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The dependence of the structure of the disturbed region on the degree of nonisothermy of a plasma is 
investigated for large distances from the rapidly moving body. If Te/Ti < 1.76, the particle density 
behind the body is small. If Te/Ti > 0.23 the rarefaction is maximal along the axis behind the body, 
whereas for Te/Ti < 0.23 the rarefaction is maximal along the cone of maximal rarefaction. High 
and low particle densities are observed in the disturbed region if Te/Ti > 1. 76; if 1. 76 < Te/Ti 
< 2.43, the maximal condensation occurs on the axis behind the body and for Te/Ti > 2.43 the den­
sity is maximal on the maximal condensation cone enclosed by the maximal rarefaction cone. 

1. INTRODUCTION 

THE perturbation of a rarefied non-magnetized plasma 
by a rapidly moving body at large distances from the 
body was investigated in a number of papersY-71 It was 
assumed there that the velocity of the body V0 satisfies 
the condition Vi<< V0 << ve, where v = (2KT/M) 1 / 2 

and ve = (2KTe/m) 1 / 2 are the thermal velocities of the 
body was assumed to be metallic, i.e., it was assumed 
that the surface absorbs the particles incident on it. 

The authors of [ 1 - 71 confined themselves mainly to 
perturbations in an isothermal plasma, T e = Ti. The 
maximum perturbation of the particle density at large 
distances from the body was reached on a cone analo­
gous to the Mach cone in ordinary gas dynamics. In an 
isothermal plasma, ion-acoustic waves become strongly 
attenuated, leading to a smearing of the Mach cone. It is 
of definite interest to investigate the influence of the 
isothermal character of the plasma, characterized by 
the parameter 11 = Te/Ti. on the structure of the per­
turbed region, since both laboratory and ionospheric 
plasmas can be essentially non-isothermal. 

2. FOURIER COMPONENTS OF PERTURBATION OF 
PARTICLE DENSITY 

Let us obtain expressions for the Fourier compo­
nents of the perturbation of the particle density at large 
distances from a body moving in a non-isothermal plas­
ma; we use for this purpose a method somewhat differ­
ent from that described in c 11 , where the connection 
with the Cerenkov excitation of the ion-acoustic wave is 
more pronounced. The idea of this method is described 
in a paper by Pitaevskii. [ a1 

We shall consider the perturbation of a plasma by a 
body in an immobile system of coordinates connected 
with the plasma. In this system, all the perturbations 
depend on the time, and in the case of stationary motion 
this dependence enters only in the form of a dependence 
on r' = r - V0t. The distribution of particles of type a 
(a = e, i) is described by the collisionless kinetic equa­
tion 
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r'(v+Vo) , R H , +"))/ =--~il(r- o) (-r(v •o a, 
r' 

(1)* 

where the term in the right-hand side takes into ac­
count the absorption of the particles by the surface of 
the body (the integral of the collisions of the particles 
with the body);[7 1 for simplicity, the body is assumed 
to be a sphere of radius R0; H(x) is the Heaviside func­
tion: H(x) = 0 when x < 0 and H(x) = 1 when x :o:: 0. 
The self-consistent electric and magnetic fields should 
be determined from Maxwell's equations 

divE = 4n ~ e,. ~ /adv, div H = 0, 

4n ~ 1 DE 1 iJH 
rotH=-~ea. vfadv+--, rotE=---. 

c c iJt c iJt 

(2) 

At large distances from the body, the particle dis­
tribution function should, naturally, tend to the unper­
turbed Maxwellian distribution function 

( ma )'/, ( mav2 ) 

Ia" = No 2rrxT" exp - 2xT" ' 
(3) 

and the fields vanish. We linearize the kinetic equation 
at large distances from the body, assuming the devia­
tions from (3) to be small. The linearized kinetic equa­
tion for the Fourier components 

fa(k) = ~ fa(r')e-ikr'dr' 
(4) 

is of the form 

ea. { 1 } i!fa0 · i(kv- w)fa+- E +-[vii] - = la(v), 
ma c iJv 

(5) 

where Ia(v) is the Fourier component of the integral of 
the collisions between the particles in the body, and by 
virtue of the dependence of all the perturbations on r' it 
is necessary to put 

w =kYo. (6) 

