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The effect of van der Waals, short-range, and resonance atom-atom interactions on the polarization 
of a monochromatic wave passing through an active gaseous medium and also on the polarization of 
the radiation from a laser with an isotropic resonator is investigated. The rotation and shape variation 
of the polarization ellipse that occur during passage of the wave are expressed as functions of the 
parameters of the medium. It is shown that, in accordance with experiment, the polarization of the 
laser radiation is circular in the case of atomic transitions involving changes in the total momentum 
1~0and1-1. 

THE polarization of the radiation of a gas laser with 
an isotropic resonator in the absence of an external 
magnetic field has been measured for various atomic 
transitions in a number of experiments. l1- 41 1 > Satisfac­
tory agreement between theory and experiment has been 
established 14 ' 51 for atomic transitions with changes in 
total momentum 

J+i~J(J>O), J -+J(J > 1). (1) 

In the case of atomic transitions 1 ~ 0 and 1 - 1, the 
theory proposed inl4 ' 51 did not give a preference to any 
specific polarization. On the other hand, circular polar­
ization was obtained in an experiment with helium-neon 
and helium-xenon lasers with an isotropic resonator 
(atomic transition 1 - 0). It was indicated inl6 J that the 
source of circular polarization is the differing relaxa­
tion rates of the quadrupole and magnetic momenta of 
the excited level. However, a concrete calculation of the 
relaxation time was not performed. 

The present paper is devoted to a description of the 
mechanism of atomic relaxation and to a concrete calcu­
lation of the necessary parameters, as well as to an 
establishment of the connection between the nature of 
the atomic relaxation and the character of the polariza­
tion of the electromagnetic wave. Since the polarization 
of an electromagnetic wave is characterized by a vector, 
it is necessary to describe the state of the active atoms 
by a density matrix that includes level degeneracy. This 
means that degeneracy must be taken into account also 
in the relaxation collision term of the density matrix 
equation. Different atomic collisions lead to a different 
relaxation of the individual elements of the density ma­
trix, which is reflected in the interaction of the wave 
with the active medium and in the polarization. 

In 17- 91 , where the Lamb theory of the gas laser is 
developed, as well as inl101 , the collision term is intro­
duced without taking account of level degeneracy. Hence 
the attempt to use the Lamb theory to explain the polar­
ization of radiation from the atomic transitions 1 ~ 0 
and 1 - 1 in an isotropic resonatorl 4 ' 51 did not yield the 
desired result. 

Below, the collision term is obtained on the basis of 
the quantum-mechanical theory of atomic collisions, 
with level degeneracy taken into account. In doing this, 

I) There are references to previous work in the cited papers. 

the van der Waals and short- range interactions of the 
active atoms with each other and with impurity atoms 
are included. In addition, an important role can be 
played by the resonant (dipole-dipole) interaction be­
tween identical atoms, one of which with total momentum 
J = 1 is in the excited, and the other, in the ground 
state. lll- 151 These interactions lead to a rather cumber­
some collision term, which includes a characteristic 
component with a transposed density matrix. The latter 
makes the controlling contribution to the establishment 
the particular polarization of the electromagnetic wave 
resonant with the atomic transitions 1 ~ 0 and 1 - 1. 
In the absence of degeneracy, the component with the 
transposed density matrix disappears. 

The part of the collision term due to resonant colli­
sions is calculated completely and represented in a form 
convenient for application. The tensor and matrix struc­
ture of the collision term associated with the van der 
Waals and short-range interactions, as well as the signs 
of two of its components, are established on the basis 
of the general theorem on the unitarity of the S-matrix. 
In order to determine the sign of the coefficient Gb (20) 
irrespective of the nature of the atomic collisions, we 
examine the different regions where perturbation theory 
of the adiabatic approximation is valid. The result is 
confirmed by an exact calculation in the case of van der 
Waals collision of neon with helium. 

Introduction of this collision term into the usual laser 
equationsl9 ' 101 leads to circular polarization for all 
three atomic transitions 1 - 0, 0 - 1, and 1 - 1, if the 
van der Waals and short- range interactions overwhelm 
the resonance. In the opposite situation, the character of 
the polarization of the laser radiation can vary as a 
function of the pressure and temperature of the gas. 
Thus, an investigation of the polarization effects of 
laser radiation assists the establishment of the nature 
of the atomic collisions. 

