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A hydrodynamical method is proposed which enables one to establish a connection between the singular 
parts of the kinetic coefficients (the viscosity 71, the thermal conductivity K, and the coefficient a which 
determines the diffusion) which depend upon the nearness to the critical point and the singularities of 
a product of thermodynamic quantities, namely, the product of the correlation radius r 0 of the fluctua­
tions in the concentration and the derivative (a !1/Bc)p, T of the chemical potential with respect to the 
concentration. The results depend on the ratio of the singular (A~) and regular ( ~ 0) parts of the 
kinetic coefficients, extrapolated from the far region. In the region A~ < ~ 0 all coefficients increase 
upon approach to a critical point: A 71, A K, A a ~ [ ro(B !1/Bc )p T r. If A~ 2: ~ o then the coefficient of 
thermal conductivity remains finite; as for the remaining coefficients one can only assert that 
A71· Aa ~ [ro(Bf1/Bc)p,Tr1• The coefficient of thermal diffusion does not have a part which increases 

as the critical point is approached. 

1. METHOD OF INVESTIGATION 

THE critical points of binary mixtures are character­
ized by the vanishing of the first two derivatives of the 
chemical potential of each component with respect to the 
cone entration: 

( il~-t) -(~) -0 
OC p, T - f)rfl p, T - • 

(1) 

A sharp increase in the mean square of the fluctua­
tions of the concentration (Ac2 ) and of the integral of 
the correlation function W cdr) of these fluctuations 
already follows from the definition of the critical 
points[1 J: 

(l'.c2) == ([c(r)- coP) ~ (fJc/fJJ.t)p, T; ~ Wcc(r) d"r ~ ( fJc/fJJ.t}p, T· (2) 

Upon approach to a critical point it is necessary to 
take into consideration nonlocal and nonsynchronous re­
lations between thermodynamic quantities (spatial and 
temporal dispersion [2 J), which leads to finite expres­
sions in (2). At the same time the correlation radius of 
the fluctuations in the concentration, which characterizes 
the distances over which correlation of the fluctuations 
is essential, increases as a critical point is approached 
and, according to estimates from experiments on scat­
tering, reaches a value of 10-4 to 10-5 em. 

Thus, the specific properties of the critical region 
consist in the appearance of a new characteristic dis­
tance ro, and also a<< r 0 << L, where a is the average 
distance between particles and L is the size of the con­
tainer. 

It is natural that one should expect anomalies in the 
kinetic properties associated with a displacement of the 
liquid's particles over distances of the order of or lar­
ger than r 0 , whereas for a displacement over a distance 
of order a the particles "do not know" about the critical 
state. In other words, if the kinetic coefficients are 
represented in the form of a sum of two parts: ~ = ~ 0 

+ ~, defined respectively by scales of order a and ro, 
then upon approach to a critical point the strong depen­
dence on (T- Tc)/T c can apparently only be associated 

with the ''singular'' part of the kinetic coefficients, but 
not with the ''regular'' part. 

Such an assumption is confirmed by the fact that dif­
ferent methods of investigation of one and the same sub­
stance (ethane) lead to different results; 1> in neutron 
scattering experiments (the characteristic displace­
ments of the particles are of order a ~ 10-7 to 10-8 em) 
no anomalies in the particles' motion were observed in 
the critical region, [3 J in spin-echo experiments (dis­
placements of order ro ~ 10-4 to 10-5 em) the decrease 
of the self-diffusion amounts to several tens of a per­
cent, [4 J and an abrupt slowing down of the diffusion is 
observed by chemical methods[5 J (displacements of 
order L ~ 1 em). 

The goal of our calculation is to obtain the tempera­
ture dependence of the singular parts A~ of the kinetic 
coefficients, which determine the macroscopic proper­
ties of the liquid, whereas one can hardly determine the 
regular part without microscopic considerations. 

Two assumptions are made as the basis of the calcu­
lation. First, since we are interested in the behavior of 
a liquid over macroscopic distances of the order of ro, 
as the equations of motion we take the equations of 
hydrodynamics for an inhomogeneous and nonstationary 
mixture. A "hydrodynamical volume" has linear dimen­
sions larger than a but smaller than r 0 , i.e., here only a 
partial averaging over the fluctuations is carried out. 

Later on external currents will be introduced into 
the equations of hydrodynamics, and the changes of the 
fluctuations caused by these currents will be deter­
mined. In the entropy production due to these fluctua­
tions a final averaging of the fluctuations is carried out 
over distances larger than or of the order of r 0 , but 
smaller than the dimensions of the system L; this also 
leads to the appearance of singularities with respect to 
(T- Tc)/Tc in the kinetic coefficients. 

