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Nonlinear effects in emission and absorption spectra of gaseous systems are considered. It is shown 
that level splitting can be detected spectroscopically even if it is below the Doppler width. Conditions 
for distinguishing interference effects from those due to nonequilibrium velocity distribution are de­
termined. In the case of large Doppler broadening the correctio!'l for atomic motion is equivalent to the 
substitution of an "effective immobile atom" for the moving atom ensemble. The spectral manifesta­
tion of nonlinear effects is analyzed in detail. The influence of nonlinear interference effects on the 
generation characteristics in the presence of external field is investigated. 

1. INTRODUCTION 

THE changes in the emission and absorption spectra of 
a gas placed in a strong electromagnetic field are the 
result of three effects. One consists of the formation of 
a nonequilibrium velocity distribution (Bennett's "holes" 
and "peaks" [tJ ). This factor significantly influences 
the spectral characteristics of lasers and was studied 
in detail by many authors. The second effect stems 
from the splitting of atomic levels; it was directly ob­
served in the optical portion of the spectrum only very 
recentlyr2'3J in the case of potassium atoms placed in 
the tremendous fields of a ruby laser. In gas lasers the 
fields are weaker, level splitting is much smaller than 
the Doppler line width, and the observability of the 
effect is not a simple matter. For example, according 
to Feld and Javanr4J, splitting is not possible at all in 
this case. This conclusion however is the consequence 
of an error in their calculations (see discussion of (3 .4) 
below). Finally, the third effect of a strong external 
field consists in the fact that the probability of absorp­
tion or emission of photons turns out to depend not only 
on level populations but also on the polarization induced 
by the external field, i.e., on the nonlinear interference 
effect (NIE)rs-?J. This effect is the subject of the pres­
ent paper. 

The interest in NIE is due to several causes. First, 
it is this effect that is responsible for causing the 
spectral densities of Einstein coefficients of absorption 
or emission to be different frequency functions, leading 
to characteristic changes in the pure emission or ab­
sorption linesr7- 9 J. The NIE contribution should depend 
significantly on the relaxation characteristicsr7J, pro­
viding new opportunities to study collisions. For gas 
systems with large Doppler broadening the theory pre­
dicts an angular anisotropy of spectral characteristics 
and a possibility of obtaining an extremely sharp struc­
turer4-6'10J. Although the early experiments with spon­
taneousr4'11'12J and stimulated emissionr13 J have so far 
failed to provide a quantitative verification of the theory, 
they have undoubtedly established the existence of the 
anisotropy effect. 

The present work investigates NIE in gaseous sys-

terns and considers the problem under what conditions 
NIE plays a major role. It is shown that under certain 
conditions the velocity distribution of atoms in a strong 
field does not change at all while the interference effects 
remain. 

2. GENERAL EXPRESSIONS 

We consider the photon emission of two monochrom­
atic fields interacting with an atom whose term system 
is shown in Fig. 1. One of the two fields is regarded as 

FIG. 1. Term diagram. 

strong and it resonates with the m-n transition; the 
matrix element of interaction (traveling wave) is 

Vmn exp {iwmnt} = -G exp {-i(Qt- kr)}. 

G = dmnE I 2/i, Q = (J)- Wmn• ,2.1) 

We are interested in emission or absorption of photons 
of a field resonating with one of the four transitions, 
n-j, m-l, f-m, and g-n (Fig. 1). For example in the 
case of n-j 

Vn; exp {i~Jn;t} = -G~ exp {-i(Q~t- k0 r)}, 
Q" = W~- Wni· 

G~ = dn;E~ I 21i, 
(2.2) 

The system of equations for the density matrix has the 
form 

Ljjpjj = Y11jflnn + qj, 

£inPj 11 - if~n~n exp {iffimnt}PJm = iYn/ exp {-iWnJt} (Pnn -- PJJ), 
L;mP;m- iV mn• exp {-i<•Jmnt}p;n = -iVn;' exp {-iwn;t}Pnm; (2.3) 

LmmPmm+2Re [iVmnexp {iWmnt}Pnm] = qm, 
Lnnf'nn- 2 Re [iVmn exp {iw.,nt}Pnm] = qn + i'mnPmm, 
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LnmPnm = iVnm exp {-iiDmnt} (p,.,.- Pmm), 
L;k = iJ I iJt + vV + rik, ru == fz, (2.4) 

r ik are transition widths and qi is the rate of excitation 
of atoms to the state i, v. 