1. POLARIZATION OF THE WAVE IN AN ACTIVE 
MEDIUM 

First we consider the passage of the monochromatic 
wave 
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through an active medium in which the polarization cur­
rent 

j = (c I 4n) (aA + bA2A") (4) 

is induced. Here the coefficients a and b depend on field 
and in an isotropic medium are defined uniquely by the 
expansion (4). In the first nonzero approximation of per­
turbation theory, the coefficient b is independent of field. 
The coefficient a, on the other hand, in the same 
approximation contains a component that is proportional 
to IAI2 • 

The function R, which varies slowly compared to 
exp(iwz/c), is the solution of the equation 

i~ dR +aR+ bR2R' = 0, 
7. dz 

(5) 

which is obtained from d' Alambert' s equation after 
neglecting the second derivative of the slow function R 
with respect to z. As the wave propagates, the ortho­
gonal unit vectors h and 12 can rotate about the wave 
vector k. Clockwise rotation with respect to the direc­
tion of k is symbolized by il(z). From (5) it is easy to 
obtain 

<I>(z) = 7. ~(a'+ b'JRJ 2)dz + 11>(0), 

Q(z) = (7./2)sin[2q:(z)] s'b'JRJ 2dz + Q(O), 

(6) 

(7) 

where l\. = c/w, and the angle f/l(z) is defined as follows: 

tg2q:(z) = tg[2cp(O)]·exp (X S b"JRJ 2 dz ), (8) 
0 

-n/4.;;; cp(z).;;; nl4. 
Here 4>(0), il(O), and f/1(0) are the values of the corre­
sponding functions at the point z = 0 on the boundary of 
the medium. 

The function IRI 2 is found from the simultaneous solu­
tion of the equations 

_!_ !l_l!l\ [ a"+~ b"(i +cos 4rp) IRI•] JRI" = 0, 
7. dz 2 

1 d(cos "'") • 
- "'~' +b"JRJ•(1-cos2 4cp)=O 

7. dz 
with given boundary conditions. The single and double 
primes represent the real and imaginary parts of the 
coefficients, respectively. By means of (8), the last two 
equations may be brought together into one integra­
differential equation for the function IRI2 ; this, however, 
is less convenient. 

According to (8), linear polarization is stable in the 
case b" < 0 and circular polarization is stable for 
b" > 0. If an elliptically polarized wave is initially 
incident on the active medium, then as it propagates the 
axes of the polarization ellipse are rotated through the 
angle n (z), and the ellipse itself becomes a circle when 
b" > 0 and flattens out when bN < 0. The direction of 
rotation of the axes as a function of z depends on the 
sign of the real part of b, which is proportional to the 
difference w - wo, where w0 is the frequency of the 
atomic transition with collisional level shift taken into 
account. Hence, as the field frequency changes, the 

· direction of rotation reverses when w passes through 
resonance. Observation of this rotation permits deter­
mination of the collisional shift.2 > 

2> An experimental investigation of this rotation in a non-absorbing 
liquid with induced anisotropy has been carried out in [ 16• 17]. 

The rotation of the polarization ellipse in a resonant 
medium is different from the usual optical activity and 
the Faraday effect. For example, in the medium con­
sidered, linear polarization is stable when b" < 0, and 
the plane of polarization of the wave is not rotated. If 
b" > 0, the linearly polarized wave is unstable, and as 
it propagates it is transformed into ellipticaliy polar­
ized light with a rotating polarization ellipse. The 
elliptically polarized wave, in turn, becomes circular, 
which is then stable. 

Inside an operating laser the picture is complicated 
by the fact that besides the forward wave 

A+= R+ exp [t(kz- wt)] 

there is a backward wave 

A_= R- exp [ -i(kz + wt)]. 

Each of the functions A+ and A_ satisfies the D'alambert 
equation with its own polarization current, j+ and j_, 
respectively; for example, 

i+ = (c I 4n) [a+A+ + b~+2A+' + c+(A.tA-')A- + d+(A+A-)A-'], (9) 

where the field-dependent coefficients have different 
values for the forward and backward waves. The cur­
rent j_ is the same form as (9) with the replacement 
+---and--+. 

