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The spontaneous production of electron-positron pairs during the gradual transition of the potential 
through the critical value corresponding to the removal of the energy barrier for pair production, is 
considered. A possible example is the assumed pair production which takes place when bare sub­
critical nuclei approach each other. It is suggested that the charge density distribution of the elec­
tron bound in a level with E1 = -mc2, together with the density distribution of the polarization 
charge is localized near the nucleus (whereas the charge density of only the bound electron is de­
localized). It is pointed out that the polarization of the vacuum for heavy nuclei differs from that for 
light nuclei. This difference corresponds to the adiabatic escape to infinity of the positrons when the 
critical nuclear charge is attained. 

THE problem of the discrete energy levels of an elec­
tron which reach the boundary of the continuous spec­
trum E1 < -mc2 has come up 40 years ago.Pl How­
ever, it has never been settled completely. Today, this 
problem has attained additional urgency in connection 
with the progress made in the synthesis of superheavy 
nuclei: it is not excluded that nuclei with Z > 137 will 
soon be synthesized.£21 But such a situation can also be 
brought about in a different way: when two nuclei with 
charge Z smaller than the critical value approach each 
other more closely than the distance r < .11/mc = 3.7 
x 10-11 em, a field is seen by the electron which differs 
little from the field of a point-like charge 2Z, although 
the nuclei are still far from coalescing, since the 
nuclear radius is R ~ 1.1 x 10-13 A1/3 = 10-12 em for 
A~ 700. 

We assume that, if the nuclei have come so close to 
each other that the lowest electron level attains the 
energy E1(R) < -mc2 (including the rest mass), spon­
taneous production of a pair sets in, the electron oc­
cupying this level and the positron flying off as a real 
particle. Since the level is doubly degenerate on ac­
count of the spin, two electrons and two positrons ap­
pear. Further production of pairs and positrons is not 
prevented by the screening of the nuclear charge by the 
electrons, but on account of the fact that the lowest 
(1 S) level is filled (Pauli principle )o Additional pairs 
can be produced only when the 2P levels (which are 
split owing to the nonsphericity of the potential) in 
their turn reach the energy E2(R) < -mec2, which how­
ever requires a much larger value of Z. 

Thus a new type of positron production (more pre­
cisely, of pair production with a bound electron) be­
comes possible, which is distinguished by the circum­
stance that it occurs also during a slow, quasi-static 
approach of the nuclei. 

The value of the critical charge Zc at which pair 
production becomes possible depends strongly on the 
finite dimensions of the nucleus: according to the cal­
culations of Pomeranchuk and Smorodinskii,£31 for 
R = 1.1 x 10-13 A1/ 3 em, A= 2.5 Z, one must have Zc 
= 200 to obtain E1 = -mc2. Therefore, it is entirely 
possible that an experiment with two uranium or plu-

tonium nuclei (which is difficult, but more or less 
realistic) does not suffice to produce pairs. Neverthe­
less, even the consideration of a gedanken experiment 
is of interest to clarify the subtle questions of the 
theory of positrons and of the polarization of the vacuum. 

Let us first convince ourselves that there is no in­
trinsic contradiction or ambiguity in the interpretation 
of the experiment proposed. 

Actually, the approach of the nuclei must not be too 
slow; the kinetic energy of the nuclei must be sufficient 
to overcome their repulsion. However, this condition 
is completely consistent with our quasistatic considera­
tion, owing to the large mass of the nuclei. For exam­
ple, for Z = 92, A= 238, and a distance .11/mc, one 
needs a velocity of 0.012c in the system of the center 
of inertia. Thus, in principle, the new process can take 
place under conditions when the pair production is 
vanishingly small on account of the Fourier components 
of the field with frequency 2mc2/n. 

Okun' has noted that pair production processes are 
possible via the excitation of nuclei during collisions. 
However, even for the excitation of nuclei with t..E 
> 2mc 2 the same criterium of the adiabaticity of the 
collision is decisive. The experimental distinction of 
the process going through a nuclear excitation is also 
that here the probability w 2 for the production of two 
pairs is of the order of the square of the probabilities 
for the production of one pair or less, w2 $ wf. For 
the process proposed by us, one may expect w2 > w1-
either two positrons are created together or none is, 
which allows one easily to distinguish the character of 
the process. 

