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We find the density of states and the magnetic field dependence of the ordering parameter ~ for thin 
films in the regions eHZd » 1 and eHZd « 1 (d is the thickness of the film and l the electron mean 
free path). We find the magnetic moment and the parameter ~ in any field for a sphere with diffuse 
reflection from the walls. 

THE properties of small size superconductors depend 
in an essential way upon the mean free path. In the 
"very dirty" limit l « d (d is the characteristic size of 
the superconductor) the magnetic field dependence of the 
characteristics of the superconductor are for an appro­
priate choice of gauge for the vector potential deter­
mined by the expression ((eA)2 ) Ttr· [ll However, a much 
more complicated situation occurs in the region l » d. 
Thompson [21 considered thin films in a magnetic field 
satisfying the condition eHZd » 1 using the Born approx­
imation to take scattering by impurities into account. He 
found an equation for the ordering parameter ~ arid 
showed that there is a gap in the excitation spectrum. 
We shall show in the following that the conclusion about 
the gap is valid only in zeroth approximation in the 
small parameter d/~0 • Taking terms of order d/~ 0 and 
d/l into account in the Green function leads to the fact 
that the density of states in the field range eHZd » 1 is 
always finite and non-zero. Taking the impurity scat­
tering amplitude exactly into account leads for l ? ~0 to 
the appearance in the density of states to an additional 
peak which is connected with the occurrence of ''bound 
pair states" at impurities in a strong magnetic field. A 
similar phenomenon occurs in superconductors with 
paramagnetic impurities. [aJ 

We consider also the case of a pure superconducting 
sphere in a magnetic field. We find expressions for ~ 
and for the magnetic moment in an arbitrary field. The 
expression for the critical field is not the same as the 
one found in [41 • This is connected with the fact that the 
law for the angular distribution of trajectories was not 
taken into account in the evaluation of averages in [41 • 

1. THIN FILM IN A STRONG MAGNETIC FIELD 
(eH~od » 1, eHld » 1) 

The set of equations for the Green function 

Gp(r) = }:__' Gp(r, 6)d6 
Jt" 

has for any form of impurity scattering the form [sJ 

( v ~ )cp(r) + Gp(r)~- ~Gp(r~= 0, 

;;, = ro't",- ie(vA)'t",- i,i + in~pp (r), 

itt 
~PI'·(r) = XPP'- T ~ XPP,GP,(r) ~p,p•(r)dQp, 

A ( 0 ~) 
~ = -~· 0 , Gp•(•·) = 1, Tr Gp (r) = 0, 

(1) 

where n is the impurity concentration, J. = mP0 /21T2 the 
density of states at the Fermi surface, v the electron 
velocity on the Fermi surface, while Xpp' is connected 
with the scattering amplitude through the relation 

We shall henceforth assume for the sake of simplicity 
that the impurity scattering is isotropic. In that case 
the total scattering cross-section a can be expressed 
in terms of x through the formula 

a= m2;.:2 I n[1 + (nttx)']. 

We choose our coordinate system in such a way that the 
y axis is at right angles to the film while at the bounda­
ries of the film y = ±d/2, while the x axis is along the 
magnetic field H. The vector potential A can then be 
chosen such that it is parallel to the z axis and 

A,= Yy. (2) 

In this gauge for the vector potential the order param­
eter ~ is real and depends on y only. We look for the 
Green function Gp(r) in the form 

1 1 
Gp(r) = ft't", +--= f,('t"y + hx)+--= fa('t"y- i't"x). (3) y2 y2 

The functions fi satisfy the condition 

where 
/;(v, y) == /;(8, q>, y) = f,(n- 8, n + ljl, -y), 

v = v {sin 8 cos qJ, sin 8 sin ljl, cos 8}. 

We shall therefore restrict our considerations in the 
following to only the angular interval 0 < cp < 1r. 

