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The dependence of the amplitude of giant oscillations of sound absorption of semimetals on the angle 
between the direction of propagation of sound and the magnetic field has been studied. For angles 
which are not close to right angles, the principal role is played by collision-free sound absorption by 
the conduction electrons. In this region, the amplitude of the oscillations changes inversely with the 
cosine of the angle between the direction of propagation of sound and the magnetic field. For angles 
that are close to right, the indeterminacy in the law of conservation of energybecomes significant. 
This is associated with the scattering of electrons, which leads to a decrease in the amplitude of the 
giant oscillations relative to the smooth part of the absorption. At a definite value of the angle, which 
depends on the frequency of collisions of the electrons with the scatterers, the amplitude of the giant 
oscillations reaches a sharp maximum, and this amplitude can significantly exceed the amplitude of 
oscillations in sound propagation of the magnetic field. A similar effect can be used conveniently for 
an estimate of the length of the electron free path in crystals. 

GuREVICH, Skobov, and Firsovul investigated the 
deformation sound absorption in semimetals in the case 
of a strong magnetic field (ti.O ~ T) and a large free 
path length of the conduction electrons L (G = eH/mc is 
the cyclotron frequency, T the temperature in energy 
units). It has been shown that the coefficient of sound 
absorption can experience giant oscillations with change 
in the magnetic field. The present research is devoted 
to the study of the dependence of the amplitude of the 
giant oscillations on the angle e between the directions 
of the sound wave vector /C and the intensity of the mag
netic field H. 

The reason for the appearance of giant oscillations 
is the following. l 1J For tm ~ T, in the region of dif
fuseness of the Fermi surface, which is responsible for 
kinetic phenomena, only a narrow range of values of kz 
are allowed (tikz is the projection of the quasimomen
tum of the electron in the direction of the magnetic field 
H), the direction of which changes with change in the 
magnetic field. 

On the other hand, if the free path length L = vF/11 
(vF is the velocity of the electron on the Fermi surface, 
11 the collision frequency of electrons with scatterers) of 
the conduction electrons is much greater than the sound 
wavelength (K L ~ 1), then the principal role is played 
by direct, collision-free absorption of sound by the 
electrons. In this case the laws of conservation of en
ergy and momentum, 

(1) 

(wq is the sound frequency) distinguish the values of 
k~ of the electrons that can take part in sound absorp
tion. If each of these values lies in the allowed range of 
values of kz on the Fermi surface, then a strong sound 
absorption takes place-a giant oscillation, the ampli
tude of which may easily be seen to be proportional to 

{a[En+l(k. + x.) -En(k.)] I 8k,}-' <Zl (cos e)-'. 

In the contrary case, direct absorption of sound is ab
sent. 

As the angle (} approaches rr /2 (" z - 0) the laws of 
conservation of energy and momentum (1) cannot be 
satisfied exactly. In this case, there is a considerable 
indeterminacy in the law of energy conservation, brought 
about by the electron scattering. This indeterminacy 
leads to the result that there are electrons responsible 
for the absorption which have all the values of quasi
momentum from 0 to PF, which leads at(} = rr/2 to the 
disappearance of the giant oscillations. Only small os
cillations remain (of the de Haas-van Alphen type), and 
their amplitude is inversely proportional to the number 
of occupied Landau levels, i.e., -v'Qhn. Evidently, the 
amplitude of the giant oscillations should reach a maxi
mum for some value of (}. A similar characteristic de
pendence of the amplitude of the oscillations on the 
angle (} has been observed experimentally by Toxen and 
Tansal in Bi. l 2 J 

In analogy with the research of Skobov, l3 J who studied 
the effect of electron scattering on sound absorption for 
/C II H, we consider the case in which the transverse 
electric fields that appear upon deformation of the crys
tal do not play significant roles and can be neglected. 
We shall assume that the scattering of the electrons is 
due to interaction with randomly distributed, fixed cen
ters, the radius of action of which is small in compar
ison with the mean distance between them and with the 
wavelength of the electron. For simplicity, we limit 
ourselves to the case of isotropic quadratic spectrum of 
electrons and do not take their spin into account. 1 > 

Let the Hamiltonian of the electrons in the absence 
of sound be :JC = .'"/&0 + V, where 

1>In the absence of transitions with reversal of spin, allowance for 
the spin reduces to replacing t by t ± pH, where !l is the effective mag
neton. Allowance for anisotropy in the case of a quadratic spectrum 
does not present any great difficulty. 
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1 ( ~ e )2 
~o=- p--A ' 

2m c 
V=~ V;==~ V(r-r;)o (2) 

j j 

Here A is the vector potential of the magnetic field, p 
the electron quasimomentum operator, m the effective 
mass of the electron, and Vj the interaction potential 
of the electron with a scattering center located at the 
point rj. 