From the kinetic equation (5) we see that the per­
turbed distribution functions consist of two terms, one 

*[vH) =v X H. 
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of which describes the perturbation of the distribution 
function by the body itself, owing to the interaction be­
tween the particles on the surface of the body, while the 
other describes the polarization of the plasma by the 
produced field. The linear polarization of the plasma 
can be taken into account by introducing into Maxwell's 
equation the dielectric tensor, [BJ and then all that re­
mains of the current densities and charges in the right 
sides of Maxwell's equations are the "extraneous cur­
rents and charges," due to the perturbation of the plas­
ma as a result of the interaction between the particles 
and the surface of the body, which play the role as field 
sources, i.e., we effect the resolution 

extr + polar r f extrd . k;x;;" E 
1la.=na. na. =J a V-t-- j, 

ea 
(7) 

. - .a extr + ·" polar r t•xtr I . Xij" E 
]iv. = li li = J Vi a l:V -lW- h 

ea 

where rextr satisfies the kinetic equation, but now with­
out the perturbations of the electric and magnetic fields: 

i(kv-w)f:xtr=la(v). (8) 

Eliminating H from Maxwell's equations, we obtain 
w2 • W ~ .. a extr 

-(k(kE]];-&e;z(k,w)Ez=!c'4rr~eaJ; . (9) 

The dielectric tensor is expressed in terms of the po­
larizability tensor: 

e;z(k,w)=.Sa-i-4rrxu(k,w), xi!(k,w)=~ xa"(k,w). (10) .. 
We shall not stop to discuss their calculation, since 
this question is discussed in detail/ 81 and we present 
only the information that will be needed in what follows. 
The dielectric constant of a homogeneous isotropic 
plasma can be represented in the form 

where 

. ,- Wpa.2 
Et (k, w) = 1 + !"}'rr ~-2-zaW(za). 

(!) 
a 

(11) 

(12) 

The notation is standard: "1>a = (41Te~0 /ma) 1 1 2 is the 
plasmafrequency, da = va/wpa is the Debye radius, 

and vO! = (2KTa/ma)112 is the thermal velocity of the 
a -component of the plasma, and Za = w/kv a. The func­
tion W(z) in (12) is the Kramp function:[ 91 

{ 2'. } 
W(z) = e-z' 1 + ,.:.. ) eu'du . 

")'rr o 
(13) 

The polarizability tensor Kij(k, w) has a representation 
similar to (12). For example, the longitudinal polariza­
bility of the a component, which we shall need subse­
quently, can be obtained from the formula 

1 -
xz"(k, W) = 4rrk'da' [1 + i"J'1rrzaW(za)]. (14) 

Resolving in (9) the field and the extraneous current in­
to components that are longitudinal and transverse rel­
ative to the vector k, we get 

4rti ~ .a extr 
Eli=---~ea]ll , 

we1 

E 4rriw ~ ,a extr 
.L =- (w 2e1 - k2c2) ~ eaJ.L · (15) 

Thus, the calculation of the Fourier components of 
the perturbations reduces to a determination of the ex­
traneous currents, which can be readily carried out in 
our case. Let us find the ion contribution to the extrane­
ous current, after first simplifying the integral of col­
lisions between the ions and the body. By virtue of the 
condition V 0 >> Vif the ions are incident on the body 
from the forward end, and since the body moving in the 
plasma acquires a negative floating potential cp 0 , equal 
approximately to (3 -4) KTe/e/ 71 we can disregard in 
the ion -body collision integral, when V 0 >> (KTe / M) 1 ;a, 
the infl.uence of the electric field on the ions, replace 
fi by f~ in the right side of (1), and neglect v compared 
with V0• The Fourier component of the ion-body colli­
sion integral then reduces to the form 

/;(v) = -nRo2 Vofoi(v)G(k). (16) 

The form factor G(k) in (16) is best calculated in 
spherical coordinates with the axis along the vector V 0 

r' = r' {sin 8 cos <p, sin 8 sin <p, cos 8}, k = k{sin x cos <p,, sin x sin <p 1, cos x}. 