The second assumption concerns the form of the 

!)We compare experiments near the critical point of the pure sub­
stance [3 •4 ) and diffusion in this substance, [5 ] which, however, is not 
essential for the qualitative considerations presented here. 
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equation of state which must be added to the system of 
hydrodynamical equations. Generally speaking the fluc­
tuations are independent or are only correlated, i.e., 
there is not a unique relation between them. However, 
in the same way that the two scales of distance indicated 
above exist, it is natural to also assume that two scales 
of characteristic times exist: a time for dissipation of 
the fluctuations in the concentration, which tends to in­
finity upon approach to the critical point, and a time for 
the establishment of equilibrium in the remaining varia­
bles, whose fluctuations do not possess anomalies at the 
critical point. Such an ''adiabatic approximation'' means 
that for a given nonequilibrium (fluctuation) distribution 
of the concentration, the remaining thermodynamical 
variables assume definite values, i.e., one is able to 
formulate an equation of state in the sense of a nonlocal 
and nonsynchronous relation between the change of the 
chemical potential J.l and the distribution of the concen­
tration c :2 > 

J.L(r t)-f.lo= S ~(r-r',t-t')c(r',t')d"r'dt' 
' {)c 

OJ.! {)f.l 
+aT T(r,t)+app(r,t). (3) 

Here and in what follows the kernel of the integral 
operators, which determine the spatial-temporal dis­
persion, will be denoted in the same way as the corre­
sponding thermodynamical derivatives to which the zero­
Fourier components of the kernel reduce. 

The assumptions indicated above lead to a complete 
system of equations of the form 

L 1 {rp} + L2 {'f, rp} = 0, rp = {v, p, ~t, t}. (4) 

The general scheme of the subsequent calculations 
consists in the following. 3 > Let us represent all varia­
bles rp in the form of a sum of fluctuating parts rpfl and 
averaged parts rpav which are determined by the ex­
ternal gradients (for example, the velocity gradient 
*'v = Clvavx/oy): 

<jl = 'P 11 + 'Pav· (5) 

Expanding the fluctuating quantities in a series in powers 
of the external gradients 

'f 11 = 'I' 11 ° + eqJ 11 1, (6) 

we isolate the terms of corresponding order in E in the 
system of equations (4). 

The equation of zero order in E 

(7) 

describes the equilibrium thermal fluctuations in the 
absence of external gradients. The method of investiga­
tion of Eqs. (7), which is based on the fluctuation-dis­
persion theorem and associated with the introduction of 
the so-called external forces l?J into the system of 

2lTemporal dispersion, as usual, takes the retardation in time into 
account. Of course, it does not have a rigorous thermodynamical mean­
ing and corresponds to the fact that averaging over the time is equiva­
lent to averaging over ensembles. However, the presence or absence of 
temporal dispersion does not affect the final results. 

3l An analogous calculation for a pure substance was carried out by 
us earlier. [ 2 • 6 ] 

linearized equations, enables one to investigate the 
correlation properties of the fluctuations. 

From the equations of first order in E 

L, {rp n'} = -L2{rp 11°, 'l'av} (8) 

one can find the change of the thermal fluctuations due 
to the presence of the external currents. 

Finally, the last stage of the calculations consists in 
an evaluation of the entropy production and the identifica­
tion of the coefficients for the squares of the external 
gradients with the singular parts of the kinetic coeffi­
cients: 

!__ ~ psd'r= ~ S ~~(Vrp 11 1 ) 2d3r"" Vd~~e$2, (9) 
at <"'> 

where V denotes the volume of the system. 
Assigning the external gradients in a different way 

we arrive at a system of equations which expresses the 
singular parts of the kinetic coefficients in terms of the 
kernel a J.lloc of the equation of state (3) and the param­
eters of the hydrodynamical equations, in particular, in 
terms of the kinetic coefficients themselves. 

As one would expect, the hydrodynamical method 
which we are using does not enable us to directly deter­
mine the singularities of the kinetic coefficients. With 
its aid one can only find relations between the singulari­
ties of different equilibrium and kinetic quantities. 

In Sec. 2 the correlators of the hydrodynamical quan­
tities in binary mixtures and in the presence of spatial 
and temporal dispersion are obtained from the system of 
equations (7). The solution of Eqs. (8) for the fluctua­
tions which are changing due to the external currents 
and an analysis of expression (9) for the entropy produc­
tion comprise the contents of Sec. 3. Finally, in Sec. 4 
the obtained formulas are analyzed, and the nature of the 
singularities of the kinetic coefficients near the critical 
point of binary mixtures is clarified. 

2. HYDRODYNAMICAL FLUCTUATIONS IN BINARY 
MIXTURES IN THE PRESENCE OF DISPERSION 

The total system of hydrodynamical equations con­
tains the equation of state and the conservation laws for 
the mass of the mixture, the mass of each component, 
momentum, and energy: 

tip de dv , dt =- pdivv; P--;jt =- divj; pdt =- Vp +divaik; 

ds clv· 
pT- =- div(q- J.Li)- iVf.l + a;•'--'--. (10) 

dt clxk 

We shall assume that taking account of spatial-tem­
poral dispersion reduces to the appearance of a nonlocal 
and nonsynchronous relation in the well-known expres­
sions for the currents: lB l 

a;•' = S 11 (r- r', t- t') ( _a_v,_· +-av_•) d3r' dt' 
Ox1/ Ox/ 

~ [ 
I 2 I I J clvm(r',t') I I 

+o;" ~(r-r,t-t')--ll(r-r,t-t) --::-'----:--'-d3r dt; 
3 clxm' 

q"'- !Lim=- S [Tofl (r- r', t- t') V mf.l(r', t') 

+ Y(r- r' t- t') V T(r' t')] d3r' dt'· 
' m ' ' (11) 

im = - ~ [a (r- r', t- t') V mJ.L(r', t') +fl(r- r', t - t') V mT (r', t') ]d3r'dt'. 

