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We study the stability of a partially ionized plasma, taking into account ionization and recombination 
processes. Owing to these processes, specific ionization-recombination vibrations may occur in such 
a plasma. We show that there may then occur an instability connected with the parametric excitation 
of ion-acoustic oscillations while the largest build-up increment characterizes the ion-acoustic os­
cillations, whose doubled frequency is close to the frequency of the ionization-recombination oscilla­
tions. 

1. INTRODUCTION 

ONE usually assumes that the unperturbed state of 
the plasma is a stationary one when one studies the os­
cillations of a partially ionized plasma. The oscillations 
propagating in such a plasma turn out in that case to be 
weakly damped (in the case of a not very strong external 
electric field); the build-up of the oscillations leading to 
an instability of the plasma arises only in sufficiently 
strong external electrical fields. l1- 3 J 

However, it has recently been shown by Rothl 4J that 
the unperturbed state of a partially ionized plasma is in 
general not a stationary one. Due to ionization and re­
combination processes in such a plasma oscillations 
arise which are accompanied by a change in the total 
number of charged particles: ionization- recombination 
oscillations. 11 By their nature these oscillations are 
analogous to the oscillations of the numerical population 
in the Volterra problem of two species of fish devouring 
one another (see lsJ). 

Oscillations propagating in a plasma with a charged 
particle number which changes periodically with time 
may turn out to be building up even when there is no ex­
ternal electrical field. Therefore, even when there is 
no external electrical field a partially ionized plasma 
may be unstable. 

The present paper is devoted to a study of the sta­
bility of a partially ionized plasma, taking into account 
processes in which the total number of charged parti­
cles changes. We show that in such a plasma an insta­
bility is possible which is connected with the parametric 
excitation of ion- acoustic oscillations. The largest 
build-up increment then characterizes those ion-acous­
tic oscillations for which the doubled frequency lies 
close to the frequency of the ionization- recombination 
oscillations. 

2. EQUATIONS FOR THE ION-ACOUSTIC OSCILLA­
TIONS 

We consider the oscillations of a partially ionized 
plasma in which the average energy of the random mo­
tion of the electrons appreciably exceeds the ion tem­
perature. We can describe the electron component of 

11 The review papers [8•9 ] are devoted to phenomena in partially ion­
ized which are connected with ionization-recombination processes. 

such a plasma by the kinetic equation 

( a a ) e acp oF -+v- f----+l{f} = 0, 
iJt or • miJr iJv 

(2.1) 

where f is the deviation of the electron distribution func­
tion from its unperturbed value F, q; is the electrostatic 
potential, and J {f} is the linearized collision integral. 

We shall be interested in the ion-acoustic oscilla­
tions the phase velocity of which is appreciably less than 
the average thermal velocity of the electrons ve, 
w/k << Ve (w and k are the frequency and wave vector 
of the oscillations). In the case of not too large wave­
lengths (kl » 1, l is the electron mean free path) we 
can write Eq. (2.1) in the form 

iJf e iJcpiJF 
v-----=0. 

or m Dr iJv 
(2.2) 

If we integrate this relation over the velocities we get 
the following expression for the deviation l.i ne of the 
electron density ne from its unperturbed value ne0 : 

ecp 
6ne = -neor, 

where T* is an effective temperature 
, 1 ~ d3v oF 

T = - mneo · ~ iJvn' 

(2.3) 

(2.4) 

while v 11 is the component of the electron velocity in the 
direction of propagation of the wave. 

In the case of a Maxwell distribution of the electrons 
T* = T, where Tis the electron temperature. We note 
that if then the main contribution to the collision integ­
ral J{f} is given by the electron-electron collisions, 
Eq. (2.3) will be valid for any ratio of the wavelength of 
the oscillations and the electron mean free path (and not 
only when kl » 1). Indeed, when the mean free path of 
the electrons is small a Boltzmann distribution for the 
electrons, ne = ne0 exp (-eq;/T), can be set up at every 
time and in every point in space. When lne- neal « neo 
we get from this Eq. (2.3). 