We have (17) 
-1 S rV0 G(k)= -- --.S(r-R0)H(-rV0)e-ikrdr 
nRo2 rVo 

"'' =- 2 ) cos 8 sin 8jo(kRosin 8 sin x)exp(- ikRo cos 8 cosx)d8. ( 18) 
0 

where small k, such that kR0 << 1, as will be assumed 
beforehand, the form factor G(k) = 1. This fact is ob­
vious physically-at distances r >> R0 the body can be 
regarded as an exact absorber of particles, absorbing 
N0V0 7TR~ ions (and the same number of electrons) per 
unit time. If we consider a body of nonspherical form, 
then 7TR~ in (16) should be replaced by S-the area of 
the projection of the body on the plane perpendicular to 
the direction of motion. As a result 

. extr ) vfoi (v) k -
J; = iSVo -k--dv = iSN0V0 -k [1 + q'nz;W(z;)]. v-w 2 

(19) 

The singularity in the integration in (19) is gotten 
around in accordance with the Landau rule, i.e., by re­
placing w- w + iv, v- 0.[ 10 1 

The electron contribution to the extraneous current 
is easiest to determine from the continuity equation for 
the electron current: 

(20) 

Since the velocity of the body V0 is small compared 
with the electron thermal velocity, the electron current 
can be directed only among the vector k, and conse­
quently we get from (20) 

(21) 

We note that the electron current (21) can be deter­
mined formally from (19) by replacing Zi by ze = k 
x V0/kve << 1. 

The total extraneous current entering in (15) is de­
termined by the formula 

extr -
~eaia = -eNoV.Syrrz;W(z;)k/k2• (22) 

Since the extraneous current is longitudinal, the elec­
tric field ( 15) is also longitudinal; in the coordinate sys­
tem fixed in the plasma, consequently, there will be no 
perturbation of the magnetic field. In a coordinate sys-
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tern moving with the body, there will exist a weak mag­
netic field owing to the coordinate transformation: 

(23) 

The potential of the electric field (E = -ikcp) will be 
determined, in accordance with (15), where the equation 

4:rr k '1;1 0 extr 
<f = ( k ) k" LJ ea]a o 

WBz , W a 
(24) 

Substituting here the expression given above for Ez(k, w) 
and for the extraneous current, we obtain when 
k2d~ « 1: 

{25) 

In simplifying the electron contribution to Ez(k, w), 
we took into account the fact that ze << 1, and intro­
duced the symbol a 0 = Y0 /vi. Calculating 

extr . I foi (v) SN 1 ,,-W n; = !SV0 J---dv =- oa0 - r:rt (z;) 
kv- w k 

(26) 

and substituting (26), the polarizability tensor of the ion 
component (14), and the field (24) in the right side of {7), 
we obtain, for kde << 1 and ze << 1, a final expression 
for the Fourier component of the perturbation of the ion 
density: 

Nk = -N0 a,S 1n lV(z;) [1 + Te (1 + i1~z;W(z;)) ]-'. {27) 
k T; 

A perfectly analogous expression is obtained also 
for the perturbation of the electron density, since the 
plasma is quasineutral when kde << 1. We note that 
when Te/Ti = 0, Eq. (26) follows from (27); this simply 
denotes that the electric field can be neglected when 
Te-O. 

The equation Ez(k, w) = 0 is the dispersion equation 
for the longitudinal plasma waves. In the case of real k, 
this equation has in the general case, as solutions, the 
complex quantities w{k) = w' {k) - iy{k), where y(k) > 0, 
corresponding to damped waves. The presence of such 
singularities in the Fourier components should lead to 
the appearance of extrema in the spatial distribution of 
<P or oN. Thus, for example, the approach of the poles 
to the real axis ( y{k) - O) leads to the appearance of a 
discontinuous conical wavel 111 (for example, the Mach 
cone in hydrodynamics) if the velocity of the body Y 0 

exceeds the phase velocity of the waves radiated by the 
body w'(k)/k. 