Finally, in order to solve the system of equations (10) 
it is necessary to use the relations which connect the 
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entropy with the other thermodynamical quantities. With 
dispersion taken into account, these relations have the 
form 

ds s [ as I dT (r', t') as d!J. (r', t') 
-= -(r-r,t-t')--'--~-~+-(r-r' t-t')-~-
dt aT dt' iJ11 ' dt' 

as dp (r' t') J 
+-(r-r' t-t')-·-'-· d"r'dt' 

iJp ' dt' . (12) 

In order to study the correlation properties of the 
equilibrium fluctuations, one can apply the fluctuation­
dissipation theorem which, as is well-known, £?,sJ estab­
lishes a relation between the properties of these fluc­
tuations and the generalized susceptibilities-the linear 
responses of the system to an external influence. 

One can combine these two problems into one by 
introducing the so-called external forces rex into the 
equations of motion of the quantities x of interest to us, 
assuming that these forces produce the given fluctua­
tions. Then the solution of the equations of motion 

.Xm(r, t) = ~ ) Umn (r- r', t- t') fn•x (r', t') d"r' dt' (13) 

immediately determines the correlation properties of 
the quantity x, notably the Fourier components of the 
correlation function are expressed in terms of the gen­
eralized susceptibility C¥mn= 

i1i 1i 
(.xm(r, t).xn(r', t'))ro,k = ~(2rr} 3 cth ;T [amn(ro, k)- Umn' (ro, k)] 

iT 1 [ k • (14) ~2;(2rr} 3 -;;;-amn(ro, }-anm (ro,k)]. 

In Eq. (14) it is taken into consideration that in the 
classical case of interest to us coth(fl w/2T) can be re­
placed by 2T/1lw. 

The correspondence between the quantities x and rex 
is established with the aid of the expression for the rate 
of change of the entropy: 

! ) psd"r=-To~) d3rim(r,t).xm(r,t)d"r. (15) 
m 

Thus, the scheme for application of the fluctuation­
dissipation theorem is as follows: 1) selection of the 
quantities Xm of interest to us; 2) determination accord­
ing to Eq. (15) of the corresponding generalized forces 
f~; extraction of the solutions of the linear equations 
of motion for xm in terms of the external forces f~ in 
the form (13); (4) expression of the correlators (14) in 
terms of the generalized susceptibilities amn found in 
(13). 

Proceeding to a realization of this scheme, we shall 
utilize the following expression for the production of 
entropy in a binary mixture:rsJ 

(16) 

From a comparison of (15) and (16) we define three 
types of generalized forces and coordinates: 

(T) ikmT .x<f:.> = ikm!J., 
.Xm =-y;-• 

In (17) and everywhere below, unless explicitly stated 
otherwise we shall use the Fourier components of the 
corresponding quantities, defined in the following way: 

S d3k 
<p(r t)= ·--dC!lqJ(ro,k)ei(kr-mt). 

' (2n} 3 
(18) 

Now let us write down the linearized equations (3) 
and (10)- (12) with the external currents (17) introduced 
into them, where we choose as the independent variables 
the chemical potential Jl = (JJ.Jml)- (Jl2/m2) of the mix­
ture, the density of the mixture p, and the temperature 
T. Such a choice of variables is convenient since the 
derivatives of the corresponding thermodynamical po­
tential with respect top, Jl, and T do not have singulari­
ties at the critical point. In addition, the fluctuations of 
only one of these variables-the density-increase 
anomalously upon approach to the critical point. Ac­
tually, together with the fluctuations in the concentra­
tion (2) the fluctuations of all three quantities cp increase 
provided acpjac remains finite or decreases more slowly 
than the square root of the fluctuations in the concentra­
tion, whereas according to Eq. (1) (8JJ./8c)p,T abruptly 
decreases as the critical point is approacned and so 
does (8T/ac)p, Jl (it follows from experiment that 
(8JJ./8T)p,c is finite); meanwhile (ap/ac) remains finite. 

The system of the linearized equations of hydro­
dynamics in the variables p, Jl, and T with external for­
ces may be reduced to the following form: 4> 

T(ro,k) p(ro,k) 
T0G.(ro,k) + iroTopT--+ G2 (ro,k)IJ.(ro,k) 

To po 
= -ikm(qmox_ !lim0X}, 

T(ro,k) p(ro,k) ex 
TopTk2 ---- poGI ( ro, k) --- po2cpk21J. ( ro, k) = kmkn<Jmn, 

To Po (19) 
T(w,k) . p(ro,k) . . 

G2(ro,k)---- !p 02cpw --+ G3(ro,k)IJ.(ro,k)=- !km]m0\ 

To Po 

where the following notation has been introduced 

iwk2 (4 ) G1(ro,k)= w2 - k2pp+p. g11 + ~ , G2 (w,k)= -iwp0Tos~&+To~k2, 

Ga(w, k} = -iropoc,. + ak2, c.(w, k} = -iropoTosT + '\'k2 , (20) 
a=a(w, k) ... , Cp= (ac/ap}T,,. ... , 

All of the "thermodynamical derivatives" appearing 
in Eqs. (19) and (20) are functions of w and k so that 
strictly speaking only the components with w = 0 and 
k = 0 have thermodynamical meaning. 

