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The problem of the motion of a particle in a one-dimensional periodic array of small-radius potential 
wells is considered. Expressions are obtained in closed form for the energy band, the band width, and 
the effective mass of a particle moving in such a field. It is shown that a negative-energy state should 
exist in this case for a well of arbitrarily small depth. The wave function obtained is in fact a Green's 
function and can be employed to solve the general problem of motion of a particle in the field of a 
linear periodic array in three-dimensional space. 

1. The method of small-radius potentials has been 
widely used of late in different branches of quantum 
mechanics. It was first used by Smirnov and Firsovu1 

and by Demkovl2' 31 in the problem of interaction of 
negative ions w1th atoms. This method was used by 
Demkov and Drukarevl4 ' 51 to study the properties of a 
particle moving in an electric or magnetic field, by 
Adamov et al. [61 for molecular systems, and by 
Subramanian [7.1 in the problem of elastic scattering of 
electrons by molecules, and also for an approximate 
solution of the Schrodinger equation and to find the 
eigenvalues of the bound states of a particle in a poten
tial of rather general formLBJ. In this method, as is well 
known, the true potential is replaced by certain small
radius potentials, each of which in turn is replaced by 
a boundary condition on the wave function in the vicinity 
of the point where it is located: 

(1) 

The parameter ai characterizes here the depth of the 
well. 

2. In all the aforementioned applications of the 
method, a study was made of the motion of the particles 
in the summary field of a finite number of small-radius 
wells of constant or variable depth and of an external 
electromagnetic field. When there is an infinite number 
of such wells, the Schrodinger equation for the wave 
function of a particle in this field can usually not be 
solved in closed form. An interesting exception, how
ever, is the case of a one-dimensional periodic chain 
of small-radius potentials in three-dimensional space. 
This problem can be used for an approximate study of 
the negative ion of a linear polymer molecule. We must 
emphasize here the difference between the investigated 
problem and the Kronig-Penney model. In the latter 
they studied the wave functions of particles moving in 
the field of a one-dimensional periodic chain in one
dimensional space, whereas in our case the particle 
moves in three-dimensional space, although the poten
tial wells lie at points forming a one-dimensional chain. 

3. Let us assume that an infinite number of small
radius wells lie along the x axis at points x = na, where 
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n runs through all integer positive and negative values 
(including zero). We can immediately write down an 
expression for the wave function of the particles in such 
a field: 

1Jl(r)= ~An exp(-klr~naij)' 
n lr-na•l (2) 

where i is a unit vector along the x axis and 
E = -k2 h2/2m < 0. According to the Bloch theorem, 
the solution of the Schrodinger equation in the field of 
this periodic potential should be of the form 

.p(r) = exp (ixri)u,(r), (3) 

where the function uK(r) has the periodicity of the chain: 

u,.(r + mai) = u,(r); 

K is the particle quasimomentum. This requirement is 
satisfied if one chooses An= exp(iKna) and one omits 
the normalization factor, which is of no significance in 
the solution of the problem. We thus obtain for the wave 
function of the particle the following expression 

_ ~ exp(ixna-klr-nail 
'ljl(r)-..:::J I "I . 

n r-nai 
(4) 

Applying to the function lj!(r) the boundary condition (1), 
which it must satisfy in the vicinity of each node of the 
chain (we put ai =a), we obtain a relation between K 

and k, i.e., the connection between the quasimomentum 
and the energy: 

a=k- ~ exp(-nka)cos(nxa), 
na 

n=l 

(5) 

which yields after summing the series in the right-hand 
side 

ch ka = 112(exp(aa) + 2cos(xa)]. (6) 

It is easy to show that for positive particle energies we 
get in place of (6) 

aa = lnl2(cos(k'a)- cos(xa)) I, (6') 

where k' = (2mE/!i 2 ) 112 • The dependence of the particle 
energy on the parameter aa is shown in Fig. 1 for dif
ferent values of the quasimomentum. At any value of 
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FIG. I 

a a, there exists one and only one band in the region of 
negative energies. 