If the partially ionized plasma is in an external con­
stant and uniform electrical field E0 , the unperturbed 
distribution function F has the form lSJ 

v { ( mv2 )2} F== Fo+-;;F, Fo= Cexp - ZTe 

V Mo 
Te= -eEol, 

3m 

F1 = _ eE0l _ dFo 
mv dv ' 

(2.5) 
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(Mo is the mass of the neutral particles). In that case 
we must in general still add in Eq. (2.1) a term 
(e/m)E0of/ov. One can, however, show that 

---' 
e of 11m 

-E0 -,;:;; y -l{f}; 
m &v Mo 

we shall therefore neglect this term. Substituting (2.5) 
into (2.4) we get for the effective temperature 

T* = 2r(3/•) T . 
f('/4) e 

Bearing in mind that the phase velocity of the ion­
acoustic oscillations is much larger than the ion thermal 
velocity we can describe the ionic component of the 
plasma by the hydrodynamic equations 

{)6n; ----at-+ n;o div u; = 0, 

i.iu1 ze {)q; ----+ 'Vjllj = 0, at M;or 

(2.6) 

where nio and oni are the unperturbed value and the per­
turbation in the ion density (nio = ne0 /z), ui their hydro­
dynamic velocity and vi1 the average free flight time of 
the ions (-ze and Mi are the ion charge and mass). 

If the unperturbed state of the plasma is spatially 
uniform we get, by using the Poisson equation and Eqs. 
(2.3) and (2.6), the following equation for the spatial 
Fourier component of the ion density ni: 

d {-1- dn; } 'V; dn; + 2 . _ 0 - - +-- wn,-, 
dt neo dt neo dt 

(2.7) 

where w2 = k2 V~/ (1 + a2k2), V = (z T* /~) 112 is the sound 
velocity and a = (T* / 4rre2ne0)1~2 is the electron Debye 
radius. 

This equation describes the ion-acoustic oscillations 
in a plasma the unperturbed state of which is uniform 
but not necessarily stationary. In the case of a station­
ary unperturbed state (neo = const) these oscillations are 
the usual ion-acoustic waves with frequency w and damp­
ing decrement v/2 (here and henceforth we shall as­
sume that "'i << w). In the case, however, of an unper­
turbed state when the unperturbed electron density neo 
is a function of the time the damping decrement of such 
oscillations may differ appreciably from v/2; in par­
ticular, it may become negative which corresponds to a 
build-up of the ionic sound leading to an instability of 
the unperturbed state of the plasma. 

3. IONIZATION-RECOMBINATION OSCILLATIONS 

The unperturbed state of a partially ionized plasma, 
in which processes are possible which change the total 
number of charged particles, is in general not a station­
ary one. [4J 

Let there be injected !h neutral particles per second 
in a plasma occupying a volume v. If the dimensions of 
the plasma are large compared with the Debye radius 
the total number of electrons Ne and ions Ni will be 
connected with one another through the relation zNi = Ne. 
The ions may leave the volume V through the surface S 
of the plasma (for instance, an intersection perpendicu­
lar to the magnetic force lines); the loss of ions per 
unit time is clearly 

where !h is a coefficient characterizing the ion loss and 
vi the average thermal velocity of the ions. 

We shall assume that the main source of ions is the 
ionization of neutral particles when they collide with the 
electrons in the plasma. Introducing the cross-section a 
for this process we can write the changes in the num­
bers of neutral and charged particles per unit time 
caused by these processes in the form 

(av) 
QJVNe = - Q.NN. = ---vNN., 

where !h, 4 are coefficients characterizing the speeds 
of the ionization and recombination processes which are 
due to collisions between particles (N is the total num­
ber of neutral particles; v the relative velocity of the 
colliding particles; the brackets ( ... ) indicate an aver­
age over the velocities of the colliding particles). 
Neglecting other possible processes which can change 
the number of neutral and charged particles we get the 
following equ<!_tions to determine N and Ne: 

dN dN. 
dt =D.,- QJVN., dt = N,(Q2 + Qs)V). (3.1) 

These equations can be appreciably simplified in the 
case of a weakly ionized plasma, when Ne « N. Elim­
inating the quantity dN/dt from (3.1) we have 

d2N 
--• - O.aQN, + 9.a"NoN." + 11NQJV,(9.aNe- 29.JVo- 2Qz) 
dt2 

-(11N) 20.iN.= 0, (3.2) 
where No is the (time) average of the function N(t); 
~N(t) = N(t)- No, and 

Q = 0.1 + fJ.a-'(0.2 +DoNo)'. 