(4) 

Substituting Eq. (3) for the Green function Gp(r) into 
the Eqs. (1) we get a set of equations for the functions fi 
which we can write in the form of a formal solution: 

,., 
1 I -- '\ \ (y,) = B, + vx.) {V 2 ~ (y) (f. (y)- /a (y)) +a (y) [/2(y) ( J/3 (v., y) dQ,,j 

" 
y, 

/2 (y,) =e-W(v,) { B2 + ~x ~ eW(!i) [f2 ~ (y) f. (y) 
-dh 

X a (y) / 1 (y) (~/2 (v1 , y) dQ,-,)] dy}, 

dl2 

/a(Yt) = eW(y,) {Ba ---1- v~ ~ e-W(u) [ y'2 ~ (y) ft(y) 
... 

(5) 
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where 

-1- a (y) /1 (y) (~ /3 (vt. y) dQv,)] dy} , 

0 < w, 0 < 'P < Jt, 

tlnx• ( tl•x• [(I ) 2 
a (y) = ----;r- \1 + ----rij ~/dv, y) dQv 

X 2(~/o(v, y)dQv)(~/3 (v, y)dQv)]} - 1
, 

z(y)= y2(~ + i) (-;;-ieHycose)(\ eH~ose If' 
x exrf- i: (2--signcose--signsin<p)], (6) 

x ~-sin 8 sin q>, IV (y) = z'~y) --'- ujx ~a (y1) (~/1 (v, y1) dQv) dy1· 
0 

We have shown [eJ that for diffuse scattering of the 
electrons one can write the boundary condition for the 
set (1) in the form 

Gp(r) 1 = iCI(n1T) +noT+ C2 (n2T), 

Po(C, + C,) vn>o = __!__ ~ (C1 + C2 ) (pn) dQp = 0, 
3l pn<O 

Po(C,-C,)pn<o=__!__ ~ (C,-C2)(pn)dQp=0, (7) 
rt pn>O 

where n is the inward normal to the surface while the 
vectors n0, n~> and n2 depend only on the coordinate of 
the point on the surface and satisfy the conditions 

llillh = bik, i = 0. 1. 2, 

(8) 

In the chosen gauge of the vector potential A, the 
matrix is n1 • T = Tx while we can choose the matrices 
n0 • T and n2 • T in the form 

noT= m:, -j- ~Ty, n2T = -B-r, -j- aTy, 

where a and {3 are constants, 

a'+~·= 1. 

(9) 

(10} 

It follows from Eqs. (3), (7), and (9) that the boundary 
condition for the functions fi {i = 1, 2, 3) can be written 
in the form 

/;(- d/2) = Qi + R, [ ~{!1 (- d/2)- / 1 (d/2)) 

1-a 1-j-a J X--_-(!,(- d/2)- f,(d/2))- -_-(/3(- d/2)- f,(d/2)) 
y2 y2 

Q,=a, 

0 < cp< Jt, 

~ 
Q, = Q3 =--=· 

y2 

~ 1- a 
R1 = -, R, = --_-, 

2 2f2 

(11) 

1-j-a 
R3=-----· 

2y2 

S rkp f de sin' 8 sin q: U, (- d/2)- Is(- d/2)] = 0. (12) 
0 0 

We now consider the mean free path l ~ (~od)1 12 • In 
that case there exists a large range of magnetic fields 
for which 

{13) 
When {13) is valid we can find the solution of the set 

{5) with boundary condition {11) by simple iteration. We 
find from the set {5) an,d the boundary condition {11) up 
to terms d/~ 0, d/l the coefficients Bi: 

Bi = aoli -+- fi + Si [(1 +a) et!• + (1-- a) e-ti•rl, 

S1=~2 [e12 -e-tf•], s.=~·VZez', S3=~·V'2e-z', (14) 

where Oij is the Kronecker symbol, Z1 = 1/ 4 z 2(- d/2) 
+ t/2, 

ap d!o 
ft =- 2UX r b(y)[eiT(Y)-j-e-iT(Y)jdy, 

-d/2 

t 1 d/2 

I',exp( -Z,-j--)=--- fb(y)[(1-a) 2 exp(iT(y)) 
2 2 f'2vx -d/2 

- ~· exp(- iT(y))] dy, (15) 