According to (2.3) and (2.4) the field Vjn does not 
affect the population ("weak field"). Therefore the en­
tire system of equations was found to be split up; eqs. 
(2.4) include only Pmm• Pnn, and Pnm, and the solution 
of this system serves as a "source" for the computa­
tion of Pjm• Pjn• and Pjj from (2.3). In the case of (2.1) 
and (2.2) the system (2.3)-(2.4) reduces to equations 
whose solution has the form 

Yn; 2:rtG2 ( Ymn \ 
p;; = n;+-, Pnn, Pnn = n,.+ 1-------t;(nm-'-n,.)WB(v), 

f; fnl'1+x fm 

2nG2 
Pmm = nm- (nm- n,.)W8 (v), Pnm = rnm exp{- i(Qt- kr)}, 

fml'1 +loG 

rnm = iG(Pmm- Pnn) / (f + iQ'), (2.5) 
where 

WB(v) = rB I :rt[fB2 + (Q- kv)2], rB = ry'1 +X, r == r nm, 
Q'= Q-kv, 

ro• 2(fm+fn-Ymn)G2 

!J/=Q~-k~v, X='tzu-= ffmfn ' 

n; = qi(v) +~ qh(v) . (2•6) 
ri r; rk 

The quantities ni(v) represent velocity distributions of 
atoms in the absence of a strong field (G = 0) determined 
by excitation processes qi(v). 

The emission (absorption) power is determined by 
the general formula 

Wn; = -2hwn; Re (iV,.; exp {iw,.;t}p;,.), (2. 7) 

where the angle brackets designate averaged velocities 
v of atoms. Using the system (2.3) we can express Pjn 
in terms of (2.5) and obtain an expression for power 
(2.7) in the form 

. = 2h ·IG j2R < [f;m+ i(Q~' + Q')](p,.,.- p;;)- iGr,.m > (2.8) 
w,., w,., ~ e [f;m + i(Q~' + Q'))[f;n + iQ~1+ G2 · 

Equation (2.8) clearly reflects the classification of 
effects due to the external field. The denominator con­
tains squares n IJ. terms, i.e., it contains resonances at 
two frequencies. This can be interpreted as a splitting 
of the atom levels in the external field. The numerator 
in (2.8) contains two terms with significantly different 
properties. The first term is proportional to the popu­
lation difference Pnn- Pjj containing Bennett's "holes," 
as reflected in the factor WB(v) (henceforth called the 
Bennett distribution). The second term proportional to 
rnm varies only the line shape but not its integral inten­
sity, since 

too 
~ w,.;dQ~ = 2nhw,.;jG~j 2 (pnn- P;;). 

The fact that this term appeared and its property are 
not at all specific to the special case under considera­
tion. According to (2.3) the "sources" that "excite" 
Pjm and Pjn are both the population difference Pnn- Pjj 

and the non-diagonal element Pnm stimulated by the 
strong field for any spectral compositic_. of the strong 
field. Therefore Wnj contains Pnm also in the general 
case, and not only in a monochromatic field. We can say 

that this term reflects the "coherence" that is contribu­
ted to the atomic state by the strong field, so that a weak 
field "mixes" the m and j states a,s well as the nand j 
states. The last circumstance causes oscillations at the 
frequency w + w IJ.. The above properties of the term 
with rnm allow us to call the associated phenomena 
nonlinear interference effects. 

We can regard (2.8) as the difference between the 
number of acts of emission and absorption of the t'iw/J. 
photon. All the terms of Wnj except Pjj determine emis-

sion processes. Conversely terms associated with Pjj 
control the weak field energy absorption rate. Accord­
ing to (2.8) only the level splitting effect stands out in 
the absorption probabilityl2 ' 3 ' 6 ' 14J. This is due to the 
fact that absorption corresponds to the transition from 
the unexcited level j to excited level n. NIE is due to 
the reverse transition from an excited to unexcited 
state; i.e., in the case when n- j are contained only in 
the emission. Therefore the line shapes of pure emis­
sion and absorption turn out to be different due to NIE. 
The sign of their difference, i.e., of Wnj• is determined 
not only by the sign of population difference Pnn- Pjj; 
in particular the sign of Wnj can change with the change 
of n IJ. [?-g) 

Equation (2.8) makes it possible to analyze also 
spontaneous emission. For this purpose it is merely 
necessary to drop the term Pjj from (2.8) and replace 
IGIJ.I 2 by a quantity corresponding to the atomic interac­
tion with zero oscillations of the field ll5 J : 

y nj (87T2r\:~n IJ. ~0. Equations for other transitions are 
of the same type and can be obtained from (2.8) by a 
simple substitution of indices and signs. For example, 
wmz is obtained from the substitutions m- n, j -l, and 
n'--n'. 