In order to find the frequency, polarization, and in­
tensity of the field in the steady state, we need to im­
pose boundary conditions on the mirror reflections. If 
the latter are anisotropic, then the solution of the prob­
lem depends on the structure of the specific resonator. 
Hence, in what follows we shall limit ourselves to an 
isotropic resonator with plane-parallel mirrors. In this 
case the polarization is completely determined by the 
physical processes taking place inside the laser. The 
boundary conditions of an isotropic resonator are most 
simple: 

~(0) = )'7:;-R-(O)ei~,, IL(L) = -y;;R+(L)ei«>,, (10) 

where r 1 , r 2 , 4> 1 , and 4>2 are the reflection coefficients 
and phase losses at the boundaries of a resonator of 
length L. The amplitude of the forward and backward 
waves has the form (3) with indexes + and -, respec­
tively. 

For simplicity, we shall set the frequency w of the 
standing wave equal to the frequency w0 of the atomic 
transition. As will be seen below, all the coefficients of 
the polarization current (9) become purely imaginary 
and identical for the forward and backward waves: 

a+= a_== ia", (11) 

b+ = c+ = d+ = b_ = c_ = tL""" ib", (12) 

where a" and b" in the first nonzero approximation are 
the same as in the case of a single traveling wave (2). 
The assumption we have made w = wo is not basic, since 
the imaginary parts of the coefficients of (9) are smooth 
functions of w - w0 with constant sign. 

As is seen from (6) and (7) rotation of the axes of 
the polarization ellipse is absent, and the phases of the 
forward (4>.) and backward (4>_) waves are constant. The 
polarization of the waves is described by the equations 

2 dcp+ = b" sin 2cp+( 1~12 cos 2cp++ IILI 2 cos 2q:-), 
7. dz 

(13) 
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-~ d<p-= b"sin2q>-{IR-I 2 cos2tr-+1Rt-l2cos2q:+), (14) 
7. dz 

-n I 4 ..:;; q>+ ..:;; n I 4, -n I 4 ..:;; !p- ..:;; n /4. 

The boundary conditions (10} and the solution to Eqs. 
(13) and (14) are consistent only in two cases 

!p+(z) ""'q>-(L -z) ""'0, !p+(z) ""'q>-(L- z) ""' ±n I 4. 

Consequently, at resonance w = w0 steady state is es­
tablished with linear or circular polarization. Investi­
gation of the solution of Eqs. (13) and (14) for stability 
shows that when b" < 0 linear, and when b" > 0 circu­
lar, polarization is stable. When w >" wo, the situation is 
more complex, but the conclusion is the same. 

2. EQUATIONS FOR A LASER ON THE ATOMIC TRAN­
SITION 1-0 

The polarization current (9} 

i+ + i-""' fdv(I+ + L), I++ L =I 

will be sought for single-mode operation, in which the 
vector potential A = A+ + A_ and the current I are pro­
portional to the factor 

The basic equations for the laser may be written in 
the form31 

( i ~t+ivV-wo+i~)la.= !vc7.(pa.p-p111a.p)Ap, (15) 

0 1 b 
atpa.p = 3 W2nj6.,p- '\'2Pa.P- 6Sa.p- 6bSap-

- i_!_(la.Ap'- Aa.lp'), (16) 
c 

;PI= Wtnf-'\'tPt +ypuu -1- i.!_(luAa'- Aala'). (17} 
vt C 

The quantities Ia and Paf3 appearing in these equations 
are connected with the density matrix RJ..L 0 which des­
cribes the transitions between levels and the density 
matrix in the upper degenerate level p J..L J..L' in the follow­
ing way: 

I a=- iw0 d~~R"", Pap= 3d~~P~~·da·ol I d~ 11 , (18) 

where d~0 and d~ are the dipole and reduced dipole mo­
ments of the transition. The transformation (18) facili­
tates the transition from the matrix to the tensor 
representation, which is more convenient. 