( f) 1 d/o 
f3exp Z,-- =---} b(y)[(1-a-)'exp(-iT(y)) 

2 2 y2vx -d12 

- ~'exp(iT(y))]dy, 

cos 8 ( d' ) n~tlnx28 (Y) 
T(Y)=eH--;- 4-y•, b(y)=~(Y)+ 1-j-(m~x)'[a'+~'8'(y)]; 

8(y) = exp [ -el!(d' /4- y2 ) ]. (16} 

Equation (14} for the coefficients Bi> together with 
condition (12}, enables us to find the constants a and {3 
up to terms of order d/~ 0 and d/l. This accuracy is re­
quired to find the density of states. However, to find an 
expression for .<l(y) it is sufficient to restrict ourselves 
to the zeroth approximation. In that case we find from 
{12) and (14) 

a ~2 ntlnx' (1-2 1- 8 2 (y) 
d J ~(Y)8(y)dy=~W -j-a~d- J 1 -j-( {i )'( '-J-~202 ( )) dy. 

-d/2 -d/2 n X a Y 
(17) 

The ordering parameter can be expressed in terms of 
the Green function Gp(r) through the formula 

~(Y)=- ilf.lmP•r~sr(o 1)r Gp(r)dQp 
8n2 0 0 J 

w 

= lf·lmpo T~ ~ dq;f d()sin()j,(8,q;,y). (18) 
2 f2n2 w o n 

Substituting here the expression for f2 from Eqs. (5) and 
(14) we get in zeroth approximation in d/~ 0, d/l 

~(Y}=~t8(y), L'lt= l/,lmpo T~~(w). {19) 
2n {!) 

Substituting this expression into Eq. (17) we find 

ntlnx' d/2 1- 0 2 (y) 
a~,<ll- Bw = a~-d-l/21 + (ntlx)2(a2 +J'8'(y)]dy, (20} 

where <I> = <1>(1, 3/ 2 , -%eHd2 } is the confluent hypergeo­
metric function while the quantity 1J (y) was defined in 
{16}. From {20} we get in the Born approximation 

which is the same as the corresponding expression 
from [2l. 

{21} 

The density of states can be expressed in terms of 
the Green function through the formula 

1 i dl• 
p(w)=-p0 lm- ~ dy~ dQpSp-rP-;w, (22} 

2 4nd -d/2 

where p 0 is the density of states in the normal metal and 
G-iw the analytical continuation of the function Gw with 
values w = 7TT(2n + 1} (n ~ 0} onto the imaginary axis. In 
zeroth approximation we get from Eqs. (14} and (22) 

p(w) = p0 lm [ia(-iw)]. (23) 



INFLUENCE OF A STRONG MAGNETIC FIELD 491 

It follows from Eqs. (21) and (23) that there is a gap in 
the spectrum in the Born approximation cal 

[ ( 1-1!1 )'I• ]'I• wo= (~1111)'1.- ~ . (24) 

Taking terms of order d/~0 and djl into account in 
Eq. (22) leads to the appearance of a density of states 
for w < w0 • Up to terms in d/~0, djl we find from Eqs. 
(3), (14), and (22) 

. " " 
p(w) = po Im__:_) dcr) d6 sin aB,(- iw ). (25) 

211 o ·o 

Substituting the expression for B1 from (14) into Eq. (25) 
and retaining terms of order d/~0, djl, we get 

1 

p(w) =Po Im{ ia + if}2 S d.x[a + cth(fo/2)]-• }, (26) 
0 

where w 
_ 2i 2i [ wd ianmzx• 1 dy ] 
to= -~x = --;- :z;-+--rr- Jo 1 +(m~x) 2 (a2 + f} 2.!f2 (y)) 

a= a(-iw), p = f}(-iw). (27) 