For an unbounded medium the system of Eqs. (19) 
has the following solutions: 

!_ = ~ {- iAukm(qm•x- IJ.im•x)- Azlkmkna::.:'n- iAa1kmim0x}, 
To 8 

4 lIn order to obtain Eqs. (19) the equalities 

( fJc ) - ( 08 ) and oo'( ~) = -( ~) 
fJT o.P - fJJt T,p {Jp T,O {Jfl T,P 

were utilized which, generally speaking, are valid only in thermo­
dynamics, i.e., for w = 0 and k = 0. If the fulfillment of these qualities 
is not required then, performing the following transformations we ar­
rive at susceptibilities (23) for which the principle of symmetry of the 
kinetic coefficients (the Onsager relations) will be satisfied only upon 
fulfillment of the indicated equalities. This is associated with the 
"quasistatistical character" of the thermodynamical states we are con­
sidering. 
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~ = ~ {iAukm(qm•x- J.tim"X) + A22kmknOmn•x+ iA~m•x}, 
Po L1 

1 ex (21) 
It=----;;,{- iA,k,.(qm•x- J.tim•x)-A23kmknam,.. -iAsJm•x}, 

1 
Va =~{Aztkakm(qm•x- J.tim•x)+A23kakmin~x}+1 iMia;mkna!.':., 

where 

f { k..km 
Mam= . + k• ~am+~[TopTAzt - !poro T] Ll 

- (popp- iro (1/3T] + 6)]Azz- Po2cpA..J }. 

The determinant of the system of equations (19) enters 
into formula (21): 

I ToG• iroToPT G, I 
Ll = ToJJ.rk' - PoGl - Po •c.k• , 

G1 - ip02c.ro G3 

(22) 

and also the minors Aij of this determinant. 
Now introducing the generalized forces and coordin­

ates (17) into (21), we obtain relations of the type (13), 
from which one can easily find the generalized suscepti­
bilities a: 

TT • Auk k 
amn = - ~00 ~ m n, 

T T A21 ~ " A23 
all!11, T = a.,., mn = (l) T kmknkr; Umflo T = ar, mn = (l)-T kmknkr, 

~ ~3) 
<Zmn. pr = -T{k,(kmMnp + knMmp)+ kp(kmMnr+ knMmr)]. 

From (23) it is easy to see that upon fulfillment of 
the equalities indicated in the footnote to formula (19), 
the susceptibilities satisfy the symmetry relations of 
the kinetic coefficients (the Onsager relations), which 
have the following form in the w, k- representation: 

amn(OO, k) = ±anm(ro, -k), (24) 

where the ± signs refer to the cases when the general­
ized coordinates Xm and Xn, respectively, have the same 
or different symmetries with respect to a change of the 
sign of the time. 

Now substituting (23) into (14) and taking the defini­
tion of the generalized coordinates (17) into account, we 
obtain the desired correlation functions: 

To po2k2 ( Azz) 
(pp)co,k= --;-(2:n:)"-ro-Im T ; 

(TT)ro.k =- ~0 (2.rt)3To2Im( ~11 
) ; 

(J,tJ.t)co. k =- ~Q(2:n:)3lm( iA:); 

To Topok2 ( iAzt) (pT).,,k = --(2:n:) 3---Im --- ; 
:n: (J) Ll 

(25) 

To ( iAst ) To (TfA)w,k= --(2:n:) 3Tolm -- ; (vmvn>w.k =-(2.rt)"Im(i./llmn). 
1l Ll 1l 

Now let us verify that the expressions obtained above 
for the correlators do not contradict the well-known 
thermodynamical formulas [lJ and reduce to them if dis­
persion is neglected. 

Taking the inverse Fourier transform in the correla­
tor ( pp) w, k and using the Kramers- Kronig relations UJ 

for the integration over w, we obtain 
1 1 d3k exp[ik(r-r1 )] 

(p (r, t)p(r, t)> = Topo J (2n)• Po(O, k) (26) 

The same limiting transformation for the correlator 
of the temperature leads to the following result: 

1 To s d3k exp[ik(r- r')] 
(T(r, t) T(r 't) >=Po (2.rt) 3 (8s/8T) 0,c(O, k) · (27) 

It is not difficult to verify that the correlators (pT) 
and ( p JJ.) give zero upon integration over w, which 
corresponds to statistical independence of the corre­
sponding fluctuations. 

Expressing the correlator of the concentrations in 
terms of the correlators of the thermodynamical quan­
tities (25), we arrive at the well-known expression: 

1 To S d3k exp[ik(r-r1)] 

(c(r, t)c(r 't)) =Po"" (2.rt)• (8~-t/Bc) p,T{O,k) ' (28) 

which gives the correct expression for the thermody­
namical fluctuations of the concentration[1 J if dispersion 
is neglected. 