In an isotropic plasma, weakly-damped ion-acoustic 
waves exist when Te/Ti >> 1, and in this case one can 
speak of Cerenkov excitation of ion-acoustic waves by 
a body moving in a plasma. This situation will be stud­
ied in greater detail in the next section. 

3. PARTICLE-DENSITY PERTURBATION AT LARGE 
DISTANCES FROM THE BODY 

The particle-density perturbation is obtained from 
the known Fourier component by using the inverse Fou­
rier transformation: 

oN(r)=-1-~ Nkeikrdk. (28) 
(2n) 3 

The distance from the body r = r - Y 0 t will be denoted 
in this section by r. Since the Fourier component at 

small k has a singularity 1/k, it is obvious without cal­
culations that the law governing the decrease of the den­
sity perturbation at large distances from the body is 
r-a. The angular dependence of the density perturbation 
at large values of r can be calculated in explicit form. 
Introducing a spherical coordinate system with axis 
along the vector Y0 , in accordance with formulas (17), 
we transform the expression for oN, after integrating 
with respect to the angle <Pl, into 

oN(r,O)=- SNoao r kdk ~ ,inxdxB(z)eiknosecosxfo(krsin(Jsinx), 
(2:rr)' 0 0 (29) 

where 

B(z) = -y;-W(z) [ 1 +~~ (1 + i1~zW(z)) r, z = aocosx. (30) 

The divergence in {29) at large values of k in the 
case of integration with respect to k is fictitious, and 
is connected with the fact that formula (27) for the Fou­
rier component is valid only when kR0 << 1. Actually 
the integrand decreases at large values of k in such a 
way that the integral converges. In order to eliminate 
the divergence, we introduce an effective cutoff at large 
k, making the following substitution in the argument of 
the exponentiall 41 

cos e cos X-->- cos e cos X + iti, o-->- +O. 

The integration with respect to k is then carried out by 
using the Lipschitz integral[ 121 

00 

r e-"'lo(bt)tdt = a 
~ (a'+b 2)'• 

(31) 

with Re a> 0, and the value of the root ..Jaa + bZ is cho­
sen such as to satisfy the condition 

I a + -ya' + b'l > I b 10 

After simple transformations we reduce {29) to the 
form 

(32) 

. SN0a0 cos a ~~ t dt 
1):\(r a)= B(aol)· --:-;;----;c:-;~----c).,--' ·{33) 

' (2n)'r' ., (t'- sin2 a- 2Uit sign cos a " 

The angle a is the angle between the vector r and the 
axis -Y0 , so that cos a > 0 behind the body and 
cos a < 0 in front of the body. It is necessary to choose 
the negative branch of the root in {33) when t 
< -I sin a I, and the positive branch when t > I sin a 1. 
The integral in {33) was tabulated numerically for the 
case of an isothermal plasma and for different values 
of aa in [ 4 ' 51• 

Taking into account the connection between the de­
nominator of B{z) and the dispersion equation for ion­
acoustic waves, we can develop a simple approximate 
method for finding the perturbation of the particle den­
sity, as was done in l 61 also for the case of an isother­
mal plasma. We apply this method to the investigation 
of the influence of the non-isothermal character of the 
plasma on the structure of the perburbed region at 
large distances from the body. Making the substitution 
act= z and taking into account the choice of the 
branches, we can extend the integration contour in (33) 
to ± oo when aa >> 1, accurate to exponentially small 
terms (of the order of /1i a~3 cos-3 a exp {-a~)), reduc­
ing (33) to the form 
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where 

Sao2 
6N(r, a)=- No--cosaF(aosina), 

:rrr2 

1 1 B(z)z d 
F(a) =- 4n J (z2- a2)'1• z, 

L 

(34) 

(35) 

and the integration contour L for cos 0! > 0 is shown 
in Fig. 1. 

The function F(a) is universal (apart from exponen­
tially small terms) for the parameters of the problem, 
and does not depend on ~. but only on ~ sin 0!. The 
positive values of F(a) correspond to a decrease in the 
plasma density, and negative to condensation (when 
cos 0! > 0, i.e., behind the body). The universal func­
tion should satisfy a sui generis conservation law for 
the number of absorbed particles, which follows from 
the decrease of the particle density perturbation func­
tion in proportion to r-2• Integrating over a remote 
sphere at whose center the body is located, we get 

~ 6N dS = const = - SN,. 