Integrating over x in Eq. (26) we get 

p (w) = po Im {ia( -fw) +iTo}, (28) 

where 

[ 1 , ( 1 i 1 - a)] To=x 111}2 --w ---In-- , 
n 2 2n 1+a 

(29) 

while 1/J'(x) is the derivative of the psi-function. 
We now find an expression for a(-iw) up to terms in 

d/~0 and djl. Using the substitution w - -iw we get 
from Eqs. (5), (12), (14), and (19) 

vp S x[ a+ cth£]-' dx- ~,Ill 
d •. 2 

-- n'(}nx• '(" . .!f2 (Y) d 
-af} d ~12 1+(nttx) 2(a2 +f}2.!f2 (Y)+2aTo) y, 

where 

(30) 

2i 2i [ wd inm"JC" 
t=--D=-- -+--

x X V 1t 

rl" a+To d ] 
X Jo 1 + (11i}X)2(a2 + p2.!f!(y) + 2aTo) y • 

Integrating over x in Eq. (30), we get 

(31) 

The last term in Eq. (31) is written down with logarith­
mic accuracy. When w < w0 {3 is real in the zeroth ap­
proximation and a purely imaginary. It therefore does 
not contribute to the density of states but turns out to 
be important near w0 • 

Equations (28), (29), and (31) determine completely 
the density of states for any w and fields satisfying the 
conditions eHld » 1, eH~0d » 1. However, the general 
expression for p(w) is rather complicated. We consider 
therefore in detail some particular cases. 

A. Pure film, l = oo. We have 

Q) ( d )''• p(oo)=po[w•-(~tlll) 2]'1•, w-~,<1>>.1,111 ~ • (32) 

In the region where .:l14> » I w- .:l14> I the constant I a I 
» 1 and we get from (31) the following equation for a: 

a3(wd)[n-~1n 1 ]+a2~11!1-w+__!_=0. (33) 
v 2 -a2 (rod/v) 2 w 2 

The density of states is in that case given by Eq. (23). 
The maximum value of p is with logarithmic accuracy 
reached in the point w = .:l 14> and in that point 

p = Po~(~;d f[ lnG~,;d f'f''. (34) 

In the range .:l 14> - w » .:l 14>(d/~ 11) 1 /2 we find for the den-
sity of states ' 

( rod)[ n(~tll>)~ 
P( w) =Po ---;; [(~tll>)2- ro•p 

1 ' ) ro •1•" (xo) ] , -;:;-w (xo 2n2((~t<I>)"-w']'lo or 

where 
(35) 

When w « .:l 14> we find from Eq. (34)csJ 

( rod)[ n 21 w ] p(w)=po- -+--~(3) . 
v 2 n2 ~111> 

B. Born approximation. The expression obtained for 
p(w) at arbitrary w is awkward and we shall not give it. 
In the simplest case of small w we find 

n rod ( 1 )-2 
p(w)= po--11>' 111---- , 

2 v 1 + 2-r~. <I>> 1 
1 +2-r~, 

C. Non-Born approximation neglecting terms of order 
d/~ 0 and djl. Taking electron-impurity scattering in a 
magnetic field exactly into account leads to the appear­
ance of an additional peak in the density of states for w 
< w0 • Neglecting terms of order d/~ 0 and djl, the den­
sity of states is given by Eq. (23) and a (-iw) is deter­
mined by Eq. (20) with the substitution w - -iw. When 
l » ~ 0 one can easily find the real part of a and in the 
frequency range 

( 1 +(rr-&x) 2 exp(- eHd2/2) )'I• 00 <~II> 
~,II> 1 + (n'(}x)' < 1 

we get for the density of states 

- nw 1 + (nttx) 2 r 1 
p(w)-Po-tteHd2 w2 [1 +(n-&)() 2]-(~tll>)'. 

2 ro'[1 +(nttx)2]-(~111>)2]-'J. 
+~-In . 

eHd2 (rrO~)'(~tll>) 2 

Decreasing the mean free path leads to a smearing-out 
of the peak. 