I. M. Khalatnikov has calculated the correlators of 
the external forces in the hydrodynamical equations of 
a superfluid liquid (without dispersion)Yl Our Eqs. 
(19), written in the form Xm = O!~nf~x, also enable us to 
find the correlators of the external forces 

<! ex/ ex) To I -1 m n w=-- mamn, 
llOO 

which coincides with the results of article (QJ in the ab­
sence of dispersion. 

3. EVALUATION OF THE SINGULAR PARTS OF THE 
KINETIC COEFFICIENTS 

According to the general plan of the calculation indi­
cated in Sec. 1, we must now determine the change of 
the thermal fluctuations (cp:ft) associated with the ex­
ternal influences (the "average" quantities) applied to 
the system. Substituting (5) and (6) into the system of 
hydrodynamics (10), eliminating the velocity, and 
collecting terms of first order in the external gradients, 
we obtain 

Tn 1 (ro,k) p 11 1 (oo,k) 
ToG4 (ro,k) T +iroToPT +Gz(ro,k)J.In'(oo,k)=Rt(ro,k), 

o Po 

Tpk•Tn'(w,k) G(ook)Pn'(w,k) 
o T To Po 1 ' Po 

- po2c0k'J.1 n·'(ro, k) =- R2 (w, k), 
(29) 

Tn '(ro,k) Pn'(ro,k) 
Gz(ro,k) T -ipoZc0ro +Ga(c.;,k)f-!n'(ro,k)=Rs(ro,k), 

o no 

where 

iis av as fl 0 

Rt(r,t)= -(poT n °+ Top fl 0)-, --(poTav+ Topav)--8-
at t 

- p0T0VavV s fl 0 - p0To ~ v n°(r1, t1 )[sT(r- r1 t- t1 ) V T av(r1, t1 ) 

+ s"(r- r1 , t- t1 ) V f-lav(r1, t1)]d"r1 dt1 + 
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- po ~ v, u~r1, t1 )[cr(r- f 1 , t- t1 ) V T av(r1 , t1 ) 

+ c~(r- r1 , t - t1 ) V [1av(r1 , t1 )] d3r1 dt1 • 

The left hand side of Eqs. (29) represents the system 
of linearized equations (19); its determinant and the 
matrix of the minors of this determinant are given 
above (see Eq. (22)). Only the terms responsible for 
the dissipation of energy and momentum, each of which 
is the product of the average quantities and the thermal 
fluctuations (<pfi) which were investigated in Sec. 2, re­
main on the right-hand sides of these equations. 

The solution of the system of equations (29) has the 
form 

po 

__ ~ A;2(w,k)R;(w,k) . 

- i~l !1(w,k) ' 

~ A;,(w, k)R;(:u, k) 
!lfi 1 (w,k)=..::J !1(w k) 

i~l ' (31) 

1 ikm ] vn m(:D,k)= ----[A2t(w,k)Rt(w,k)+A,3(w,k)R,(w,k) 
' !1(w,k) 

1 ikm( t]) R2"(w,k) 
+Mma(w,k)R2a (w,k)+~ s+-3 . + k2 , 

po -!wpo t] 
and the function Mma(w, k) is defined in Eq. (21). 

Now let us consider the additional production of en­
tropy associated with these transformed fluctuations, for 
which in the general formula (16) we substitute expres­
sion (11) for the currents of the fluctuating quantities. 
Expanding the integrand in a Fourier series and carry­
ing out the averaging over distances larger than the 
correlation radius, we obtain 

i) 3 D ( I kl· If k") -s as = ~ S (k1k") mn w' 'ro ' (R (w' k')R (w" k")) 
i)t ps r m~~l !1(w',k')l1(w",k") m ' n ' 

( ii's') X exp { i [ (k' + k") r- ( w' + w") t]} d3k' d'k" dw' dw" d3r + -,-· , 
ot vise 

(32) 
where 

Dmn(w', k'; u;", k") = y(:D1 , k')Amt(ro', k')Ant(w"k") 
( 1 k1 ) A(w' k') 

...La w A (w' k')A (w" k") +" ' A (w 1 k')A (w" k") 
1 To m3 ' n3 , To mi , n3 , 

A(w" k") 
+ I' ' A (· I k')A ( If k") To m3 ~ , n1 W , • (33) 

The term (es1/et)visc in Eq. (32) determines the en­
tropy production associated with the viscosity which, as 
it turns out, does not have any singularities in the criti­
cal region. 