Evidently, the electrons remain, as a rule, bound 
to the outgoing nuclei with Z < Zc. In these nuclei the 
binding energy is smaller/> E1 > -mc2. However, the 
overall energy balance is not disturbed; the energy is 

1>Nevertheless, it is rather improbable that, as the nuclei recede 
from each other, the process goes adiabatically in the direction of pair 
annihilation, which becomes energetically advantageous after the nuclei 
have receded beyond a certain distance. The light positrons are repelled 
by the approaching nuclei and manage to fly away earlier than the 
nuclei move apart. 
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taken from the kinetic energy of the nuclei. Because of 
the lower charge ( Z - 1) of the outgoing nuclei, they 
fly apart with an energy which is smaller than the 
initial one. We recall that it is necessary for this 
process that the nuclei in the initial state be bare, i.e., 
without electrons. 

In the discussion of this work theoretical doubts 
have come up as to the character of the bound state 
whose energy lies at the boundary of the continuous 
spectrum E = -mc2 of the filled background. What is 
the relation of the process to the polarization of the 
vacuum? Will screening set in for Z > Zc until Zeff 
= Z - n( e-) = Zc is reached? Does not the proposed 
idea contradict the fact that in the exact solution of the 
Dirac equation for the Coulomb potential 

E1 = mc2f1- (Ze2/l!e)2, 

i.e., bound levels exist only for Z < 137, and here 
E1 > 0? 

It is convenient to begin with the last question. The 
expression for E1 can also be obtained by the Bohr 
theory from the relations pr = n and pv/r = Ze2/r2 
with p = mv/ .J 1 - v2/ c2. Here Ze2/nc- 1 corresponds 
tor- 0 and E = mc2/.J1- v2/c2- Ze2/r- 0. The 
absence of bound S states for Ze2/li c =:: 1 corresponds 
to the "collapse into the center" in the classical rela­
tivistic problem of the motion of a particle in the 
Coulomb field of a point-like charge. In the case of an 
"extended" source there is no collapse into the center, 
and the bound levels may reach the energy E1 = -mc2. 

However, even in the case of a nuclear charge ex­
tending over a finite volume, for example, a sphere 
with radius r 0 , the wave function behaves pathologically 
as Z- Zc, where Zc depends on ro.C 4 l 

Indeed, the asymptotic form for r >> ro must be 
l/J ~ e-Kr, where K = n-1.Jm2c2- Ef/c2. Hence, for E1 
= 0 the quantity K has a maximum; as E1 is decreased 
further, K also decreases, and K- 0 for E1- -mc2. 
This means physically that E1 - -mc2 for Z- Zc, 
and the wave function approaches in form the functions 
of the boundary of the continuous spectrum with E 
E = -mc 2 - e:. 

At first glance, a delocalization takes place, the 
electrons bound in the lowest level spread apart, which 
contradicts the picture described above. We propose 
that actually no delocalization of the charge takes 
place, and the correct answer should be obtained when 
the polarization of the vacuum or more precisely, the 
readjustment of the polarization of the vacuum for 
Z - Zc is taken into account. Such a complete and 
consistent calculation has not been carried out, but 
below we give some qualitative arguments in favor of 
our hypothesis. 

These arguments are based on the analogy with the 
problem of the distribution of a Fermi gas in a poten­
tial fieldYl In[s] a space was considered which is 
filled by a Fermi gas with a given Fermi surface and 
with the corresponding particle density Po in the region 
where V = 0. If somewhere V(x) ~ 0, the density is 
disturbed. In particular, it is possible that in the po­
tential there exists a discrete level with E < 0 in non­
relativistic language. The disturbance of the density 
6p = p(x)- Po, in which also the density of the parti­
cles in the discrete level is included, has no singulari· 

ties near the value of the potential V c corresponding 
to the appearance of the level. 

The reason for this is that in the transition from 
V 1 < V c [the notation is symbolic since the existence 
and the energy of the level are functionals of V(x)] to 
V 2 > V c, the appearance of the level is accompanied 
by a resonant readjustment of the scattering phase of 
the particles belonging to the continuum, with E = e:. 
The depletion of the density of these particles in the 
region of the potential well compensates precisely the 
additional density of bound particles. The wave func­
tion of the bound particles is delocalized in the limit 
of V = V c + e:, but the total increase of the density 6p 
remains localized in the region defined by the dimen­
sions of the well and the wave length at the Fermi 
surface. (Here e: is taken as a "small quantity.") 