2. THIN FILM IN A MAGNETIC FIELD 
(~~1 « eHd « z-1) 

We now consider the range of magnetic fields 

so-1 «:; eHd«:; l-1• (36) 

When (36) is valid the Gree function Gp(r) changes little 
over the thickness of the film and in that case the as­
sumption of an isotropic character of the impurity scat­
tering does not lead to an essential simplification of the 
problem. In the following we shall therefore at once con­
sider the case of an arbitrary impurity scattering am-
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plitude. We look for the Green function in the form 

Gp (r) = (noT) + i(n1T) (Bz- Ba) - (n2T) (Bz + B,) + B, (noT), (37) 

where the vectors ni are defined by Eqs. (8), (9), and 
(10). Substituting Eq. (37) into the set (1) we get a set 
of equations for the coefficients Bi: 

( ,. ,:,. ) B, = 2ie~ (\·A) (B2 - B,) + nv r(B2 + B 3 ) ~ <Jpp, (B2 (p1 ) 

- B, (p1)) i/Qp,- (B2 -- B 3 ) ~ <Jpp, (B2 (p1 ) + B, (p1)) dQp,J, 

(v :,.)B• = nv(_aB2 --- ~<Jpp,B2 (p 1 )r/Q•,) -'- 2B2 [em-~ ~tJ. (38) 

-iae(Y.\)]+2[u.tJ. -~co-' ieB(d.)], 

- nv ( aB"- ~ CJpp, B3 (p,) rl\lp.) -~ '2B3 [a co+- Btl. 

- i"e \ ,A)j- J [utJ.- B-u + 1eB (vA)]. 

We choose our coordinate system and the gauge of the 
vector potential to be the same as in Sec. 1. The bound­
ary conditions (8) can then be written in the form 

Br(±d/2) = 0. B 2 (x > 0, d/2) = BJ(x > 0, -d/2) = 0, (39) 
zn 1 

i dq,' ~ xB2 (x, -d/2)dx = 0, 

where 
u 0 

v = v{l1--_:,:2sin ql', x, y1- x2 cosq/}. 

To obtain expressions for t:. and the density of states it 
is only necessary to find the function B2 • Expanding B2 

in a series in cos n<p': 

B, = xo(.r, y) + xdx, y) (1- x') 'hcos q/ + ... , 
and substituting this expansion into the second equation 
of the set (38) we get 

rJx, 1 [ 1 3 1
\· ., J 2i[leliy =--- --x,- - (1-xr)x1 (x,y)dx, + ---, 

uy X L 411 _\ .r (40) 

r.!t.o_ _ 1 [ 1 1! _ ] _ 1 - x 2 2 ( ai'l-[lw) 
-- Xu---;- j Xo(.r1, y)d:r, -lu.eHy ---x, + ---~--~--, 

r!y Xi 2 1 X ['X 

where 1 
rr,,,, = 4Jt[rr + 3rr1 cos 0 + ... ], na = 1-1, na1 = 1,-'. 

From the set (40) and the boundary condition (39) we get 
the following expressions for Xo and x 1 : 

1 d/_2 3 J 
X1 (x, y) =- \ Y[ -2i~elly1 +- <Di(yi) dy, x > 0, 

X' 11 4/1 

1 df2 1 
Xo(:r. Y) =- \ dy1 Y[-<D(yi) + iaell(1-x2)y1x1(x, y1)- Z(atJ.: ~w) J 

:<' • 21 
'I 

x>O, 
Xu(x, !!) = Xo(-x, -y), x1(x, !!) = -x,(-x, -y) 

y = PXp [- I !I -:.t I ]. {41) 

where the functions <1> 1(y) and <I>(y) are solutions of the 
integral equations 

1 di2 1 d/2 

3\ 1-x'r 1 1-x'r 
!j)1 (y) =- J dx-- \ YlD1(yi)dy1 - :liBell J dx-x- J Y1Y dy, 

4/t G X _;1 ::! G -d/'2. 