The averaging of the integrand in (32) leads to the 
appearance in the integrals (32) of the correlators of 
the thermal fluctuations (25), i.e., the integral over the 
frequencies in (32) reduces to expressions of the form 

\ IP2 (w. k)dw (34) 

We shall evaluate the integrals (34) with the aid of 
the theory of residues. The poles of the integrands 
correspond to the solutions of the equations t>(w, k) = 0, 
t>*(w, k) = 0, and wPo ± i1]k2 = 0. For an exact evalua-

tion of these integrals it is necessary to know the spa­
tial-temporal dispersion of all of the liquid's param­
eters; however, one can estimate the singular part of 
these integrals without this. In fact, let Wmin(k) be the 
lowest root of the equation t>*(w, k) = 0, where Wmin(k) 
- 0 as k - 0 and as the temperature approaches the 
critical temperature. An analysis of expression (22) 
indicates that such a root exists and under the natural 
assumptions 

p0- 1c~- 1pp- 1 (4/atJ + s) (T0ay- To2 fl")k2 % poTo(Y + Toaftr2 + 2ToPf1r) 
(35) 

it is given by 
. ( Of.! ) (Toay- To2~2 ) k2 ( 36) 

ffimin(k)=! fk p.rTo(y+Toaf.lr2 +2To~f.tT)p; 

We notice that (eJ..L/ec)p,T(w, k) enters into Eq. (36); 

this derivative decreases abruptly (like a step-function 
with respect to (T- Tc)/Tc) as w- 0 and k- 0. In the 
final analysis it is precisely this quantity which deter­
mines the singularities of the kinetic coefficients at the 
critical point. The remaining roots of the equation 
t.*(w, k) do not contain (eJ..L/ec)p,T' and therefore if they 
decrease as the critical point is approached, they do so 
according to a weaker law (logarithmic or close to it). 
In what follows we do not consider the singularities in 
the kinetic coefficients corresponding to these poles. 

Now let us substitute e. *(w, k) in the form 

!1'(w, k) = [w- Wmin(k)]!1,"(w, k). (37) 

Since the remaining roots of the equation e. *(w, k) 
= 0, and also the "viscous" pole Wvisc(k) 
= i[1J (wvisc• k)k2/Pa] are much larger than wmin(k), it 
follows that 

(38) 

A comparison of expressions (34) and (32) enables 
one to determine the explicit form of the functions 
<l>1(w, k) and <l>2(w, k), from which it is clear that the 
residue at the pole w = Wmin(k) gives the major contri­
bution to the integrals, i.e. 

rri Wmin (k) lPdWmi') (k), kj 
1'(k) = 2 l1r(o, k) !1''(0, kJ 

(39) 

Similarly 
. Wmin (k) !P.£wmin (k), k] 

12 (k) = m !1 (0, k) !1' (0, k) k4tj2 [wm;n (k), k] 
(40) 

Proceeding now to the integration of expressions (39) 
and (40) over the wave vector k, first we note that, for 
all reasonable forms of the function llc(k) (for example, 
according to Ornstein- Zernike J.lc =a+ bk2 ), small wave 
vectors, k ;S; r 01, give the major contribution to the 
terms in (32) which depend on (T- Tc)/Tc· Therefore, 
integration over k may approximately be reduced to the 
substitution k- r(/ in the integrands (the "scaling-law 
hypothesis"). Physically such an approximation is quite 
natural since altogether there is only one distinguished 
scale, the correlation radius ra. Thus we obtain 

1 d'k ~ ~Wmin(ro-1)lP!laJmin(ro- 1 ), ro-1](ro-1) 3 

.l J,(k) ~ 2 !12 (0, ro- 1) !1'2 (0, ro- 1) ' 

~ . Wmin(ro-1)!P,[wmin(ro-1), ro-'](ro- 1) 3 
12(k)d3k""' m """" · _, 

!1 (0, ro- 1) !1' (0, ro- 1) tj2 [ulm;n (r0- 1), ro-1](r0-t)• 

(41) 

The subsequent calculation in general form would be 
overly cumbersome; therefore, as is usually done in 
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kinetic problems, we consider two cases corresponding 
to different external gradients being applied to the sys­
tem. 

1. Vav = EvYi Vav = Vav = 0; 'VJJ.av = 0; VTav = 0. 
X y Z 

For such a choice of the initial problem expressions 
(30) for R1, R2, and Ra are appreciably simplified. The 
explicit form of the quantities 4>1(W, k) and 4>2 (w, k) in 
Eq. (41) may be obtained by substitutions into the integ­
ral (32) of expressions (30) and (32) evaluated at the 
points w = Wmin(ri/) and k = r~1 . In this connection it 
turns out that the terms which are singular in 
(T- Tc)/Tc are only associated with the fluctuations in 
the density, which one would expect since it is precisely 
these fluctuations (together with the fluctuations of the 
concentration) which increase anomalously as the criti­
cal point is approached. 

Expression (32) for the entropy production now takes 
the form (9). Identifying the coefficient associated with 
E~ with the singular part of the viscosity, after certain 
transformations we obtain 

I k,.2 k~2 
d1'} ~ po• J~ {T0spcp{D13 (ro,k; -ro,-k)+D3t(ro,k; -ro -k)] 

(pp).,, k d3k dro (42) 
+T02sp2Du(ro,k; -ro,-k)+cp2Daa(ro,k; -ro,-k)} A(ro,k)A*(ro,k) · 

Substituting the values of the correlator of the density 
obtained from Eq. (25) into Eq. (42), we arrive at an ex­
pression of the form (34), and according to the scheme 
of calculation (34)- (41) we finally obtain 

(43) 

2. V Jlav = ell; VTav = ETi Vav = 0. We assume that 
there is no substantial pressure gradient, Pav = 0. In 
this connection, one should consider all derivatives ap­
pearing in the system of equations (29) for p = const. 
Thus, for example, ST(W, k) now denotes the kernel of 
the operator connecting the Fourier components of the 
entropy and of the temperature, which reduces to the 
thermodynamical derivative (Bs/BT), pat w = 0 and 
k=O. ,.., 

In contrast to the preceding case, now the thermal 
fluctuations of the density do not give any contribution to 
the part of the integral (32) which depends on 
(T- Tc)/Tc, i.e., they do not lead to anomalies of the 
kinetic coefficients at the critical point. This is assoc­
iated with the fact that the density fluctuations in ~ now 
appear only in the form ap:f/at (see Eq. (30)), which 
leads to the appearance of an extra factor Wmin(k) in 
(41) and leads to the vanishing of the singularities as­
sociated with fluctuations of the density. 