One may assume that the situation is analogous in 
the relativistic theory of the transition through Z = Zc. 
The polarization of the vacuum is the analog of the 
change in the density distribution of the Fermi gas. As 
is known, in the linear approximation 

e2 k 
t'lp(x)= -Tct.q:ln me' 

where k is the cut-off momentum of the relativistic 
theory and tl. is the Laplacian. This formulas yields 

· e2 k 
llZ = -Z·const·hcln-;;:;, 

which is a result of wide applicability, since a universal 
proportionality exists between (j Z and Z, not at all 
only in the linear approximation! If Z < Zc and there 
are two electrons in some energy level with mc2 > E 
- mc2, then 

e2 k 
llZ= -2 -Z·const·-ln-. 

he me 

This relations holds up to Z = Zc and even for Z > Zc. 
When Zc is approached, a rearrangement (delocal­

ization) of the wave function of the bound electrons 
occurs, but at the same time the charge distribution 
which causes the polarization of the vacuum is rear­
ranged (breaking the proportionality 6p .= t::.cp ). We 
assume that the summed charge density remains local­
ized. The rearrangement of the distribution describing 
the polarization of the vacuum is completely natural. 
In the exact (nonlinear in cp ) theory, of course, one 
deals with creation and annihilation operators for elec­
trons and positrons in states which are eigenstates in 
the potential cp. The occurrence of a level (for Z = Zc) 
corresponds to a singularity (resonance) of these 
states. 

Let us assume the hypothesis that the summed 
charge density of the two bound electrons and the 
polarization of the vacuum are localized for Z - Zc. 
Since the bound electrons are delocalized, it follows 
that for Z - Zc (but such that Z < Zc) the polariza­
tion of the vacuum also becomes delocalized. It seems 
to us that this conclusion fits naturally into the general 
picture of the phenomenon. 

By calculating the polarization we determine the 
properties of the stationary state of the electron-posi­
tron field without real particles under the influence of 
a perturbing potential. We assume that this state is 
destroyed spontaneously for Z > Zc-real electrons 
and positrons appear. Hence, the desired state (without 
real particles) does not exist as a stationary state. But 
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as the parameter Z, on which the solution depends, 
approaches the boundary of the region of existence of 
the solution ( Z = Zc) it is completely natural that the 
properties of the solution become unusual: in the 
present case, delocalization sets in. The presence of 
a singularity means that this result can in principle not 
be obtained by considerations based on a perturbation 
expansion in powers of the potential or powers of 
Ze2/l:ic. 

When the energy of the bound electron reaches the 
value E1 = -mc2 (for Z > Zc), i.e., the boundary of the 
lower continuum, it is physically meaningless to dis­
tinguish the corresponding level from the other close­
lying levels of the continuum. Therefore, it is mean­
ingful only to speak of the summed charge distribution, 
i.e., the charge distribution of the electrons attaining 
the energy E1 = -mc2 together with the charge distri­
bution describing the polarization of the vacuum. It is 
this quantity which, by our hypothesis, remains local­
ized even when Z > Zc and the energy at the lowest 
orbit is E1 = -mc2 • 

Let us now apply the principle of continuityfs] in 
order to find the charge distribution describing the 
polarization of the vacuum for Z < Zc and in particu­
lar, as Z approaches Zc. 

We recall that in the coordinate representation the 
charge distribution, which is proportional to t:..cp, i.e., 
to the density of the original charge, leads to a 
physically unobservable change (renormalization) of 
all charges in the same ratio; this ratio is given by a 
divergent integral. 

An observable effect of the polarization of the 
vacuum in the static problem is the appearance of ad­
ditional charges near the real charge {proton or 
nucleus), whose sum is identically equal to zero. The 
positive charge collects near the spherically symmetric 
nucleus in the center, while the negative charge is 
found on the periphery. The potential is not changed at 
large distances, cpp =cpa= Ze 2/r, but at close distances 
cp p > cpa (cpa is the potential corresponding to the 
charge distribution in the nucleus after the renormali­
zation, while cpp is the same with account of the polari­
zation of the vacuum). It is for this reason that the 
contribution of the vacuum polarization to the Lamb 
shift [equal to (-e)(cpp- cpa)IJi2dV =-25 MHz] is nega­
tive (the sign of e comes from the negative charge of 
the electron). 