In the case of a weakly ionized plasma we shall show 
below that the amplitude of the oscillations in the num­
ber of neutral particles is small, ~N « No. We can thus 
neglect in (3.2) terms containing ~N. As a result we get 

a•N. 
----;Ji2- Q3QN, + Qi'NoNe2 = 0. (3.3) 

Introducing the notation 
N, = N.o(1 + Q), t] = Q / fJ.zNoNea. 

-- (av) -
roo= 9.a"YNoN.o""" ---v yNoN.o, 

(3.4) 

where Neo is the extremal value of the function Ne(t) we 
can write Eq. (3.3) in the form 

w0- 2 ::: + Q2 +(2-tJ)Q +(1-tJ) = 0. (3.5) 

We can express the solution of this equation in terms of 
Jacobi's elliptic functions. To do this we multiply Eq. 
(3.5) by dQ/dt and integrating once we get 

( dQ)2 2 wo-'--;u +gQ(Q-Q,)(Q-Q.)=O, (3.6) 

where 

Q, .• =- 3/.{(2- tJ)±Y(tJ- 2/a) (tJ + 2)}. 

We consider first the case when % < TJ < 1. Integrat­
ing Eq. (3.6) we have 

(3.7) 

where sn(x; k) is Jacobi's elliptic sine function. The 
frequency w r of the ionization- recombination collisions 
is in this case equal to 
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(3.8) changing parameters (see, for instance,(7]). We can 
look for its general solution in the form 

where K(k) is the complete elliptic integral of the first 
kind; the quantity Ne0 /V is the maximum value of the 
electron density. 

In the case TJ > 1 we can as before use for the func­
tion Q of Eq. (3.7), but, bearing in mind that in that case 
Q2 > 0 > Qh it is convenient to write the equation for 
Q in the form 

Q _. Q,Q, sn2(x1 ; k1) 

- Q1 - Q, + Q, sn2 (x1; k1)' 

x, = w~t [ (I]- ~ ) (I]+ 2) r, k, = v Q,~ Q, 0 

(3.9) 

The frequency of the oscillations is then equal to 

(3.10) 

the quantity Ne0 /V is the minimum value of the electron 
density. 

When ITJ- 11 « 1, we have Q « 1. In that case Eq. 
(3.3) describes harmonic oscillations with a small am­
plitude and frequency w 0 and we have for the unperturbed 
electron density ne0 (t) 

lle)(t) = ne0(1 + h cos Wot), (3 .11) 

where neo is ~e (time) average of the unperturbed elec­
tron density (neo = Ne 0TJ /V), h = 1 - TJ. 

The case TJ = 1 corresponds to the stationary regime, 
Ne(t) = Neo· 

To conclude this section we estimate the quantity ~N 
which we neglected when going from Eq. (3.2) to Eq. 
(3.3). Bearing in mind that according to the first of 
Eqs. (3.1) ~N ~ w~1NoNeon3, and using (3.4), we see that 
AN/N0 ~ v'Ne0 /N0). Equation (3.3) therefore validly 
describes the plasma oscillations if its degree of ioniza­
tion is small, Ne 0 << N0• 

4. INSTABILITY OF THE ION-ACOUSTIC OSCILLA­
TIONS 

We show now that when there are ionization- recom­
bination collisions in the plasma the ion- acoustic waves 
may turn out to be building-up leading thereby to an in­
stability of the plasma. 

Substituting Eq. (3.11) into Eq. (2.7) and using the fact 
fact that lh I « 1, we have 

d'n· dn· 
-' +a(t)-' +w2(t)n1 =0, a(t)=hwosinwot+v1, {4.1) 

dt2 dt 

w2 (t) = w}( 1 + ao'k' h cos wot), 
1 + a 02k2 

where w~ = k2V~/ (1 + a~'), a~ = T* I 47Te 2neo· Also mak­
ing the substitution 

n/ = n1 exp{+ ~ a(t)dt} 

we write Eq. (4.1) in the form 
d 2n·' --' +pnt'=O, 
dt 2 

1 da 1 
P= :.c2 -----a' 

2 dt 4 
(4.2) 

(we shall neglect the term in p proportional to a 2 in 
what follows bearing in mind that [hi« 1). 

