
SOVIET PHYSICS JETP VOLUME 30, NUMBER 2 FEBRUARY, 1970 

CASCADE IONIZATION OF A GAS DURING OPTICAL BREAKDOWN IN A WIDE RANGE 

OF RADIATION FLUXES 

Yu. V. AFANAS'EV, E. M. BELENOV, 0. N. KROKHIN, and I. A. POLUEKTOV 

P. N. Lebedev Physics Institute, U.S.S.R. Academy of Sciences 

Submitted February 27, 1969 

Zh. Eksp. Teor. Fiz. 57, 580-584 (August, 1969) 

The problem of cascade ionization of gases during optical breakdown is studied theoretically in a 
broad range of radiation flux densities. A universal dependence of the cascade-development param
eter on flux density is derived. It is shown that the cascade-development constant goes through a 
maximum. A family of energy distribution functions for the cascade electrons is found by numerical 
integration. 

1. The theory of optical breakdown of gas under the 
influence of laser radiation was considered in[ 1- 3 J. It 
was shown that in the case of light fluxes q = cEg/87T 
s 10 15 W/ cm 2 (c-velocity of light, E 0-field amplitude) 
the breakdown mechanism is cascade ionization. 

As shown inl 2' 3 J, the characteristic parameter of the 
theory of cascade ionization is the quantity f3o ~ Yin I/ a, 
where Yin is the frequency of the inelastic collisions of 
the electron with the neutral atom, Ii is the ionization 
potential of the gas atoms, a = %E:olleff• lleff is the fre
quency of the elastic collisions of the electrons with the 
atoms, and E:o = e 2Eg/2mw 2 is the effective energy of the 
oscillations of an electron with charge and mass m in 
the light-wave field with frequency w. The case f3o = oo, 

which is considered inl1 J, corresponds to the condition 
of relatively small rate of acquisition of energy by the 
electron in the field wave, with subsequent instantane
ous ionization of the atom by an electron, reaching the 
energy ~Ii> and is realized in experiments with giant 
laser pulses of duration ~ 10-8 sec. According tol 1J, the 
number of electrons n in the cascade grows exponen
tially, n ~ eYt, with a cascade-development constant y 
proportional to the radiation flux density q. 

In another limiting case {3 0 ~ 0, which is considered 
in l 2' 3J, y is a decreasing function of the flux density q, 
and the electron concentration at a fixed value of the 
time decreases with increasing field intensity. 

In this paper we develop a theory of optical break
down of gas for an arbitrary value of f3o. By solving 
the kinetic equation, we obtain a family of cascade
electron distribution functions with respect to the ener
gies, f13 (E:, t), and construct a universal plot of the cas
cade de~elopment constant y = y(/3o). The function 
y = y({3 0) in the limiting cases f3o ~ oo and f3o ~ 0 coin
cides, apart from numerical coefficients of the order of 
unity, with the relations obtained in l 1- 3J, and reaches a 
maximum at the point f3o = 0.25. 

2. As usual, we seek the electron energy distribution 
function n(E:, t) in the form 

n(e, t) = eV'f(e). {1) 

Then the kinetic equation for the function f{E:) is given 
by[1,3] 

_!,__ ( af- 2ae _!{) + yf = (_fl_) . 
de de ot col (2) 

The collision term (<H/at)col• connected with the inelas
tic losses, can be represented in the general case in the 
form 

( '!1_) = N0 ~ do-;n(e, e'/ f(e + e')v(e + e') ' at col \. 

{3) 

where No is the density of the neutral atoms, dain is the 
differential cross section for excitation in ionization of 
the atom by an electron having a velocity v = (2E:/m) 112 , 

and E:' is the energy transferred to the atomic electron. 
We assume further that in each inelastic collision 

between the electron and the atom a constant energy I is 
transferred to the atomic electron; this energy is dif
ferent for each atom. Such an assumption for primary 
electrons with energy exceeding about two ionization 
potentials Ii is certainly valid l4 J (in this case I ~ Ii). 
Therefore, at least in the indicated energy region, we 
can put 

' x(e) ' . l)d ' do-;n(e,e)=-1-li(e- e, {4) 

where K{E:) is the effective decelerationl 51 • The quantity 
is calculated in the Born approximation, which is almost 
exact at these energies; on the other hand, at low ener
gies (E: s 2Ii) the Born approximation is reasonable for 
the cross sections of the inelastic processes, since the 
error resulting from this approximation is ~50% l4 J. 
In addition, the cross sections obtained in the Born ap
proximation are universal, unlike other corresponding 
approximations, which give higher accuracy only for 
individual concrete cases. We therefore extend formula 
{4) to the entire energy range, assuming for K{E:) an ex
pression in the form 

C e 
x(e)=-ln-, 

e I 

where C is a constant. 

(5) 

Expression {5) differs somewhat from the known 
formula lsJ by a factor on the order of unity preceding 
the logarithm sign; the assumption that the energy lost 
by the primary electron is constant in the region E: ~ 2Ii 
introduces the same error as is produced by the Born 
approximation (5) for K{E:). On the other hand, from (4) 
and {5) we get for the total cross section ain{E:) of the 
inelastic collisions of the electron with the atom 
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i , x(e) 1 e 
O"in(e)= J dcr;n(e,e )=--~-In-, 

I e I 
(6) 

i.e., expression (6) yields for O"in(€) the correct energy 
dependence in the Born region, and vanishes when 
E =I (ain(E) ~ (e -I) when e ~I); the quantity I now has 
the meaning of the effective threshold for the inelastic 
processes. Substituting then (4) and (3), we get 

( of) No - =-I (/(e+I)v(e+Ilx(e+I)-/(e)v(e)x(e)]. 
{)t col · 

(7) 

It is easy to show that when E » I expression (7) goes 
over into the formula for the collision term obtained 
in LSJ by expanding the integral (3) in powers of e '/e. 