3. EMISSION AND ABSORPTION LINE SHAPE IN 
TRAVELING MONOCHROMATIC WAVE FIELD 

We analyze the role of nonequilibrium velocity dis­
tribution and nonlinear interference effects. We con­
sider first two directions of k/J. in detail: along and 
against k. The value of Wbj averaged over v for these 
two directions is 

w .± = 2hw ·I G j2 -y:ll: exp f - ..EL} 
"' n] ~ kv '\. (k~v) 2 

X {N,.- N; +(Nm- N,.)Re(F±(Q.,)+ /±(Q~)]}, (3.1) 

f n -t( 1- Ymn/f m)[f ± + iz} + [1 ± l'1 + x}/2 

[fo+iz)[f±+iz]+Gz (3.2) 

Z = Q~ =i= Qk~/ k, fo = f;n + fBkl'/ k, f± = f;m + fB(k~ik ± 1). 
(3.3) 

The signs +and- in (3.2) correspond to kbl directed 
along and against k; f± and F ± represent the interfer­
ence term and a term due to the nonequilibrium addition 
to the velocity distribution, respectively. Equation (3.2) 
is not applicable if k/J. < k and k/J. · k < 0. Velocity aver­
aging can be performed also in this case. However the 
obtained expression can be used to some extent in the 
analysis only if K is small. Then (3.2) is valid if r_ is 
replaced by rjmkiJ./k + (1- k/J./k)rjn• G = 0 and K = 0 
everywhere (except for the common factor G2), and 
[1 + v'f'+Kl/2 is replaced by k /k. 

A comparison of (3.2) with (2.8) shows that Wnj has 
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the same formal structure as the corresponding expres­
sion for the fixed atom whose resonant frequency is 
converted with respect to the Bennet distribution maxi­
mum and which has the widths r.t and ro instead of rjm 
and rjn respectively. The physical meaning of ro and r± 
is as follows. The perturbation theory distinguishes be­
tween step-wise and two-photon processes whose line 
shape is determined by the factors 
([rjn + i(nJ..L -kJ..L ·v)]-1) and ({rjm + i[(nJ..L +n) 
- (kJ..L + k) · v]}-1). In our case the averaging is carried 
out essentially with the Bennett distribution (since rB 
« kJ..L v) and the result of the averaging is [ro + izr1 and 
[r ± + iz]-1 l16l. Consequently ro is the line width of a 
step-wise transition that is the sum of the width rBkJ..L/k 
of the velocity distribution converted with respect to 
Doppler shifts in the wnj region and the natural width 

r jn of the n- j transition. Correspondingly r± is the 
line width of two-photon transition consisting of the . 
natural part rjm and the Doppler part rB(kJ..L/k ± 1). 

Thus the physical meaning of the analogy between (3.2) 
and the line shape of an "effective atom" is quite clear. 
The "effective atom" represents the group of atoms 
that interact with a strong field. The "effective atom" 
has the same system of terms as in Fig. 1 except that 
the widths are changed in accordance with the Bennett 
distribution and frequency- correlated properties of the 
stepwise and two-photon processesl16 l. 

Just as in the case of an individual atom, the step­
wise and two-photon processes in the "effective atom" 
cannot be considered independently if G is sufficiently 
largel16 l. In fact the numerator in (3.2) contains G2 and 
its expansion in terms of simple fractions 

1 

[fo + iz][f ± + iz] + G2 

1 

(z1 +' iz) (z2 + iz) 

= ~~ z2 [ z2 ~ iz - z1 ! iz J ' 
Z1,2 = 1/z{fo + f± ± 

± l'(fo- f±) 2 - 4G2} 
(3.4) 

yields resonant numerators with z1, z2 rather than with 
ro, r±. Under certain conditions the radical in (3.2) can 
turn out to be imaginary, which would correspond to the 
splitting of the levels of an effective atom. 1> 

Equation (3.2) shows that when Ymn = r m the effect 
of velocity distribution variation is completely elimina­
ted and only the NIE remains. The physical meaning of 
this is quite clear. The external field transfers some 
atoms from the upper level to the lower; at the same 
time however the relaxation transition is reduced by the 
same quantity since there are no other channels of decay 
from the upper level. On the other hand the polarization 
stimulated by the field at the transition m-n does not 
turn to zero (see (2.8), expression for rnm) and NIE 
remains unchanged. The transition 6p 1P~- 7s3S1 of 
mercury, X = 1.529, at which generation was observedl7l 

can serve as an example of a case in which the condi­
tion Ymn = r m is valid. 