1 d/2 1 di2 (42) 
1 ~ dx 1 _ 1 dx (' atl. - ~w 

<D(y) =- - 1 Y!D(y 1)dy1 - 2 .l - J Y ---dy1 
2/ X • ' X V 

() -di2 -di2 

1 1 _ x' [ d/2 _ u J 
XiaeH~ dx-x- ~ YY1X1(-r,yi)dy,- ~ Yy,x,(x,-yi)dy, . 

0 y -d:2 

From the condition (39) and Eq. (41) for Xo we find an 
equation for the constants a and f3 : 

1 d/2 d/2 

iaeHS dx(1-x2) ~ y1xi(x,y1)dy1 =2 S utJ.-~wdy. (43) 
0 -d/2 -d/2 v 

The ordering parameter t:. is in the principal approx­
imation independent of the coordinates and can be ex­
pressed in terms of f3(w) through the formula 

tJ. _ IJ.ImpoT .._, ~( ) (44) 
- 2n ~ (!) • 

Equations (41)-{43) enable us to find the function t:.(H) 
when (36) is valid. If l « (~ 0d)112 this condition is satis­
fied for all fields up to the critical one. In the main ap­
proximation the density of states can be expressed in 
terms of a(-iw) through Eq. {23). Taking small correc­
tions into account leads, in contrast to the case eHZd 
>> 1, to no important change in the excitation spectrum. 

When the scattering is isotropic we obtain at once 
from Eqs. {41) and {43) an algebraic equation for the 
constants a and f3 in the whole range eHZd « 1: 

u~- Bw = a~(ell) 2v_l__{d' -t('i' __ !'_) 
d 18 16 12 

1 

-l ~ x(1- x2 ) ( f + xl )' e-d!xldx}. {45) 

When the scattering is anisotropic it is necessary to 
solve the integral equation (42) for the function <1> 1 (y) to 
obtain an equation for a and {3. We consider two limit­
ing cases. 

A. Maki's case, l « d. Then 
8i 

<D1 (Y) =- --o;- ~evlfyt,r, Xt = - 2i~euf!yr,,. 
d 

Substituting the expression for x1 into Eq. (43) we get 
an equation for a and {3:r1J 

utl.-~w = 1/tsaB(evlld)'-T:tr· 

The integral equation (42) for <l>(y) reduces to a differ­
ential equation: 

--- =- --- 2<lB(efl) 2Y2l'Ttr 
82<D 4 [ 3(atJ.- ~w) J 
ay' z v 

(46) 

with the boundary condition <I> (y = ± 'i2 d) = 0. 
Eq. (46) we find 

Solving 

2 V1:tr ( d2 )' <D(y)= - 3 a~(efl) 2 -1- 4 -y' . 

B. In the limiting case d « l « {~0d)112 the integral 
equations (42) can easily be solved and we find for the 
functions x1 and <l>{y): 

a~(elf) 2ld3 
<D(y) = 12 . 

Substituting the expression for X1 into Eq. {43) we find 
an equation for a and {3: 

atJ.- ~w = 1/32a~(ell)'d3v. (47) 

Equation (47) for the constants a and f3 has the same 
form as in the "very dirty" case but with a different 
coefficient of H2 • From Eqs. (44) and (47) we easily 
find the critical field l?J 

T, ( 1 e2H2vd3 ) ( 1 ) 
lnr='l' z+ 64nT -tP 2 . 
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3. SMALL SIZE SPHERE (R « ~ 0) IN A MAGNETIC 
FIELD 

Larkin [SJ has considered the properties of a small 
size superconducting sphere in a magnetic field when 
there is specular reflection from the walls. He found 
the field dependence of the parameter t:. and of the 
magnetic moment and also the magnitude of the gap in 
the excitation spectrum. We solve here the analogous 
problem for diffuse reflection from the walls. We 
choose the vector potential in the form A = )'2 H x r. 
The parameter L:. is real in this gauge. We restrict 
our considerations to the case of a pure sphere. As 
in section 1 we look for the Green function in the form 
(3). Similar to Eq. (5) we find for the fi 

- y2 ~v 
f1 =Bi(rJ+--;;z .\/:,.(f2 -/3)d(r1,v), 

0 

/, = e-1\'(v, <) (n, (i=') + ~,2 I M, eW(v, r,) d (r,,v)} ' 
. rv 

(48) 

where 
Tr(v,r)= 2 (rv)( w-~(v[HrJ)), 

v2 ' 2 

;=•·- v(rv) -~(R'-r'+ (vr)')'h, 
u2 v v2 

( 48')* 

- v(rv) v ( (vr)')'h 
R=r--v-2-+~ R2 -r2+~ . 