However, the fluctuations of the velocity turn out to 
be important. In fact in the formulas for R1(w, k) 
and R2(w, k), as one can easily verify by substitution of 
(12) into (30) and changing to Fourier components, side 
by side with v:f1 (w, k) stands the factor c Jl (w, k) which 
increases as the critical point is approached, and also 
the quantities s T(w, k) and c T(w, k) are proportional to 
cll(w, k). 

After substitution of these terms into formula (32), 
the expression for the production of entropy reduces to 

(44) 

where the singular parts of the kinetic coefficients are 
given by 

A ~ 2f r,k•cl'•(ro,k)(~oflxv"n~[T• •n +D 
ua po o J A(ro,k) d*(ro,k) <rJlTC u aa (45) 

+ JlT(D1a+Da1)]dSkdro; Ap = -!lTAa; Ay = TwT2 Aa. 

Substitution of the correlator (v£1 xv£1 x>w k from 
' ' ' (25) into Eq. (45) and evaluation of the resulting integral 

according to Eqs. (34)-(41) leads to the following re­
sult: 

ro-1 1 
A a~ -(f:J /' -) -· ( _1) ; Ap = -!lTAa; dy = Toll~ A a. 

J.l oc t, T 11 romin, ro 

Thus, we have obtained four relations (43) and (46) 
for the parts of the kinetic coefficients of a binary mix­
ture which are singular in (T- Tc)/Tc. 

4. DISCUSSION OF THE RESULTS 

The ki~1etic _:oefficients ~lWrn!r. (ri/), ro1], _1 _1 
y[wmin(ro ), ro], a[wmin(ro ), ro], and f3[wmin(ro ), ro] 
appear in the right-hand sides of formulas (43) and (46); 
these coefficients determine the energy, momentum, and 
mass currents according to expression (11), i.e., 

11 =rJo + d1'}; y =vo+ Ay, a= ao+ Aa; P = Po+AP, (47) 

where 1/o, Yo, ao, and f3o do not depend on the nearness 
to the critical point. 

Relations (43) and (46) represent the equations for 
the quantities .6.1/, .6. y, t.a, and .6.{3 whose values depend 
on the relationships between the regular and singular 
parts of the kinetic coefficients. 

Not too near a critical point, when .6.1j < 1/o, t.y < Yo, 
t.a < a 0 , and .6.{3 < f3o Eqs. (43) and (46) give the follow­
ing results for the singular parts of the kinetic coeffi­
cients: 

ro-t 
A IJ, Ay, A a, Ap ~ _ /' [ r----::-=;;1. (48) 

(o'Jl dc)p, T Wmin(ro 1), ro-1J 

The ratio ri// Jlc increases upon approach to the 
critical point. In order to obtain the dependence on 
(T- Tc)/Tc we shall utilize asymptotic estimates for 
r 01 and for the thermodynamic quantity Jlc, assuming 
that the dispersion of Jlc for small w and k (forT- Tc: 
ri/- 0 and Wmin- 0) is not important. Then if we use 
the estimates of scaling-law theoryl10 J r 0 
~ ((T- Tc)/Tc)-11 and Jlc ~ ((T- Tc)/Tc)Y with v = 2/3 
and y = 4/3, then in the region where the singular parts 
of the kinetic coefficients are small in comparison with 
the regular parts (.6.1/ < 1/o, t.y < Yo, t.a < ao, and 
.6.{3 < f3o) we have 

A11, Ay, .da, dp = ( (T- Tc) I Tc)-'1•. (49) 

According to the classical theory of Gibbs- Landau l1J 

v = %, y = 1, and 

A11, dy, Aa, dp ~ ((T- Tc) I Tc)-'"· (50) 

Such an increase continues as long as the corrections 
to the kinetic coefficients which are due to proximity to 
the critical point do not become of the order of the regu­
lar parts extrapolated from the far region. However, if 
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flTJ?, TJo, fly?, Yo, fl01.:;;:: Ol.o, and fl{3:;;:: f3o, then the four 
relations (43) and (46) asymptotically (in (T- Tc)/Tc) 
reduce to 

r -I 
L'.al'.!'j~---~--; L'.P=-f.ITL'.a; L'.y=Tof.1T2 L'.a (51) 

(af.lfdc)p, T 

and one can only assert that either the viscosity increa­
ses without limit at the critical point and then 01., {3, and 
y remain finite or, on the other hand, 01. and together 
with it {3 and y increase, but the viscosity remains finite 
as the temperature approaches the critical temperature. 