I) In [4 ], term 4G2 under the radical sign was dropped, so that the 
whole series of phenomena discussed below was lost. 

-r 'l/2, 

FIG. 2. Plots of the frequency dependence of the functions r± 
(z = n ll + n kll/k) for real z1 and z2 • The curves correspond to the 
following values: 1- z1 /z2 = 5; 2- z1 /z2 = 2.5; 3 - z1 /z2 = 1. 

The interference effect. We examine the interference 
term f.t(nJ..L) in greater detail. Based on (3.2) and (3.4) 
we have 

k~ G2 1 =F y1 + X [ 1 1 ] /±(Q~)=--=--- ------ . (3.5) 
k f1 +X z1 - z2 Z2 + iz Zt + iz 

The line contour of Re[f.t(nJ..L)] has the simplest shape 
when z1,2 are real. In this case it follows from (3.5) 
that the function Re f. changes sign in going from the 
center of the line to the wings. The sign of Re f. at the 
point z = 0 is determined by the factor 1 ± ff+K and 
depends therefore on the relative direction kJ..L and k. 
When kJ..L · k > 0 the value in the center is negative and 
in the opposite direction it is positive. When the values 
of the external field are small (K ~ 1) we have Re f. 
~K2 andRef_~K. 

The function 

[ k G2 1+¥1+x]-' 
f±(z) = ~ Re/±(z) 

k l'1 + x z12 

is illustrated in Fig. 2 for z 1/z2 = 1; 2.3; 5. According 
to Fig. 2 the graphs have an approximately similar shape 
(the positive maximum in the center and broad negative 
wings) for any values of z1/z2. However the larger z1/z2 

the narrower and more intense the maximum. When 
z2 « z1 its width is approximately equal to z2 and its 
intensity in the center is proportional to z;/. This case 
seems to be the most interesting from the practical 
point of view. 

We consider the conditions for which the relation 
z2 << z, is valid. For the "interference" direction 
k/-L · k < 0, in which the effect is sharper, the expres­
swns for z,, 2 can be represented in the form 

1 { ( 2k~ \ ' } Z1,2=2· f;n+f;m+f k-1 ±l'(fy1+x+f;,.-f;m} 2 -4G2 • 

(3.6) 
According to this formula the absence of splitting and 
the considerable difference between z 1 and z2 are due to 
the conditions 

r + I';n;;:.,. f;m. k~ ~ k, f2x I G2 = (f-r) 2 ;;:.,. 1. (3. 7) 

Here the radical in (3.6) can be expanded into a 
series: 

(3.8) 

We see from (3.8) that the minimum value of z2 equals 
the line width of the forbidden transition rjm' In many 
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cases we can expect that rjm « rjn· Consequently the 
emission spectrum at the transition j - n can contain a 
structure with a considerably smaller width than is 
typical of the given transition. The value of z2 increa­
ses with the field but much slower than z 1 when 
(k!l - k)/k « 1. 

The amplitude of the interference term 

' k" 1 + 11 +X G2 k" 1 + 11 +X G' 
J-(0)= -~~-- = . ===- (3.9) 

k Vi +" ZjZz k 11 +" r,r_ + G2 

as a function of G2 is a curve with saturation where one­
half of the maximum value is reached approximately for 
G2 = ror_. Therefore the ratio G2/ror_ = K_ can be 
interpreted as the saturation parameter of the effective 
atom. If (kll - k)/k « 1 and ro » r_, the width 
Zz ~ rjm[1 + K_] is also determined by the quantity K_. 
We note that K_ < K. In fact, according to (3.7) and (2.6). 

X r ( k ) -1 r k --1 ~-=l'oLt2 =2 r;m+ --":.-1 f11+>< fin+-!'f11+x 
X- k . k _ 

fm + fn-Ymn 
X----~-
. fmffn 

(3 .10) 

By virtue of the obvious inequalities 2 r_ > r m, ro > r, 
and rm + rn- Ymn > rn, the right-hand side in (3.10) 
is larger than unity. Therefore as G2 increases the 
population difference in the center of the Bennett distri­
bution is equalized first since it is proportional to 
K/(1 + K). The amplitude of the interference term is 
determined by the ratio K j (1 + K _), retains its linear 
dependence up to large values of G2, and becomes satur­
ated at K_ = 1. At the same time the width of the central 
maximum increases, becoming twice as large at K_ = 1 
at the same value of the field. 