The perturbation produced by the interaction of the 
electron with the sound is written in the form 

J!e'(t) = •j,(U.-irot + U+ei"'t), (3) 

where Uo is the Hermitian operator, which generally 
depends on the quasimomentum of the electron. In the 
case of deformation absorption, 

(4) 

where uik = %(aui/aXk + auk/axi) is the deformation 
tensor of the crystal, and Aik the effective tensor of the 
deformation potential. For semimetals of the type of 
bismuth, the constant-energy surface for which con
sists of non-intersecting ellipsoids, the tensor Aik can 
be regarded as constant. We note that the induced ab
sorption under the conditions considered is small in 
comparison with the deformation absorption. 

The energy absorbed by an electron per unit time is 
determined, in first approximation in ::JC', by the expres
sionl4l 

Q= ~ro ~(IU•al 2 11(1iroab+hro)Ua(1-!b)-h(1-/a)])o (5) 
a, b 

Here a and b characterize the stationary states of the 
Hamiltonian :JC, tiwab = Ea- Eb is the energy difference 
and fa the distribution function of the electrons. Since 
the scattering of the electrons by the fixed centers is 
elastic, ff! is simply the Fermi function of argument 
(Ea- i;);T. The angle brackets here and below denote 
averaging over the position of the scattering centers rj. 

Proceeding as in l3 l , we represent Eq. (5) in the form 
00 

Q = n~w ~ dE[/ (E)- f (E ·~tiro)] I (E), (6) 
ftU/2. 

I(E) = l; <I u •• l'il(E- E 0 + fiw)i\(E- E.)), (7) 
a, 0 

and then, with the help of the identity 

l)(x)=-1 (-1 ___ 1_) 
2:rri x- ie x + ie •~+o 

in the form of a combination of four terms of the type 

- 1-sp ({ 1 u+ 1 ----u}) (8) 
(2:rr)' E-de±ie E+liw-d6±ie ' 

which, just as inl3 l, we shall compute in the representa
tion of the unperturbed Hamiltonian i/Co, the eigenfunc
tions and eigenvalues of which, when the vector poten
tial is chosen in the form A= (0, Hx, 0), are given by 
the following expressions: lsJ 

'i'a = 'l'n(x- Xc.) exp [ikyy + ik,z], 

( 1 ) fi2k ' n'k ' Ec.=liQ n+- +-'-==En+-'-, 
2 2m 2m 

(9) 

where 'Pn is the normalized wave function of the harm
onic oscillator in staten, xa = -aH2ky plays the role of 
the center of the oscillator, and aH = (cti/eH) 112 is the 
so-called Landau oscillator length. The set of Landau 

quantum numbers (n, ky, kz) below will be denoted by the 
Greek letters (a, {3, etc.). 

To calculate (8), we must know the Green's function 
averaged over the positions of the scatterers: 

G~c.(u)=<(~ J u~de I a)) 0 (10) 

It has been shown by Skobovl6 ' 7J that G(u) can be des
cribed in the form of a series 

1 1 1 
G(u)=--+~--(Ti(u)>--

u - deo _ u- ~. u- deo 
' + ~-1-(Ti(u)-1-T•(u)>-1-+o.. (11) 

;.=•u-deo u-~o u-~0 

_ 0 , 2nfh2 1 
T~a'(E +!e)= 'ljl~ (r;)'ljla(r;) (12) 

m 1+iK(E)f 

Here f is the scattering amplitude of the free electron 
of zero energy by a potential Vj, 

N-H fi 
K(E)= ~ (E-En)-'1•, (13) 

n~o (2m)'!• aH2-

where N is an integer such that one ill).aginary term re
mains in the sum (13). The quantity T~a (E + iE) is the 

amplitude of transition from state a to {3 in scattering 
from the j-th center. 