Substituting (34), we find that the function F(a) has the 
property 

ao i 
S aF(a)da = 2 . 
0 

(36) 

Were we to consider the region in front of the body, 
cos 0! < 0, then the integration contour L would go 
around the branch points ±a from above, and could 
therefore be closed in the upper half-plane of z, where 
the integrand has no singularities; that is to say, in 
front of the body, at large distances from it, the plasma 
is not perturbed, oN = 0. When cos 0! > 0, such a clos­
ing of the integration contour leads to an integral over 
the edges of the cut joining the branch point ±a, which 
is difficult to calculate analytically. 

In the lower half-plane, the function B(z) has poles 
when its denominator vanishes, i.e., 

T. -
1 + T; (1 + i)1nzW(.z)) = 0. (37) 

This condition is a dispersion equation for the ion­
acoustic waves when kde << 1, provided z = wlkvi. 
Since W * (z) = W(- z *), the poles of the function B(z) 
are located symmetrically relative to the imaginary 
axis and we can confine ourselves to consideration of 
the quadrant x > 0, y < 0. Asymptotically, at large 
I z I, the poles should lie near the line qJ = -rrl 4. Since 
the Kramp function has in the lower half -plane the 
asymptotic form 

W(z)= 2e-z' + --:!.-[1 +-1-+ ... ]. (38) 
"f:rr.z 2z2 

it follows that, by substituting in (37) z = p exp [i( -rrl4 
+ 0!)] and expanding in powers of 0!, it is easy to obtain 
an asymptotic expression for the poles: 

-- -II 
0 

3:rr. 
Pn2 =4+2:rr.n, 

a 
0 

(39) 

FIG. I. The integration contour L. 

Of course, only the first branches of the ion-acoustic 
oscillations of the plasma which have the smallest 
damping, have a physical meaning; these are the 
branches that should make the main contribution to the 
formation of the perturbed region behind the body. We 
present the values of the first three poles of B(z), ob­
tained by numerically solving Eq. (36) for two values of 
71 = 'feiTi: 

fJ=I: 
1]=4: 

zo 
1,48-i 0,58 
2,05-i 0,2! 

,, 
2,36-i 1,85 
2,57--i !,56 

z, 
3,00- i 2,49 
3,26-i 2,1a 

The poles are numbered in increasing order of their 
moduli. When 11 increases, the strongest decrease of 
the relative damping y I w' occurs for the first branch 
of the ion-acoustic oscillations (we have y' I w ~ 0.1 al­
ready for 71 = 4), and therefore the relative contribution 
of the first pole to the formation of the perturbed region 
should increase with increasing 71. 

By finding the residues of B(z) at its poles and using 
the symmetry in the arrangement of the poles, we rep­
resent the universal function by means of the following 
sum over the poles that lie only in the lower right quad­
rant: 

(40) 

..j z2 - a2 is calculated in the right quadrant, so that its 
real part is positive and the imaginary part negative. 
At large n the sum (40) over n converges in absolute 

' -a value like n • 
Figure 2 shows the universal functions for 71 = 1 and 

71 = 4, constructed using the first three poles presented 
above. The contribution of the first pole to F(a) is rep­
resented by the dashed line. Even in the case of an iso­
thermal plasma, the single -pole approximation makes it 
possible to describe quite satisfactorily the angular de­
pendence of the density perturbation. Figure 3 shows 
the angular dependences of the density perturbation 
<I>(~, 0!) = cos 0! F(~ sin 0!), constructed in accordance 
with these universal functions for different values of ~· 

An isothermal plasma is always rarefied behind the 
body; the maximum rarefaction is reached at a = 1.4, 
i.e., on a cone with angle 0! ~ sin-1 (1.41~), analogous 
to the Mach cone. When 71 increases, a transition takes 

ffal 
0,6 

u,o 

0,'1 

0,2 

~ 
0 

-0,2 

A 

1!=1 
/ 

1J=q 

/"' / 

1/ \ l kl/ ' \~ \ 
~ _j 

fiJT l a] 
0 

FIG. 2. Universal function for two values of71 = Te/Ti. 
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FIG. 3. Angle factors for different values of a0 and two values of 11: 
solid curves - 11 = 4, dashed - 11 = I. 