We now consider the behavior of the interference , 
term when kll is parallel to k. We first show that z1 
and z2 cannot differ significantly in this case. In fact, it 
follOWS from (3.4) that Z1 and Z2 differ Sharply if ro + r+ 
~ ro- r+ or ro + r+ ~ r+- ro. These conditions in turn 
are equivalent to the inequality systems (see (3.3)) 
rjm » r, rjm » rjn or rjn » r, rjn » rjm which 
can be readily shown to be invalid in spontaneous re­
laxation and in impact broadening of lines. Consequently 
the roots Z1 and z2 are of the same order of magnitude 
in the direction kll · k > 0 and the structure is relatively 
not sharp. According to (3.5) the amplitude f+(O) is 

k" 11 +x -1 G2 

f+(O) =- I·· ,;1 +. v --- (3.11) 
• , ~- fof + + G2 

Comparing (3.11) and (3.9) we see that jf+(O)I < L(O), 
i.e., the amplitude of the structure in the direction 
k!l · k > 0 is always smaller than for kgk < 0. 

So far we considered z1, z2 to be real. Now let 

21,2 = Zo ± i\;, Zo = (l'o + 1'±) /2, b = 1G2 - (fo- f±) 2/4, (3.12) 

Re/±(z)= k•__1=i=l'1 t_2<_G'[ z+s - z-1; ].(3.13) 
k 11+x 2\; zo'+(z+.\;) 2 zo'+(z-\;) 2 

The general shape of the graph Re f± depends on the 
ratio !;/zo, as is apparent from Fig. 3. When !;/z0 is 
small the contours are qualitatively indistinguishable 
from the case of real, but similar, z1, z2 (see curves 1 
and 2 in Fig. 3). It is of interest therefore to determine 
the maximum possible values for the ratio t/zo. We can 
show using (3 .12) and (3 .2) that under the most favorable 

FIG. 3. Plots of the frequency 
dependence of the functions r± for 
complex z1 and z2 (z1 2 = z0 ± in. 
The curves correspond to the fol­
lowing values: I - r = 0; 2- r = z0 ; 

3- r =yTzo. 

FIG. 4 

t {,Jz) 

FIG. 5 

FIG. 4. Plots of the frequency dependence of the functions t± for 
real z1 and z2 . The curves correspond to the following values: I - z1 /z2 

= 5; 2- z1 /z2 = 2.5; 3- z1 /z2 =I. 

FIG. 5. Plots of the frequency dependence of the functions 1'± for 
complex z, and Zz, r = Zo. The curves correspond to the following 
values: I - c = -I; 2 - c = 0; 3 - c = I. 

conditions {; s. v'3zo. The curve in Fig. 3 corresponding 
to !; = ·/3zo indicates the maximum effect of line split­
ting. The "fuzzy" splitting of the interference term has 
a physical meaning: the increasing G2 is accompanied 
by a rise in the atomic level splitting occurring to­
gether, however, with an increase in the line widths of 
effective atom, ro, and r± due to the broadening of 
Bennett distribution (see (2.6)). Nevertheless we can 
observe level splitting even with a large Doppler broad­
ening since the shape of curve 3 in Fig. 3 is still sig­
nificantly different from the others. 

Nonequilibrium addition to the velocity distribution. 
We turn to the term F± (Oil) in (3.2): 

F±(Q.)= _k,._rn-'( 1 _ Y~n\ --~ -~-[ z,- [± _ _:2 -_r~ J. 
k Im fn11+xz,-z, z,+,z zz+tz 

(3 .14) 
In the case of real z1,2 the sign of z 1- r+ and z2 - r. is 
the same but depends on the sign of ro --r+. If ro > r+ 
then zl,2- r± > 0; on the other hand, if ro-< r± then -
z 1,2 - r± < 0 (see (3.4)). According to Fig. 4 of particu­
lar interest is the case of strongly different z 1 and z 2 

when Re [F +(z)] has the form of a broad dispersive con­
tour (the wfdth z1) with a sharp notch (or spike) in the 
center (the width of z2 « z I). The conditions that allow 
for z1 >> z2 were analyzed above. We note that z2 << z 1 
can be realized when kJ..L • k < 0. 