At first glance this charge distribution seems para­
doxical and unnatural; it seems that the positive proton 
should "pull in" the negative charges and repel the 
positive ones. How can this be reconciled with the re­
sults of the calculations of quantum electrodynamics, 
which have also been verified by experiment? Here 
one must recall that essentially one calculates only a 
correction which remains after the main effect, which 
is accompanied by the removal of the charge to infinity, 
has been taken out by the charge renormalization, or 
better, has been included in the definition of the ob­
servable charge and declared unphysical. 

There is no doubt that the summed effect has a 
reasonable sign, cpp < cpaa, where cpaa refers to the 
bare (unrenormalized) charge, but cpaa is a quantity 
which can neither be observed nor calculated. 

All considerations above refer to the usual situation 

of small Z, where it is sufficient to restrict oneself to 
the first term in the expansion with respect to Ze2/l:ic, 
in calculating the polarization of the vacuum. Let us 
now turn to the proper subject of the paper and try to 
determine the charge distribution for Z ~ Zc. For 
Z > Zc we assume that a stationary situation is given 
by two electrons on a nucleus with Zeff = Z - 2 (we 
recall that Z is the number of protons in the nucleus, 
and Zeff is the charge measured by a distant observer), 
and the charge distribution is localized. For Z ~ Zc 
the "analytic continuation" of this state is a nucleus 
with two K electrons in the lowest level. As Z ap­
proaches Zc the wave function of the K electrons 
spreads out, and for Z - Zc, the quantity K - 0 in 
the asymptotic wave function e-Kr. 

However, if the continuity principle holds, the total 
charge density remains localized even in this situation. 
Of course, the charge of the electrons in the K orbit 
{with E > -mc 2, nonpathological energies) is compen­
sated by the positive charge from the polarization of 
the vacuum at large distances from the nucleus; for 
Z - Zc the radius of the orbit and the radius of the 
positive charge both increase. But for Z < Zc the 
electrons can be torn off from the K orbit (spontaneous 
pair production is forbidden energetically). A bare 
nucleus remains, Zeff = Z < Zc, and we assert that 
the polarization of the vacuum gave rise to a positive 
charge cloud at large distances around the nucleus 
which is compensated by a negative charge inside. 

This result is legitimate: if two protons recede to 
infinity for Z > Zc, then these two protons prepare for 
their exit when Z < Zc, i.e., they recede to large (but 
finite I ) distances, which are the larger, the closer Z 
to Zc. Hence, the polarization of the vacuum changes 
qualitatively, and takes on the opposite character in 
the transition from small Z to values of Z close to, 
but smaller than, Zc. 

The contribution of the polarization of the vacuum to 
the Lamb shift of the S level depends on the quantity 
Qa = Jr 2 opdV, the monopole moment of the charge dis­
tribution. This quantity has opposite signs for Ze2/l:ic 
« 1 and Z;;; Zc, and goes to infinity for Z - Zc. 
Hence, somewhere in between, at a value of Z which 
is smaller than Zc by a finite amount, we have Qa =0. 

For large Z, the contribution of the vacuum polari­
zation to the Lamb shift must change sign! On the 
basis of extremely rough estimates, there is no reason 
that the value Zr for which Qa = 0 be especially very 
close to Zc; apparently, Zc - Zr >> 1. However, 
without difficult calculations it is impossible to say 
whether Zr is close to 120 or 170, say. We recall that 
Zc = 200 according to [2], and for Z = 96 the binding 
energy of the K electron2> is as small as 128 keV 

2>we give the asymptotic form for Q0 when Z is close to Zc: 

II v E z 
1j> - e-", X - - 1 - ( -) , 

me mc2 

dE ( t) •' 1/ E dZ=-e2 -;- =-sZx=--,;:;mczf 1-;;;;2. 

Since, by the defmition of Zc, E = -mc2 for Z = Zc, we find E = -mc2 + 
mc2 [Zc -Z)e2 /2hc] 2 • This implies Q0 - k1 e(h/mc)2 • [ 137 /(Zc-Z)]l. 
For small Z we have Q0 -k2 e(h/mc)2 Ze2 /he with a small dimension­
less factor; k2 = 1/300, k1 is unknown. 
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~ 0.25 mc 2 • 

In closing, we return to our remark that the effects 
considered refer to thought experiments which serve 
for a clarification of some subtleties of the theory, but 
not to the real, experimentally verifiable physics. 
Nevertheless, it is remarkable that new predictions 
can be made not only for Z > Zc, but also for Z < Zc. 
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