The other quantities appearing in (15)- (17) have the 
following significance: wl and w2 are the probabilities 
of excitation per unit time of the lower and upper levels 
as a result of pumping, n is the density of active atoms 
in the ground state, y is the probability of a radiative 
transition between the upper and lower levels, connected 
with the reduced dipole moment by the relation 
y = 4ld~ 12 /9~ 3 • The term ivV takes account of the 
Doppler change in frequency due to motion of an atom 
with velocity v. The quantity r is 

r ='\'t +Y2 +II+ lib, 

where Y1 and y 2 are the widths of the lower and upper 
levels due to both radiative transitions and gas-kinetic 
inelastic collisions, o is the broadening of the upper 

3> Repeated vector and tensor subscripts imply summation every­
where. The system of units in which h = I and c is the velocity of light 
in vacuum is used. 

level due to resonant collisions, and ob is the broaden­
ing of the lower level due to van der Waals and short­
range forces. 

The quantities oSa{3 and obS~f3 represent collision 
integrals. The expressions for them take into account 
the collision of excited atoms only with unexcited ones, 
since the concentration of excited atoms is low. We also 
neglect the change of velocity of the atoms upon colli­
sion. This change leads to a relaxation of the atomic 
distribution in velocity space, which, evidently, signifi­
cantly influences the shape of the Lamb dip. [lDl How­
ever, in the polarization problem, the deciding circum­
stance is the distribution of the atoms over the sub­
levels, i.e., the tensor structure of the density matrix. 
The change in the tensor structure of the density matrix 
as a result of collisions is determined by the atomic 
transitions between sublevels, for the calculation of 
which small changes in velocity due to collision are not 
important. With these assumptions the collision integ­
rals may be written in the following general form: 

6Sa.p =II [IPpaalla.p +Qpap + Gppa.+ f ~ dv(ppaa6a.p + qpap + gppa) J , 
(19) 

6bSa~ = 6b(Pbpaa6a.p + Qbpa.p + GbPPa.). (20) 

Here f is a function of the Maxwell distribution of active 
atoms in the ground state. The dependence on density 
and temperature is contained in the parameters o and 
ob, and the coefficients P, Pb, Q, etc., are dimension­
less numerical factors. 

For resonant neon-neon collisions the parameter 

(21) 

contains the probability y 02 of spontaneous emission 
with transition of a neon atom from an excited state with 
momentum J = 1 to the ground state, w02 the frequency 
of this atomic transition, and X. 02 = c/w 02 • The coeffi­
cients of the resonant collision term were calculated on 
an electronic computer and are 

P = -0.064, Q = 0.660, G = 0.013, 

p = -0.151, q = 0.051, g = -0.080. 
(22) 

The operator V a{3 of the energy of the van der Waals 
interaction of excited neon (energy Ea1 and total momen­
tum J = 1) with helium in the ground state with energy 
Ebo has the form 

I n>! I nO I 
Va.p= ~ ~f a., 2 (r"6a.p+3ra.rp) 

, 9r" L Eat +Ebo-Eno-E,.,t 
n, n 

1 ld.~1 12(5r"6a.p-3rarp) 1 ld:,2 12 (19r26a.p+3rarp) l 
)( -1-

3 Eat + Ebo- Ent- En•t 10 Eat+ Ebo- En2- En•t J 

where EnJ and d~ are the energy and reduced dipole 

moment of neon, with the index n' marking the analogous 
quantities for helium, and r is the distance between the 
neon and helium. The summation is carried over all 
intermediate states of neon and helium, including the 
continuous spectrum, with the term with zero denomina­
tor left out. If among the atomic transitions of neon 
EnJ - Ea1 and helium En' 1 - Eb~ there are any which 
are quasi-resonant, then in the first nonzero approxi­
mation in V a{3 it is possible to retain only one quasi­
resonant term. Then in the case of van der Waals neon­
helium collisions we have 
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( 2T )8/iO I 9 Yoi Y02 ( cz )"] zt• 
lib- 3 99no - l. ------ ---

- · Mo 16 lwot- Wozl WotWoz ' 

Pb = -0.406, Qb = 1.318, Gb = -0.09<1. 