If z1,2 are complex, Re [F±(nll)] has the form 

k" Zo ( Ymn ) G 2 { 1 Re[F+(z)] = ----- 1-- ---=== ~~---
- k fn fm 11+x Zo'+(z+.\;) 2 
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+---1 ___ r.-r±~r z+s z-\; l} 
zo'+(z-\;) 2 r.+r± s Zu2 +(z+s) 2 - Zo2 +(z-~) 2 • 

(3.15) 
In contrast to (3 .13) the possibility to observe splitting 
is determined now not only by the ratio ?;/z0 but also 
by the magnitude and sign of the factor (ro- r.)/(ro + r.). 
From (3 .3) for ro, r± we can see that -1 < s - -
- (ro- r±)/(ro + r 1) < 1. Figure 5 shows plots of 

F± = [ k~ (1- Vmn)_____!}_'--)ReF± 
k r m zorn ¥1 + ?( 

for the limiting values of the factor s and for ro = r±. 
According to Fig. 5, a sharply defined splitting effect 
can occur even with /; = z0 which is less than the possi­
ble limit of /; ~ zo-v3. Particularly significant is curve 
3 in Fig. 5 according to which the intensity is much 
lower in the center than in the side maxima. Using 
(3.15) we can obtain for /; = z0 , kf.l ·k < 0, and kf.l = k: 

Re[L(O)] 5 L ~ ~ f;m . (3.16) 
Re[F-(s)] 2 f 0 +2L 2 f;n+2f;m+fl'1+.x 

Consequently if rjn + rB » rjm• the ratio (3.16) is 
much smaller than unity. The condition ro » r_ corre­
sponds to the value s = 1 and it can be satisfied for 
rv'I+K » rjm" 

Comparison of F:!:(OIL) and (~;(OIJ.). It is clear from 
the preceding discussion that the frequency dependences 
of F + and f. are similar in general and in some cases 
one term c-an emphasize or, conversely, concentrate the 
effects contributed by the other. 

We now consider the properties of the sum F + and f. 
and determine the weight of each of the two terms. We­
begin with the case of real roots z 1,2. In this case the 
curves Re [F±(z)] andRe [f±(z)] are of the same type 
throughout and we may limit the analysis to a single 
point z = 0 (maximum or minimum). From (3.3) and 
(3.4) we find 

Re[F,(O)+ /±(0)} = k~ G'f~ f ~( 1- Ymn) + _!_(1 + 1'1 + x) l· 
hz.z,l"1-,-xlin· rm r± -

(3.17) 
The first term in the brackets is associated with F + and 
the second with f:t. The appearance of the factors 1/rn 
and 1/r:t is understandable: 1/rn determines the time 
of interaction of an atom at the n level with the field. An 
analog of such an "accumulati~m time" for the interfer­
ence term is the quantity 1/r •. 

In addition to the factor 1 .=. Ymn/rm, whose role 
was discussed above, the relation between F .(0) and f.(O) 
depends on the relaxation constants, field amplitude, -
direction of observation, and the ratio kf.l/k. To observe 
NIE even with Ymn << rm the most convenient condi­
tions obtain when kf.l = -k and rjm « rn; furthermore 
its role increases with the rise in field intensity. Con­
versely when k and kiJ. are parallel we can expect an 
almost complete elimination of NIE because the inequal­
ity r. » rn[v'I+K- 1]/2 can be assured by rjm » r n• 
r » rn, K « 1, and kiJ. > k. Therefore Re [F±] as well 
as Re [f.] can be predominant depending on the values of 
the numerous variable parameters. 

If z1,2 are complex the expression for Re [F + +f.] 
differs from (3.15) only by the substitution of factor s 

fo-r± fn ( Vmn)-• _ --
c=-- -- 1-- [1+l'1+x], 

fo+r± ro.+f± fm 
(3 .18) 

where the second term reflects the role of Re [f.]. We 
can show that the value of c varies between + 1 and -1. 
Therefore the total contour can be deformed within the 
same limits as Re [F.] (see Fig. 5). 

We now consider wnj for the intermediate values of 
the angle () between k and kw We denote the velocity 
component perpendicular to k by u: 

Q/= Q~- kusin e- k~vcos e, Q' = Q- kv. (3.19) 

According to (3.19) the averaging with respect to v leads 
as before to (3.3), except that kiJ. must be replaced by 
kf.l cos() (apart from the common factor in F! and f1) 

and n IJ. by n J.1 - ku sin (). The subsequent averaging with 
respect to u can be carried out although only its result 
is given here. When the angles are small, 10 I « r./kv, 
ro/kv, there is practically no variation of wnj· 

The same consideration applies to the angles 11T - ()I 
« r_/kv' ro /kv. When IO I (or 11T - ()I) increases above 
the indicated values the spectral width of the functions 
F ±' f± increases approximately as kv I sin ()I and reaches 
the full Doppler width when() ~ 1T/2. Since the integra­
ted intensity of the correction to Wnj due to strong field 
does not depend on (), the amplitude of this correction is 
kv/ro times lower than in the above cases. All these 
phenomena are due to the fact that the strong field 
represents a plane monochromatic wave and causes 
changes in the distribution of only one velocity compon­
ent. Therefore the case of () = 0 and the adjacent direc­
tions of kiJ. is the most interesting one. 