For our choice of gauge of the vector potential the 
matrices (ni · T) occurring in the boundary condition (7) 
can be chosen in the same form (8) and (9) as for a thin 
film. However, the coefficients a and {3 will now already 
depend on the coordinates of the points on the surface. 
We can by analogy to Eq. (11) write the boundary condi­
tion in the form 

j;(v, r1) = Q;(r1) +R;(r1)iji(v, r1), 

~ (vn) (/, -/,) dQ, c= 0, 
vn>O 

where r 1 is a point on the surface v · r 1 < 0, 

•'•(v, r,) = (~j,- ~ft) + ( 1 -~ /.- i-~ 1z) 
'I' y2 l2 

( i+a i+a-) 
- yZ fa - · y:f fa , 

~=~(r1 ), ~=~(r1 - 2"~:•")), /;=/;(v,r,), 

( 2v(r1v) ) 
fi=/i v,r1---,- , 

u 

(49) 

(50) 

(51) 

while the quantities Qi and Ri are defined in (11). The 
functions fi satisfy the conditions fi(v, r) = fi(-v, -r). 

We can solve the set of equations (48) together with 
the boundary conditions (49) by simple iteration. One 
can show that the parameter eHR2 << 1 where R is the 
radius of the sphere. Therefore, t:. can be considered 
to be constant and the coefficients a and {3 have the form 

where 

* [Hr] o= H X r. 

a= a(cos6) = a0 + a1 cos2 8, 

~=~(cos 8) = ~o + ~1 cos2 8, (52) 

From the condition a 2 + {32 = 1 it follows that a~ + {3~ = 1. 
Using (52) we get from Eqs. (48) and (49) 

iji(v r1 ) =(~a- a~)--__!~[ 2 (r,v) ( w- ~(v[Hr,]) )] 
' 1 + ail + ~~ v 2 2 

(r1v) 2 4a0 (r,v) 
X 2a0~0 --e2(v[Hr1]) 2 + 2 /:,.. (53) 

v' v 

Substituting the expression for (i from Eq. (53) into con­
dition (50) we find 

e2H2vR3 

ao/:,.- ~ow= ao~o 24 , 

(eHR') 2 (eHR')' 
a,=- ao~o2 6 , ~' = ~0ao2 --6-. (54) 

The ordering parameter t:. can be expressed in terms of 
{3(w) through Eq. (44). 

From Eqs. (44) and (54) we find the critical field 

In Tc = (~ + .!_H2vR3 
) _ ( _!_) 

T 1jl 2 48nT 1jl 2 . 
(55) 

This expression differs from the corresponding equation 
for the critical field found in [4 J. This discrepancy is 
connected with the fact that in evaluating the average 
((j Adl)2 ) and the average flight time the angular dis­
tribution law for the trajectories was not taken into ac­
count in [4 J. When the appropriate corrections are taken 
into account an expression is obtained which is the same 
as Eq. (55). 

We now find the magnetic moment of the sphere. The 
current density can be expressed in terms of f1 and is 
equal to 

iepo " ~ j = ---T Li pf1 (v,r)dQ 
4n2 (,) .. 