For the subsequent calculations, it is convenient to 
represent the collision term in the form 

( of ) evm [ ( I )''' e +I - =- /(e+I) -- In--at ,col 2 e +I I 

( I)''• e l -!(e) ---;- In/ , (8) 

where Ym = 2CNo/el3 / 2 is the maximum frequency of the 
inelastic collisions, i.e., the maximum value of the 
function Yin= Nor~(E)K(e). Thus, the kinetic equation 
at Veff = NoO"tr(E)v(e) = const, where O"tr(e) is the trans
port cross section for the elastic scattering of an elec
tron by an atom, is given by 

d2/ df eym r ( I )''• 
aede• +aa;-v/+-2-L/(e+I) e+I. 

e +I (I)''' e l Xln-I--f(e) ---;- In/ =0. (9) 

The undetermined constants contained in the solution of 
(9) are determined from the condition f(oo) = 0 and the 
normalization condition. The cascade development con
stant y is determined from the relationl3J 

v = r t(e)y;(e)de 1 s t<e)de, (10) 
I 0 

where r/e) is the frequency of the ionization-producing 
inelastic collisions of the electron with the atoms. It is 
physically clear that Yi(E) = nn(E) in the region of large 
flux densities, for in this case the atoms excited by 
electron impact are instantaneously ionized by the 
radiation field. On the other hand, in the flux region at 
which the multiquantum photoeffect from the excited 
levels is negligible, we have Yi(e) = Noai(e)v(e), where 
ai(e) is the cross section for the ionization of the atom 
by electron impact. For the quantity O"i(e) we can use in 
this case the expression for the Thomson ionization 
cross section 

cl ( 1 1) cr;(e)=--;- 1 ---; , 
2.6'/mi ( I) 

y;(e)=~ 1--, 
l'e/I e 

(11) 

(12) 

where Ymi is the maximum value of the function yi(e). 
We note that the physical relation (10) denotes equality 
of the electron flux in energy space of E = 0 to the num
ber of secondary electrons produced in the entire energy 
space. 

Equation (9) becomes universal if one goes over to 
the dimensionless variable y = ..fETI: 

d2f f [t " i) ln(y2 + 1) lny"J 
dy"-~ +~· (y·+ (y"+1)''• f(y")-y-. =0, 

evml 2/y 
~·=·-, ~=--. 

a a 

In the case of large and small fluxes, respectively, 
relation (10) assumes the form 

~=2~. ff(y)lnyay 1 rt(y)ydy, 
I 0 

(13) 

(14) 

~=2£\~. It<u)(1-y-•)dy! rf(y)ydy, (15) 
I 0 

where a = YIJ!i/Ym• 
Equation l13) was integrated numerically together 

with relation (14) and separately in conjunction with 
relations (15) at a = 0.5L 5J. As the result, two universal 
curves of {3(f3o) were plotted, determining the cascade 
development constant y as a function of the radiation 
field and of the parameters of the medium (Fig. 1), and 
two families of curves were obtained for the distribu
tion functions f13 {e) (Fig. 2) corresponding to relations 
(14) and (15). 0 
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FIG. 2. Plots of the electron energy distribution functions, normal
ized to unity, for three values of the parameter {30: I - {30 = I 00, (e/1) = 
0.51; 2- {30 = 20, (e/1) = 0.87; 3- {30 =I, (e/1) = 7.27. 

Figure 1 shows plots of {3/f3o = f(f3o) (we note that 
y = Ymf3!f3o), plotted formally in the entire flux region, 
i.e., in the entire region of the parameter {3(/. At small 
radiation fluxes (larger than f3o), the function y = Ymf3/f3o 
= f({3 0 ) is determined by curve 1. 

As follows from the foregoing, at a certain value of 
the parameter f3b ({3~ = 1 in Fig. 1; generally speaking, 
the value of {3~ depends on the character of the energy 
levels of the concrete medium) the function y = y({30) 
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FIG. 3 

is already determined by the curve 2. The indicated 
"transition" (shown dashed in Fig. 1) is quite abrupt, 
since multiphoton ionization is a threshold process. 

As follows from Fig. 1, when f3o = 0.25, corresponding 
to fluxes q = 2.3(ym/yeff) x 10 15 W/cm2 , the cascade
development constant reaches a maximum, Ymax 
= 0.58 Ym· 

Figure 3 shows a plot of {3(f3o) in the region f3o > 1. 
It is seen from Fig. 3 that when {3 0 ~ "" we get {3 ~ 2. 7 5. 
Consequently, in the region of small fluxes we obtain 

y = 1.37a/ I, 

i.e., the cascade-development constant y turns out to be 
proportional to the flux density of the instant radiation. 
Formula (3), apart from a constant factor of the order 
of unity, coincides with the result obtained in l1J. In the 
opposite limiting case, {3 0 ~ 0, the cascade development 
constant decreases, corresponding to the results of£3 J. 

Figure 2 shows plots of the electron energy distribu-

tion functions, normalized to unity, for three values of 
the parameter {3 0 , and the respective values of the aver
age electron energy are indicated. 

The region of applicability of the theory developed 
here is limited on the high radiation-flux side by the 
multiphoton processes, and has been estimated inl3 J 
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