Summation of the form (11) under the conditions tin 
:::P T, f « ~. f «a(~ is the wavelength of the electron, 
a the mean distance between the scatterers) gives 

G~c.(E + ie) = ilc.~[E- Ea + iliv(E) /2]-1, 

where v(E) is satisfied by the equation 

(14) 

v(E) = v0 (E) (2mE)-'I•Re K(E + iliv(E) /2)o (15) 

The quantity vo(E) = 41Tf2ns(2E/m) 112 is the scattering 
probability in the absence of a magnetic field. 

If the condition 

liQ~ (~livo)'iz, (16) 

is satisfied, then v(E) ~ v0(E) for all energies. In the 
opposite case, as E- hO(n + %), an increase of v(E) 
takes place. lBJ In the case ti v0 « T, the condition (16) 
can be replaced by the less stringent one 

liQ~ (~T)'t., (17) 

which is easily satisfied in semimetals. This is connec
ted with the fact that the increase of v(E) over energy 
ranges that are small in comparison with T leads to 
finite results because of averaging over the Fermi dis
tribution. 

For what follows, it is convenient to introduce a dia
gram technique, analogous to that employed inl8 ' 9 J. We 
associate the matrix element of the operator (u - .1e0r~ 
with a thin solid line with ~ndices yo at the ends, andy 
the transition amplitude Tba with a cross with index j. 
The crosses that correspond to scattering by a given 
impurity are connected by dashed lines. In diagrams of 
any order, there should not be two or more crosses in a 
row corresponding to scattering from the same center, 
since we have already associated the exact transition 
amplitude with each cross. Summation is assumed over 
all indices in the intermediate states, and then averag
ing over the coordinates of the scatterers. We assoc
iate the exact Green's function G(:la = ((f31(u -:Jer1 la)) 
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-----+ 
a ~ a ~ 

FIG. I. 

with a boldface line. Thus, Eq. (10) can be represented 
in the form of a sum of diagrams as shown in Fig. 1. 

Diagrams in which the dashed lines intersect give a 
small contribution for f « A, f «a, nO « ~ and can 
be neglected. [3 J 

For the calculation of (8), we introduce two axes. 
We associate (E - Ea ± i Er1 with the thin line on the 
upper axis and (E + nw- Ea ± i Er1 with the line on the 
lower axis. We shall draw the matrix element of the 
interaction operator U in the form of a wavy line joining 
the upper and lower axes. The simplest diagram is 
shown in Fig. 2a. It corresponds to the expression 

~ 1Uacx•l 2 1 (18) 
, (E- Ea ± ie) (E + li'w- Ea' ± ie) · 

a a 

Summation of all diagrams in which there are no 
crosses corresponding to the same scatterer on the 
upper and lower axes reduces to the replacement of the 
thin lines by the boldface ones, which amounts analy
tically to replacement of the quantities (E - Ea ± i Er1 
in (18) by the matrix elements of the exact Green's func
tion, i.e., by [E- Ea ± illv(E)/2r. 

0 
' / 

b 

d 

FIG. 2 

0 
c 

C2J ;( 

' ' 
e 

Let us consider the diagrams which contain multiple 
scattering by a single impurity both on the upper and 
the lower axes (Fig. 2b). Summation of diagrams of such 
a type leads to the diagrams shown in Fig. 2c, where the 
cross in a circle corresponds to a sum of diagrams 
(Fig. 2d), calculation of which gives the following analy
tic expression: [3 l 

2rr.fi2 { ( iii )·}-1 T~a; = lj;~'(r;)\j:a(r;)~ 1 + ifK E + 2v(E) . (19) 

It can be shown that diagrams of the type shown in Fig. 
2e make a small contribution in comparison with the 
diagrams without intersection of the dashed lines. 

Thus, for calculation of (8) it is necessary to sum 
the ladder of diagrams (Fig. 3), which leads to the in
tegral equation 

1Uol 2 lla•al 2 

IUol'~ IIaa•la•a=~ (E-Ea+iliv/2)(E+Iiw-Ea.+iliv/2) 
aa' a.a' 

~ 1 i 4. 
+IUol' LJ ~ E-Ea+iliv/2(Ta~!Jiwrwa) E-Ea+liw+iliv/2 

j aa'BW {20) 

Here Ucillaa' denotes an expression corresponding to 

FIG. 3 

the sum of the diagrams shown in Fig. 3: 

law= S lJla•' (r) ei"'lJla(r) dr = f>(k,'- k,- x,) 6(ky'- ky- Xy)ln'n(21 ) 

where 

I n•n = ~ <tn·(x- Xa•) exp(ixxx)c:pn (x- Xa)dx. 