Our analysis deals with the case where both fields 
represent plane traveling waves. The experimenter may 
find it convenient to use a strong field within the resona­
tor of a suitable gas laserl4 ' 11 ' 12 J. The strong field then 
has the form of a standing wave and the pattern of events 
is somewhat different. When the departure from reson­
ance in the strong field is greater than the width of 
Bennett distribution ( IO I > ro, r.)' one can regard the 
two traveling waves as fully independent because they 
interact with different groups of atoms. Therefore the 
expression for w nj now contains, instead of F +(0 IJ.) 
+ f+(OJ.l) or F_(OIJ.) + L(OIJ.), the sum of these terms 

F+(Q~) + f+(Q~) + F_(Q~) + /-(Q~). (3.20) 

All the singularities of the terms with indices + or -
are now at the distance ±OkiJ./k from the line center 
(see definition of z in (3.3)) and they overlap. Thus all 
that we said for the case of a strong field in the form of 
a traveling wave remains valid for that of a standing 
wave. At the same time different frequencies should 
produce effects corresponding to "interference" and 
"non- interference" directions. 

On the other hand if the condition 10 I > r does not 
hold, the Bennett distributions stemming from two op­
posed waves overlap and we have a different situation. 
We can say that the additive property of nonlinear effects 
due to opposed waves appears a priori in the first ap­
proximation (with respect to G2), i.e., (3.20) is valid if 
G2 is left in the expression for F. + f+ only in the form 
of a common factor. The invariance of (3.2) in succes­
sive approximations with respect to G2 is due to the fact 
that large fields generate a spatial inhomogeneity of the 
medium (with a period of ~/2)l 13 J. Consequently the 
atomic probability amplitudes are subject to a form of 
phase modulation and the atomic levels are split into a 
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number of sublevels larger than the two sublevels typi­
cal of the traveling wave. The above modulation was 
investigated in[15 ' 181 in the case of resonance fluores­
cence and it was found that the emission spectrum 
changed significantly. 

4. GENERATION IN THE PRESENCE OF EXTERNAL 
FIELD 

In Sees. 2 and 3 the fields that resonated with transi­
tions n- j, g- n, etc., were considered weak (Fig. 1). 
Experiments[ 131 showed that generation at these transi­
tions was a convenient method of studying NIE. There­
fore we now consider generation at the g - n transition 
(since it was studied in[131 ). The unsaturated (with 
respect to G/J.) gain at the g- n transition changes in an 
external field G that is resonant with m- n (see Sec. 3). 
To compute the generation power at g - n we must know 
the saturation function of the g - n transition. We can 
show that once the conditions 

are satisfied, saturation at the g- n transition is the 
same as in the case of G = 0. Therefore the generation 
power is determined by the standard formula: 

I'n -1- fg- Yns_ G 2 = [1 _1lN exp{Q~2/(k~v) 2}-l- a l[t + l',g" l-1 • 

fnfgfng ~ Ng-Nn fng'-I-Q~2 ' 

(4.2) 
a- k~(N -N )G'{1-Ymn/fm[ fo2 

- k m n I'nfo fo2 -I-(R~+k~Q/k) 2 

fo2 J 1 [ r+ 
+-f-o2_-I-_(Q.,....~--.:........,k~Q/k) 2 + f -1- fan- f 8m f+'-1-(Q~- k0Qjk) 2 

fo2 + (Q~_:_ T.l~Q/k) 2 ]} ' ( 4•3) 
. k 0 {fgmkp./k-1-(1-k~/k)fgn, k~<k 

lo=fgn-1-kf, f+= fgm-l-(k~/k-·1)f, k~>k (4.4) 

where .6N is the threshold population difference for 
G = 0 and 0 J.1. = 0. In the absence of the external field 
(4.2) determines the usual dependence of power on n J.1. 

with the "Lamb dip." The term 01 introduces an 
additional spectral structure. 