(23) 

(24) 

Here y o1 is the probability of spontaneous emission of 
helium which is found in a state with atomic transition 
frequency Wo1 closest to w 02 ; Tis the temperature; no 
and M0 are the density and mass of the helium. 

The coefficients of the collision term (20) were not 
calculated for the general case of van der Waals and 
short-range interactions. However, they satisfy certain 
general relations coming out of the conservation of num­
ber of particles and Boltzmann's H-theorem: 

3Pb + Qb + Gb = 0, 

llb > 0, pb < 0, Qb > 0, I Gb I < Qb. 
(25) 

3. POLAR!ZATION OF THE RADIATION OF A LASER 
ON THE ATOMIC TRANSITION 1 - 0 

We solve Eqs. (15)- (17) by the method of successive 
approximations, expanding in series with respect to the 
parameter 

ciAI 2 /hwi...;::: 1. (26) 

In the first nonzero approximation for the traveling 
monochromatic wave (2) we obtain the following expres­
sion for the coefficient b of the polarization current (4): 

-b _ 9n nX2y• [(..!_ _ ___!_) yWz _ W, ]{ (IIG + llbGb) (F1 -F2) 

- 4 3y Vi Yz Vi (llQ+IIbQb+Y•J2-(IlG+IIbGb) 2 

>< [O(G+g)+6bGb~Fz ~ 
[ll(Q+q)+llbQb+vil•-(ll(G+g)+llbGb~,' (27) 

F _ s, rj(v)dv 
I- ( 8- kv + ir/2)[(8- kv)2 + r 2/4j 0 

F, _ s f(v)dv s rt(v')dv' 
- 8-kv+ir/2 (8-kv')2+f2/4 ' 

f(v) = (1/l'nu) exp (-v2 /u•), 

8 = w - wo, u2 = 2T I M, 
where M is the mass of an active atom. 

We see that the real part of the coefficient b is pro­
portional tow- wo, while its imaginary part is of con­
stant sign in the resonance region w - w0• The coeffi­
cients of (9) have analogous properties. 

In order to determine the polarization of the laser 
radiation, it is sufficient to find the coefficients of (9) at 
resonance. In the considered approximation (26) we ob­
tain the equalities (11) and (12), in which b" is the 
imaginary part of the coefficient (27) for w = w0 • To 
finally establish the sign of b" we clarify the signs of 
the separate parts of (27). The expression in the ex­
treme left-hand brackets of (27) is positive, which is a 
condition for laser action. The denominators in the 
curly brackets of (27) are also positive, which follows 
from (22) and (25). 

In an experimentl41 on a helium-neon laser with 
wavelength A = 1.523 J.L, the parameters appearing in 
(21) and (23) had the following values: 

llooo1 = 19.82 eV, hooc~ = 19.69 eV, 
n = 7.1·10'5 cm-3 , ku ~ 5·10" sec-\ Y01 I Yo2 ~ 160. 

For these values we obtain o/ob R< 1/30. The smallness 
of this ratio follows also from a comparison of the 
theoretical value of t5 with the experimental value of 
t5 + t5 b obtained from the dependence of the Lamb dip on 
gas density. 

Thus, under the experimental conditions of[4J reson­
ant collisions were unimportant. In this case Eq. (27) 
simplifies: 

b- 9nnX2y• [(___!_ _ ___!_) yWz _ W,] GbFt/Ob 
- 4 3v 'Yt Vz Vi (Qb + vz/llb) 2 - Gb2 • ( 28) 

From Eq. (28) it follows that the sign of the imaginary 
part of b is determined by the sign of Gt>· 

Experimental results showll-4J that ~ < 0. The 
following three arguments support this assignment. 

1. The coefficient ~ determines the difference in 
the rate of relaxation of symmetric and antisymmetric 
parts of the density matrix p a(3· It is a natural assump­
tion that the nondiagonal elements of the density matrix 
do not decay more slowly than the diagonal elements, 
which means that Gt> < 0. 

2. The coefficient ~ is easily calculated indepen­
dently of the form of the interaction between atoms in 
those regions of the range parameters of collisions 
where the perturbation theory or the adiabatic approxi­
mation is valid. In this way we obtain the very same re­
sult Gt> < 0. 