We shall set Kx = 0 below. 
We average Eq. (20) over the coordinates of the cen

ters of the oscillators xa = -aH2ky. The first term on 

the right side of (20) does not depend on xa, and aver
aging of the second gives 

· ( 2nfli2 )'{[ ( iliv )} ~<'fa~; II~~· Td·a) = ·----;:;;-- 1 + ifK E + - 2-

x[ 1 + ifK ( E + hw + ~~~~) Jr ,2; ('i'a" (r;)'¢~(r1 ) rr~~·lJlw'lJla). (22) 
J 

Since Eq. (22) is multiplied by J a' a "" 6 (ka' - ka 
- K), we can set ka' = ka + K (here ka and K are two
dimensional vectors (ky, kz) and (Ky, Kz)). After this it 
is not difficult to set 

~ <¢a''ljJ~II~wlJlw''¢a•) = n,l~'•alw~IIw, (23) 

where ns is the scatterer concentration. Thus the equa
tion is uncoupled in the indices a and (3. 

By denoting 

IUol'( ~ IIaa,/a'a) x""' 1Uoi 2II(E), 
aa' a 

we have 

( iliv )-1 ( iliv )-1 
II(E) = ,2; lla•al' E- Ea +-2-· E- Ea + liw + -2-

aa' 

{ ( 2nfli' )' 1 1 
X 1 - -----;;;-- n, 1 + iKf 1 + iK'f 

(24) 

Let us consider the expression in the curly brackets 
in (24) in more detail. For K z "' 0, it is not difficult to 
show that the addition to unity is a quantity of the order 
of (Kzl)-1 << 1 and can be neglected. In the case Kz = 0, 
all the terms in the sum entering into the curly bracket 
in (24) for which E- En~ nO, E- En' ~nO are quan
tities of the order of n v0/v'nOE « 1. Consequently, only 
the term for which IE- En I ~ n IJ « T can be signifi
cant. It can be shown that when the energy approaches 
the value En, the value of this term increases, while in 
the narrow range IE - En I ~ ti v « T, it has the order 
of {KRf1(li0/&) 112• Outside this region, it is of the order 
of tiv/(tiOE) 172 « 1. Since the condition {KRf 1 (lirl/~) 112 

« 1 is usually satisfied in experiment, the contribution 
to the curly bracket in (24) is small and can be neglected 
in the calculation of the smooth part of the absorption. 
The oscillating part of the absorption coefficient is of 
the order of (lirl/~) 112 relative to the smooth part; there-
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fore, this contribution must be taken into account in the 
calculation of the value of the term at resonance. How
ever, aside from the narrow region (.:lE ~ !i 11 « T) near 
resonance, it can be neglected even in the calculation of 
the oscillating part. 

Under these assumptions, we obtain 
jUol2 ~ ftv ftv 

I(E)= (2n)2 -'J_i'a•al 2 (E -£,.)2 +(flv)2j4' (E_+_ftc-:v-----=E=-,.-.)-2 +-(ftc-v-)2:-c/-4 · 

"" (25) 
We investigate this expression for small Kz· Setting 

!i 2Ki/2m << !i 11 and E = En+ .:l, and carrying out inte
gration over kz and summation over the coordinates of 
the centers of the oscillators, we obtain the result that 
the principal contributions are made only by the terms 
of the sum (25) with identical oscillator quantum num
bers. With account of this, we have 

1 I ( x.1.2aH2 )12 f(E)oo ~-=- Inn -- v(E) 
n }'E-En 2 

{[( 2x - )z v2 J-1 [( 2x - )2 vz J-1 X . z yE-En+w +- + z 1/E-En-w +- . 
· }'2m 4 y2m 4 

(26) 

Using the explicit form of the Fermi distribution 
function, it is easy to establish the fact that the absorp
tion coefficient is proportional to the integral of the 
product of two functions 

r dy ~ (y2-A") r 00 .l ' -'l ch-2 ---
1+(By-w/vo)2 2 ' 

0 n 

(27) 

where 

B= (_E'_)''• xcos.S, 
m vo 

A -~-ftQ(n+ 1/2) 
n- T • 

The integrand in (27) is itself the product of two rapidly 
varying functions: 

[ ( :.1 )2]-1 
1 + By--;; , 

which give a set of peaks of unit height. If the condition 

cos 9 ~ (~/ftQ)'"(xL)-1, (28) 

is satisfied/> the distance between the maxima of the 
second function is seen to be much larger than the width 
of the maximum of the first. In this case, there is either 
only one group of electrons (with definite kz) on the 
Fermi surface which satisfies the laws of conservation 
of energy and momentum, or there are no such elec
trons. Thus giant oscillations are possible and one 
''resonant'' group of electrons is responsible for the 
absorption in this case. 