Equation (4.2) is analogous to the well-known equa­
tion for the oscillations of a system with periodically 

(4.3) 

where ~ 1 , 2 are periodic functions with period 27T/wo, 
while J.J. 1 , 2 are some, in general, complex numbers for 
which /J.1 + J.J. 2 = 0. If Re J.J.j > v/2 (j = 1, 2) the corre­
sponding term in (4.3) will increase exponentially with 
time (so-called parametric resonance). It is well known 
that parametric resonance occurs for values of the fre­
quencies w 0 which lie close to 

2w, In, wo = 2w, In+ E, where nr I z,,,, «':' 1 (n = 1, 2, 0 0 o) 0 

The most intensive form of parametric resonance oc­
curs when n = 1; when n increases the build-up of the 
oscillations and the width of the instability region change 
as hn. 

Putting w 0 = 2ws + E in Eq. (4.2) and assuming that 
~1 ~ cos(ws + %E)t, ~ 2 ~ sin(ws + %E)t we have for J.J.j 

(4.4) 

The width of the instability region is thus determined by 
the inequality 

(4.5) 

The build-up increment y of the ion-acoustic oscillations 
is then determined by the formula y = %(J.J.l- vi). We 
draw attention to the fact that resonance turns out to be 
possible not for any small h, but only when [hi > he, 
where 

(4.6) 

One can show that for resonance close to the frequency 
2 ws/n, the threshold value he is proportional to vi/n, 
i.e., increases with increasing n. 

In the long wavelength case, aok « 1, Eqs. (4.5) and 
(4.6) become 

(4. 7) 

In the case of short-wavelength oscillations, aok >> 1 
(ionic Langmuir waves) we have 

( hi£ )' e2 < -' -v·2 2 ' , h -~ o-
W., 

(4.8) 

We have obtained Eqs. (4.4)-(4.8) in the simplest 
particular case of small amplitude ionization- recom­
bination collisions, 11 - TJ I « 1. One can show that in 
the general case of an arbitrary amplitude of such oscil­
lations parametric resonance is also possible which 
leads to a build-up of ion-acoustic waves. Ion-acoustic 
oscillations with a frequency w close toWs= nwr/2, 
with Wr the frequency of the ionization-recombination 
oscillations determined by Eq. (3.8) or (3.10) will then 
be excited. 

We note that apart from the problem about the exci­
tation of ion-acoustic oscillations the problem may also 
arise of the parametric excitation of another kind of 
oscillations of a partially ionized plasma-low-frequency 
hydrodynamic waves-when a constant uniform external 
electrical field is present, which were considered inlzJ. 
One can, however, show that in contrast to the case of 
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the ion- acoustic oscillations the parametric excitation 
of low-frequency hydrodynamic oscillations by ioniza­
tion-recombination collisions in the plasma is impossi­
ble. This is connected with the fact that the damping 
decrement y for hydrodynamic oscillations in an elec­
trical field is not small compared with the frequency 
in the system of reference moving together with the 
electrical current, iw - k · ue I < y, where ue is the 
average velocity of the directed electron motion. 

We discuss, in conclusion, the characteristic values 
of the parameters of the plasma for which one must ob­
serve the instability of the ion-acoustic oscillations dis­
cussed here. For instance, for a plasma with an elec­
tron temperature Te ~ 3 x 104 degree (with T0 /Te 
~ 0.3), a density no~ 1015 cm-3 and a ionization coeffi­
cient ne0 /n0 "" 10% the frequency of the excited oscilla­
tions is Ws ~ 3 x 104 sec-1• In order that oscillations 
with such a frequency could occur the length of the 
plasma discharge must be of the order of 20 em in the 
case of an argon-potassium plasma or 10 em in the case 
of a cesium plasma. 
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