3. A negative sign for Gb is confirmed by direct cal­
culations of (24) in the special case of quasi-resonant 
collisions of neon and helium carried out without the 
use of perturbation theory or the adiabatic approxima­
tion. 

These arguments lead us to expect that negativity of 
Gb is a general property of non-resonant atom-atom 
collisions~ Consequently for a gas laser on the atomic 
transition Jz = 1 - J1 = O, circular polarization (b" > 0) 
is stable. 

Another limiting case is of interest: when the van der 
Waals and short-range interactions are small in com­
parison with resonance. Setting ob = 0 in (27), we find 
that there is a region of change of pressure and tem­
perature where either circular (b" > 0) or linear 
(b" < 0) polarization is stable. We can indicate those 
values of the parameters for which b" = 0 and there 
occurs a transition from one polarization to the other. 
These are found from the solution of the algebraic equa­
tion 

!!!!__ = ytr.( 1 _ ..!_ _ ( 1+ g/G)[(Q + vz/11)2- G2]) 
r :rr (Q+q+yz/11)2-(G+g)z • (29) 

where ku is the Doppler width of the level. In particular, 
for Yz/t5 « 1, we obtain ku/r = (61r- 1)/1T112 • 

If the magnitude of ku/r is greater than the numer­
ical value of (29), then bN < 0. In the opposite case, we 
have b" > 0. 

4. LASERS ON THE ATOMIC TRANSITIONS 0 - 1 AND 
1-1 

In the case of a laser on the atomic transition J 2 = 0 
- J 1 = 1, the discussion is analogous, and the conclu­
sion about the polarization of the electromagnetic wave 
is the same as before. The coefficient b in a weak field 
(26) is obtained from (27) by changing y 1 to 9y 1 in the 
brackets on the extreme left. 

The transition J 2 = 1- J1 = 1 is noteworthy because 
the matrix structure of the collision term is important 
for both the upper and lower working levels. The colli­
sion term for the upper level is written 

O,S~w + lltbS~w. 
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Sow= Pp~"w'll~w + Qp~w + GU ~';f,,P~"w"U ~~~w 
X d dv(pp~"w'll~w+qPw+cU~~,P~"w"U"~~w), (30) 

S b p Q <>P <>P 
""' = bP~"""ll~w + bP~w + GbU l'W'Pl'''o'''U ~"W• 

ap A A 

U~w= llapll"'w-(lplahw. 

(31) 

where Ja is the total momentum operator, and all the 
coefficients have been defined above. The parameters 
o 1 and o lb have the form (21) and (23) with account taken 
of the difference in the radiation widths of the levels. 

The matrices Smm' and S~m' of the collision term 
in the lower level 

differ from (30) and (31) by the index transformation 
m- IJ., m'- ll'· 

The desired coefficient b is obtained from (27) by the 
replacement in the brackets on the extreme left y 1 

- 3y 1> with simultaneous division of the entire expres­
sion by 4. In the curly brackets we must then set 

II = ll;, lib = ll;b, r = YI + Y2 + ll1 + 1'12 + ll1b + ~2b, 
and the expression obtained is summed over i, with 
i = 1, 2. 

Since b has the identical structure, the polarization 
of the radiation of lasers on all three atomic transitions 

/2 = 1-+JI = 0, /2 = 0-+JI = 1, /2 = 1-+h = 1 

depends in the same way on the experimental conditions. 
In conclusion, we remark that in the cited papersl4• 51 

the polarization of laser radiation on the transitions (1) 
was explained without taking the matrix structure of the 
collision term into account. Hence, application of the 
general formula oflsl to the atomic transitions 1 = 0 
and 1 - 1 gave exactly zero, leaving the question of 
polarization unresolved. Taking level degeneracy into 
account in writing down the collision term adds to the 
general formula oflsJ an additional term which, for 
typical values of the experimental parameters, coin­
cides in order of magnitude with the principal term. 
This means that in the case of atomic transitions with 

large momenta (1), the polarization of the laser radia­
tion can become sensitive to atomic collisions. 

The authors are grateful to V. M. Ermachenko for 
discussions and for the computer calculation of the co­
efficients in the collision term. 
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