Such a situation occurs even in a pure substance. rsJ 
Apparently in both of these cases the proximity to the 
critical point which is experimentally attainable corre­
sponds to case (48) but not (51). 

In actual experiments the quantities 01., {3, and y are 
not themselves measured, but rather certain combina­
tions raJ of these quantities are measured: the diffusion 
coefficient D = 01.11c, the coefficient of thermal diffusion 
kTD = T0 (01.11T + {3), and the coefficients of thermal 
conductivity which are measured differently. Let us 
consider the behavior of these quantities as the tempera­
ture approaches the critical temperature. 

The abrupt decrease of the coefficient of diffusion 
near the critical point is a well-known fact, r51 which 
follows immediately from the definition (1) of the criti­
cal point. It is of interest, however, that due to the 
growth of 01. (at least in the region of validity of form­
ulas (48)) the decrease of D goes according to a slower 
law than 11c· Actually fl01. increases upon approach to 
the critical point, and according to estimates from 
scaling-law theory (49) and from the classical theory 
(50): ri/ ~ 11 112 , i.e., flO!.~ 11~2 and the "singular" part 
of the diffusign coefficient flD ~ 11t/2 but it is not pro­
portional to 11c· If the growth of fl01. is maintained into 
the region of validity of formula (56), then such a law 
governing the change of the diffusion coefficient holds 
over the entire neighborhood of the critical point. 

This result is apparently confirmed experimentally 
in a recently published articler111 where, for the diffu­
sion coefficient of the isobutyric-acid-water system, it 
was observed that D ~ 11~12 in the temperature interval 
down to (T- Tc)/Tc :::;; 10-4 • 

From formula (46) it follows that the coefficient of 
thermal diffusion 01.11T + {3 does not have any singulari­
ties which are associated with the decrease of 11c upon 
approach to the critical point, but in general it may 
only have weak (logarithmic or close to it) singularities, 
which we have not taken into consideration. Thus, it 
follows from our calculation that the coefficient of 
thermal diffusion cannot increase strongly upon ap­
proach to the critical point (although its "composite 
parts" OI.I1T and {3 increase). 

The coefficient of the so-called pure thermal conduc­
tivity is defined as the coefficient of proportionality be­
tween the heat flux and the temperature gradient in that 
case when no matter transport is present. Assuming 
jav = 0 in (11) and eliminating 'i111av from the expressi_on 
for the heat flux q, one can easily verify that the coeffi­
cient of thermal conductivity is given by y - (~To/ 01.). 
In the region of validity of formula (48) this coefficient 
grows according to the law (49) or (50)), but for flTJ 
~ TJ 0 , fl01. ~ 01. 0 , if this region is accessible to experi­
ment, from (51) it is seen that fl(y- ~To/01.) is bounded, 

i.e., the growth of the coefficient of thermal conductivity 
is retarded in the immediate vicinity of the critical 
point, and it apparently remains finite at the critical 
point. 

We note that in the experimentsl121 known to us, no 
substantial dependence of the coefficient of thermal con­
ductivity on (T- Tc)/Tc was observed, which is in 
agreement with our results. 

The coefficient of thermal conductivity, determined 
2 under the condition that Cav = const, equals Y + OI.Toi1T 

+ 2f3Toi1T and, as is clear from (46), in general it does 
not have any singularities in the critical region. 

Finally, the coefficient of thermal conductivity, de­
termined under the condition that 11av = const (i.e., the 
changes of the temperature and concentration cancel 
each other), is equal to y, and its behavior was dis­
cussed above (see Eqs. (48) and (51)). 

In conclusion, let us compare our results with the 
article by Swift, ll3J which is devoted to this same prob­
lem. From simple physical considerations Swift 
attempts to establish an isomorphism between the criti­
cal point of a pure substance, near which the singulari­
ties of the kinetic coefficients were calculated by him 
earlier/141 and the critical point of a binary mixture. 
In order to do this it is necessary to make the assump­
tion (in our opinion, this is not completely obvious) that 
the coefficient of thermal conductivity does not have any 
singularities at the critical point of the binary mixture. 

In addition, Swift utilized all of the assumptions in the 
article by Kadanoff and Swiftr141 which have been dis­
cussed by us previously. rsJ We note that the character­
istic frequency Wmin(k) given by Eq. (36), which appears 
in the singular parts of the kinetic coefficients, is a 
combination of the diffusive and heat-conducting hydro­
dynamical branches. Such a frequency does not appear 
in articlel131 or in other treatments which are based on 
a simple dynamical theory of similarity, where the 
hydrodynamical states which are in local-equilibrium 
are assumed in advance to be noninteracting. The indi­
cated difference finally leads to the result that in form­
ula (3) for the diffusion coefficient given in articlel131 

the viscosity at the high frequency wTJ = iTJk2/Po appears, 
whereas in our formula (46) the viscosity enters at the 
low frequency wmin(k). Therefore, it appears to us that 
Swift's assertion about the finite value of the viscosity 
at the critical point is unproved. 

The authors thank I. M. Lifshitz and M. Ya. Azbel' 
for useful discussions. 
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