We consider the case when the role of atomic colli­
sions is small, so that r + r gn- r gm = r n· A "spike" 
or a "dip" (depending on the sign of Nm- Nn) then ap­
pears at the frequency n Jl = -S)kJJ./k 

L= N"'-JV2'~~( 1 - Ymn) fo2 
.• ( 4 .5) 

Nn-Ng k fnfo fm' fo2 -I-(Q~-I-kv.R/k) 2 

Another "spike" or "dip" appears at n Jl = kJJ.O/k 
(Fig. 6) 

l+=Nm-Nnkv._lEf[fo f+' Ymn l'o2 l; 
N, -N, k f,l' 0 f+f+'-I-(Rv.-k0 Q/k) 2 I'm fo2 -I-(Rv.-kv.R/k) 2 I 

(4.6) 
if rm, rg « rn and [1- kJJ./kl « 1 then r. « r and 
r. « rgn (see (4.4)). Consequently we see from (4.5) 
and (4.6) that in this case the "spikes" L and I. differ 
sharply from each other in width and height. The second 
term in (4.6) contributes significantly only to the wings 
of the I. contour so that the width of this "spike" is 
much smaller than the natural width at the g- n transi­
tion. When y mn = r m the ''spike'' L vanishes and only 

FIG. 6. Frequency dependence of generation power. 

the interference "spike" I+ remains with singularities 
in the wings (a "spike" in a "trough"). In the other 
limiting case of rm >> rn, rg; r. ~ ro both spikes have 

the same width and vanish when Ymn/rm- 1. When 
n = 0 and r+ « rgn• the above singularities occur in the 
floor of the Lamb "dip" as shown schematically in 
Fig. 6. 

Two generation peaks differing in width were ob­
served in[ 131 • A strong frequency dependence of genera­
tion in the region L can be utilized for effective output 
power stabilization of generation frequency. 

We consider the dependence of generating emission 
frequency on the natural resonator frequency. The gen­
eration frequency is determined by the requirement that 
the field phase shift in a double pass of the resonator be 
a multiple of 27T. The value of the refraction index 
necessary to compute the phase can be found from 

no= 1 + 2nN Re {rngdng} (E~ / 4)-1, 

where E/J. is intensity of the field resonating with the 
n- g transition. If [0/J.I « k/J.v the generation frequency 
is determined from the equation 

where wp is the natural frequency of the resonator and 

( kp. fofg,Q 0 ) 1 1 
- Q~-kQ-2I'g."-I-Q"2 f 02 -I-(Rv.-kv.R/k)2 . 

The first term in the curved brackets of (4.7) describes 
the known phenomenon of ''pulling'' the generation fre­
quency by the natural resonator frequency towards the 
center of the atomic line. The second describes a 
"repulsion" of the generation frequency from the tran­
sition frequency towards the resonator frequency pro­
portional to the quantity (N - Nn)/ .6N- 1. On the curve 
of n Jl as a function of np (~ig. 7) the first effect corre­
sponds to the deviation of the n Jl asymptote from the 
straight line wp - w gn = n Jl by an angle of the order of 

.6wp/kJJ. v, and the second effect corresponds to the 
singularity of the order of -12r gn near n Jl = 0. 
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FIG. 7. Generation frequency as 
a function of resonator frequency. 

We consider singularities occurring in the curve U J.L 
in the region of frequencies /UJ.L ± UkJ.L/k/ ::;; r.,o if 
rng << U « kJ.L v. For a purely spontaneous relaxation 
and Ymn « rm we obtain from (4.7) 

~V=Q~-Z,_ AwpNm-N~~_,.__/_G/~. r+.o(Q~=t=!2k~/k) (4.9) 
l 2 t.N k f nf.c.o r~.o + (Q~ + Qk,Jk)" 

The term proportional to t.wp/kM v has been dropped. It 
appears from (4.9) that in the presence of an external 
field when UM = ±UkJ.L/k the dependence of generation 
frequency on the natural resonator frequency increases 
when Nm- Nn > 0 and decreases when Nm- Nn < 0: 

( dQ,, ) r .~w, l 'Vm -.Y, "~ G2 ]-' 

dQ)I± Q =±It !l ./It =l 1 __ 2r± Tr ~~l-:--r1!r+.ll _ · 
•' . 

In the latter case this phenomenon can be used for pass­
ive stabilization of the generation frequency. The lower 
the resonator Q the greater this effect. If Ymn = rm the 
singularity at UJ.L = -UkM/k vanishes. At U = 0 all the 
singularities in U J.L as a function of Up appear only when 
/U M I ~ max { rng• ro, r.}. The dependence of u M on up 

can be cumbersome in this case. However if r+ << rng• 
ro, the most pronounced is only the contribution from r •. 
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