place from rarefaction on the axis to condensation. 
This transition can be investigated in greater detail. We 
note that when a = 0 the branch points ±a in the inte­
grand of F(a) merge into a pole, which is circuited from 
below. By closing the integration contour L in the up­
per half-plane we can obtain the exact value of the uni­
versal function and of its derivatives at a = 0. For ex­
ample, 

F(O)=-.!_B'(.z) I = (1 +tJ)-:t'l/2 
2 lz=o (1+1))2 

F''(O)=-~B"'(z) I . 
4 'z=o 

(41) 

The transition on the axis (a = O) from rarefaction to 
condensation occurs consequently at 11 = 1. 76; with fur­
ther increase of 11, the region of condensation broadens 
and the maximal condensation at 11 > 2.43 begins to be 
reached already not on the axis, but on the maximum­
condensation cone, which is imbedded in the Mach cone. 
When 11 = 4, the angle of maximum condensation is de­
termined by the relation a~ sin-1 (1.6/aa), and the an­
gle of maximum rarefaction by a RJ sin1 (2.08/au). 

If we decrease 11, starting with 11 = 1, then the rare­
faction on the Mach cone decreases, the Mach cone be­
comes less pronounced because of the increased atten­
uation of the ion-acoustic waves, and when 11 < 0.23 the 
maximum rarefaction is reached already on the axis be­
hind the body and not on the Mach cone. The values 11 
= 0.23 and 11 = 2.43 are the roots of the cubic equation 
(in 11) obtained by equating F" (O) to zero, the third root 
being negative and having no physical meaning. When 11 
tends to zero, the influence of the electric field on the 
ions decreases and when 11 = 0 the universal function 
should go over into F(a) RJ exp ( -a2), obtained in [ 71 

without allowance for the influence of the self-consistent 
field on the ions. 

Particular interest attaches to the case of a strongly 
isothermal plasma, Te/Ti >> 1, in connection with the 
possibility of its hydrodynamic description. [ 131 For ion­
acoustic waves in a strongly non-isothermal plasma, 
the collisionless Landau damping due to resonant inter­
action between the wave and the ions becomes exponen­
tially small, and the principal role is assumed by colli­
sionless damping on electrons, and therefore it is nee-

essary to retain in the denominator of B(z) the small 
electronic term that takes this damping into account: 

B(z>=l':tW(z) [ 1 + ~;(1 +zt';;zw(z>Hil';;z y ~: ;r. 
The function B(z) has the pole at 

,;-~ .1/ n; m T, 
zo = f 2T;- z f W M T; ' 

(42) 

(43) 

corresponding to ion-acoustic waves with kde << 1. If 
the velocity of the body is supersonic, a0 >> ...J Te/2Ti, 
then this pole will lie inside the integration contour L 
and make the main contribution to the universal func­
tion. Using the asymptotic form of the Kramp function, 
we obtain the residue of B(z): 

ResB(.zo) ~ i/2. (44) 

Consequently 

F(a) = -Re[.zo/2(.zo2 -a2)''•]. (45) 

Inside the Mach cone, when a2 << ~. we obtain in ac­
cordance with (45) a condensation: 

F(a) =-:co/2(xo2 - a2)'1•. (46) 

The maximum value F(a) RJ %~112y;3 /2 , which deter­
mines the maximum rarefaction on the Mach cone, is 
reached at a RJ Xo + 0.325 y0, the maximum condensation 
is reached at ~ RJ Xo - 1.376 y0 , and the transition from 
condensation to rarefaction occurs at aa RJ 0.577y0; be­
hind the Mach cone, the perturbation is proportional to 
Yo and decreases rapidly. The angular width of the 
spreading of the Mach cone (the maximum-rarefaction 
cone) is consequently determined by the damping of the 
ion-acoustic waves, ~a = ~a/aa Rj (a1 - a2)/au = 0.9p0/au. 
A plot of F(a) for Te/Ti >> 1 is shown symbolically in 
Fig. 4. 

