic waves
with frequency w, ~ wp ~ 2 X 10 sec™ was carried out
in '°7, In a plasma with parameters ne ~ 10" em™,

Te 4 eV, and Tj = 0.1-0.2 eV, a sharp decrease of
the reflection coefficient was observed at E, ~ (0.1-
0.2)(4mneTe).! ' This value is larger by approximately
one order of magnitude than the threshold electric field
intensity given by (4.17), and consequently does not con-
tradict the theory of plasma instability developed in
this article. It is too early, however, to speak of an ac-
tual comparison of theory with experiment.
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