(56) 

From Eqs. (48) and (53) it follows that 

- ie ( (rv) 2 )'" /f(v,r)=a(r)--~02 (v[Hr]) R'-r'+-- , 
v v2 

(57) 

where r is given by Eq. (48'). Using Eqs. (56) and (57) 
and the definition of the magnetic moment, 

we find easily 
M = ~} [rj]dr, 

e'p 2 
M = - Ts R6HT ~ ~o2• 

In a weak field 
ffi 

/:,. e2po2 ( !J. ) 
Bo = (w'+ LSZ)'h' M = -36R6H !J.th 2T , 

which is the same as the well-known expression. [oJ 

4. CONCLUSION 

The behavior of thin films in a magnetic field depends 
in an essential way on the parameter eHld. In the region 
eHld » 1 there is no gap in the excitation spectrum, but 
the density of states is proportional to the small param­
eter (d/~ 0, d/l) up to some threshold value w0 • Even in 
the limit as l - oo the density of states nowhere be­
comes infinite and reaches its maximum value of order 
p0(~ 0 /d)113 near the point w = L:. 1<P. Decreasing the mean 
free path initially leads to an increase in the density of 
states for small w. However, when we go over into the 
range eHZd « 1 the usual threshold situation arises 
where the density of states vanishes for w less than a 
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well-defined value w0 and only in very strong fields, just 
as in the "very dirty" limit, there occurs again gapless 
superconductivity. Both in the range l » d and in the 
ranged« l « (~cP)1f2 at T = 0 the field at which the 
gap in the spectrum vanishes can be expressed in terms 
of the critical field through the formula H2 = 0.9i H~r· 
In the range eHld » 1 there appears an additional peak 
in the density of states in the non-Born approximation, 
the position of which depends both on the magnitude of 
the field and on the parameter op~. Decreasing the mean 
free path leads to a smearing-out of this peak. The max­
imum area under the peak is reached when l ~ ~0 • In the 
figure we have indicated the mean free path dependence 
of the critical field at T = 0. The region under the curve 
is divided into a number of subregions in each of which 
there is a particular A(H) dependence. In the regions 1, 
2, 3, 4, 5 the parameter eHld « 1, in the regions 6 and 
7 eHld » 1. In the regions 1,3, and 6 there are gapless 
excitations in the density of states of order p0 while in 
region 7 there are gapless excitations with a small den­
sity of states. We found the A(H) dependence both in the 
region eHld » 1 and in the region eHld « 1. In the re-

gion eHld << 1 there occurs a linear integral equation 
the solution of which determines the A(H) dependence. 
For l « d and l » d this equation can easily be solved 
and in the region l << d Maid's well-known resultu1 is 
obtained. 

We considered also a sphere with diffuse reflection 
at the walls in a magnetic field. The A(H) dependence 
and the field depencence of the magnetic moment are 
found. 

In conclusion I express my gratitude to A. I. Larkin 
for constant discussions of the problems considered. 

1 K. Maki, Progr. Theoret. Phys. 29, 603 (1963); 31, 
731 (1964). 

2 R. S. Thompson, Zh. Eksp. Teor. Fiz. 53, 759 (1967) 
[Sov. Phys.-JETP 26, 470 (1968)]. 

3 A. I. Rusinov, Zh. Eksp. Teor. Fiz. 56, 2047 (1969) 
[Sov. Phys.-JETP 29, 1101 (1969)]. 

4 P. G. de Gennes and M. Tinkham, Physics 1, 107 
(1964). 

5 A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. 
Teor. Fiz. 55, 2262 (1968) [Sov. Phys.-JETP 28, 1200 
(1969)]. 

6 Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 56, 1590 
(1969) [Sov. Phys.-JETP 29, 853 (1969)]. 

7 E. A. Shapoval, Zh. Eksp. Teor. Fiz. 49, 930 (1965) 
[Sov. Phys.-JETP 22, 647 (1966)]. 

8 A. I. Larkin, Zh. Eksp. Teor. Fiz. 48, 232 (1965) 
[Sov. Phys.-JETP 21, 153 (1965)]. 

9 A. A. Abrikosov and I. M. Khalatnikov, Usp. Fiz. 
Nauk 65, 551 (1958) [English translation published by 
Office of Naval Research] . 

Translated by D. ter Haar 
102 