Gurevich and Pitaevskii [ 31 investigated the pertur­
bation of a strongly non-isothermal plasma in the case 
of supersonic motion of the body on the basis of the hy­
drodynamic equations. Taking the limit I z I >> 1 in for­
mula (27) for the Fourier component of the density per­
turbation, and neglecting the damping, we obtain an ex­
pression for the Fourier component of the density per­
turbation in the hydrodynamic approximation: 

N =- <SN V kVo (47) 
k • 0 0 (kVo)2- k2c,2 

(cs = (KTe/M)1 / 2 is the velocity of the ion sound in a 
strongly non-isothermal plasma). When taking the in-

FIG. 4. Universal function for 
11>1. 

Fia) 

'16.r;'lzy;J/z 
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verse Fourier transform, expression (47) must be re­
garded as the limiting case of an infinitesimally small 
damping, i.e., k • V0 - k • V0 + iv, v- + 0. We then get 

SNo 
6N=--· 

2nr" 

i
. (c,/V0)cosa[(::

00
Vo) 2-sin2a]-'i,, sin a< c,/Vo 

sin a = c,/Vo. 
0, sin a> c,/Vo 

(48) 

A similar expression can be obtained directly from for­
mulas (34) and (45) by letting the damping Yo tend to 
zero in formula (45). 

We note now that in [31 , in the investigation of the 
perturbation of a plasma with Te/Ti >> 1 in the hydro­
dynamic approximation, an error has crept in and dis­
torted the physical meaning of the results obtained 
there: first, there is an error in sign in the formula 
for the Fourier component of the density perturbation, 
and second, this error is repeated in the formula analo­
gous to (48) for sin a< csfV0 , as a result of which they 
have erroneously obtained inside the Mach cone rare­
faction rather than the required condensation; the sin­
gularity of ON on the Mach cone was not investigated 
in [31 • The result (48) agrees with Landau's conclu­
sion[ 141 that in hydrodynamics, at large distances from 
the body, there is produced on the Mach cone a double 
shock wave (one on the condensation cone and another 
on the rarefaction cone). The intensity of the shock 
wave in hydrodynamics decreases with distance from 
the body like r-4 ;\ which leads to a divergence on the 
Mach cone in the asymptotic terms of the density per­
turbation proportional to r -a. 

The picture of supersonic hydrodynamic flow around 
an absorbing body admits of a simple interpretation. [ 141 

The rapidly moving body cuts in the plasma a semi­
infinite cylinder with axis along V0• The spreading out 
of this perturbation at large distances from the body by 
cylindrical ion-acoustic waves is described by the wave 
equation 

1 iJ2 
MN---6N=0 

c,2 iJt2 

with initial conditions 

(49) 

cSN(p,O) = -Sl\'o6(p), iJcSN /otJ,~o = 0. (50) 

(The problem is analogous to the spreading of an initial 
concentrated perturbation for an infinite membrane.) 
Using the Laplace transformation in time and the two­
dimensional Fourier transformation in the coordinates, 
we obtain 

SN0 ll-ic,t "-+O. liN= --RA-:-7:--..,.,...:;,---=:- u~ 
2n [(O-ic,t)2 + p2f'• (51) 

Substituting here t = -z/V0 = -(r/V0) cos a and 
p = r sin a, we obtain for ON at Vofcs >> 1 an expres­
sion that coincides with (48). 

It is interesting to note that in the case of flow 
around an infinite cylinder (the cylinder axis is perpen­
dicular to V0), the spreading-out of the perturbation oc­
curs by means of one-dimensional ion-acoustic waves 
(in analogy with the spreading of the initial concentrated 
perturbation on a string). In this case, as the damping 
tends to zero, a 0 -function singularity is produced on 
the Mach cone, and the body excites only a rarefaction 
shock wave. 

The author is grateful to Ya. L. Al'pert and L. P. 
Pitaevskii for interest in the work and valuable re­
marks, and to G. D. Komleva for the numerical calcu­
lations. 
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