4. It is obvious that in the case of large values of 
a a (a a » 1) the interaction of the potential wells is 
small and the band lies entirely near the energy level of 
the isolated well, i.e., k f>:; a. This follows directly from 
(6), if cos Ka is neglected compared with cosh ka, and 
cosh ka is replaced by 7'2exp(ka). The width of the band 
in this limiting case can be readily estimated: for the 
upper (Ka = 1T) and the lower (Ka = O) boundaries of the 
band we have respectively 

k,a ~ In[exp(aa)- 2) ~ aa- 2exp(-aa), 

k.p. ~ In[exp(aa) +2] ~ aa+2exp(-aa). 

From this we get for the width of the band the expres
sion (which is valid when a a » 1) 

IJ.E = fl.2(k02- k12) /2m~ 4ali2exp (-aa) /ma. (7) 

Thus, the width of the band decreases exponentially 
with increasing aa. 

With decreasing a a, the band broadens, and the en
ergy level of the isolated well remains at all times 
inside the band. This follows from the inequality 

1/2{explxl + 2) > ehx > 1/2(explxl- 2). 

when a a= ln 4, the upper edge of the band (a a= 1T) coin
cides with the boundary of the continuous spectrum 
(E = 0). At low values of a a (including negative ones) 
the boundary of the continuous spectrum is reached at 
values of aa smaller than 1T. However, the lower edge 
of the band always remains in the region of negative 
energies. Indeed, Eq. (6) with K = 0 has a solution for 
any value of a a. This is connected with the fact that in 
this case the problem is analogous to a certain two
dimensional problem regarding the motion of a particle 
in a field of one potential well, where a bound state 
always exists. 

A consequence of this result is that in sufficiently 
long linear polymer molecules there are always bound 
states. It should be noted that this result is general 
and does not depend on the form of the potential, where
as at small values of the energy the approximation of 
small-radius potentials is, in the limit, exact for any 
potential (that decreases sufficiently rapidly with the 
distance). 

5. At large negative values of aa, we can estimate 
for a polymer molecule the number of links No at which 
a bound state of an electron appears. In this case each 
link is a minute well, incapable of retaining the elec
tron. For the lower energy level of a finite chain of N 
links we have NKa f>:; rr. From this, assuming that Ka 
and ka are small and using (6), we obtain the condition 
for the existence of the bound state: 

n;2 1 
2JV2a2 < 2a2 exp ( aa) ' 

N>nexp(- ~ aa). 

On the other hand, if we take a chain nN links long, it 
will contain n bound states. 

6. We can also obtain within the framework of this 
model an expression for the effective mass of a particle 
moving in the field of a one-dimensional chain of small
radius wells. 

Using (6) and the relation between E and k, we obtain 
after few calculations 

where ko is the value of k at K = 0. For the effective 
mass of the particle m* we obtain the formula 

m" = li2 ( ii'E) = m shk0a (8) 
8x2 x~o koa · 

With the aid of (6) we can rewrite this relation in the 
form 

m" (A2-1)'i• 

m ln[A+(A2-1)'f,]' 

where A= 7'2exp(aa) + 1. 

(9) 

The dependence of m*/m on the parameter aa is 
shown in Fig. 2. The ratio m*/m increases, as expec
ted, with increasing a a (i.e., with increasing depth of 
the wells). At large negative values of aa (very shallow 
wells) we have m*/m f>:; 1, i.e., the effective mass al
most coincides with the true mass. This corresponds to 
free motion of the particle. 

7. The proposed model is well suited for low ener
gies of an electron moving in the field of the chain. It 
is possible, however, to propose a modification of this 
model also for not very small E, when several small
radius wells are situated in each cell of the chain. In 
this case it is necessary to calculate the value of the 
wave function (4) not only at the points r = nai, but also 
to points where other wells are located. It is easy to 
propose a rapidly converging program for the calcula
tion of the f\lnction (4). The problem of calculating E(K) 
then becomes purely algebraic, and, by replacing the 
real link of the polymer molecule by a sufficiently large 
number of wells, we can attain, in principle, an arbi
trary high aceuracy for a real problem. 

8. We have considered here only negative energies 
E < 0. When E > 0 it is also easy to obtain analogous 
solutions of the Schrodinger equation; they can be used 
to describe the scattering of electrons by a polymer 
chain. 
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