In the case when the angle e is close to 'IT/2, one can 
obtain the following interpolation formula for the con
tribution of the "resonant" group of electrons at the 
maximum:3 > 

max I ( aH2 X.J..2 ) 12 cos 9 ftQ 11r res = ro INN --2-
cos2 9 + mw vo/xT 4T · 

(29) 

2>Condition (28) is a sufficient condition for the existence of giant 
oscillations. As Kaner and Skobov have shown f. [ 10] the necessary and 
sufficient condition has the form cos () > (rf) 2 (hnJCLr'. It is ob
tained from a comparison of the contribution of the "resonance" 
group of electrons with the contribution of the nonresonant groups. 

3>Formula (29) is introduced in a fashion similar to formula (4.15) 
of [10]. 

Here ro is the value of the sound absorption coefficient 
obtained from classical theory forK 11 H, w is the speed 
of sound. The contribution of the "nonresonant" groups 
of electrons is a smooth function of the magnetic field 
plus small oscillations (of the de Haas-van Alphen type), 
brought about by oscillations in the density of state in 
the magnetic field. 

From the expression (29), it is easy to see that the 
amplitude of the giant oscillations is a rapidly varying 
function of the angle e and for 

cos 6 = (mu•v0 /xT)'I• 

it reaches a maximum whose value is 

max I ( an2x.J..2 )12 Q ftx !1rmax=ro IsN -.-- ----, 
:.! ~v0 mw 

and the effective width is of the order 

A(cos 9) ~ (mwvo/xT)'"· 

(30) 

(31) 

(32) 

In the subsequent approach of the angle e to 'IT/2 the 
contribution of the "resonant" group of electrons, and 
with it the amplitude of giant oscillations, decreases 
and as e ..... 'IT/2 becomes less than the nonresonant part. 

We note that the condition (30) is convenient to use 
for estimate of the relaxation time of the electrons. 

We present the results for the absorption coefficient 
in the case in which the condition 

COS 9~ W/VF (33) 

holds and the absorption is basically determined by the 
non-resonant groups of electrons. Using the asymptotic 
expression for the matrix element 

1 1 ( - n:) 1Inn(x)I 2 =--=COS2 '/nx--, 
n ynx 4 

(34) 

and also the formula for Poisson summation, it is not 
difficult to obtain the following expression: 

A. For KR :;:: 1 (R is the Larmor radius) 

(35) 

where 

r, = m2IA;kY.;h"izg 1 [1 +No(xR)] (36) 
2rr,2 ph3wxvo 1 +(w/vu) 2 ' 

coincides with the value calculated in classical strong 
magnetic fields if K l H. [HJ This part of the absorption 
coefficient describes the oscillating behavior of the 
matrix elements in a magnetic field (the so- called os
cillations of geometric resonance). 4> 

For r 2 it is not difficult to obtain the following result, 
which describes the quantum oscillations of the absorp
tion coefficient: 

r m21Atk'l!.thk I2Qvo ( ftQ )'!• ~{ J ( l ~ \ nk~ 
2 = :t2plt3wx(t~z + ,.oz) "'f >~t o :r 'tm J cosflQ 

1 ( 2nlc~ n. ) I -1)k+t ( 2nk~ n )} 
+=sin(xR)cl'~ ----- +---cos ----

"J'2k ftQ 4 k ftQ 4 

2n2kT I _1 ( 2:r.2kT ) 
X~Sl hQ. (37) 

Here t = 0 if w << llo, and t = 1 if w ~ 110• The third 
term in the curly brackets is caused by the quantum os-

4>In formulas (36)-(38), p is the density of the crystal, hk the com
ponents of the polarization vector of the sound wave, w the speed of 
sound, No(x) the Neumann function, J o(x) the Bessel function. 
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cillations of the relaxation time in the magnetic field. 
B. For KR << 1, the oscillations of geometric reson

ance disappear. The expression 

r = IA;kXihkl2 s -~ p(e)OJ-de, (38) 
2pw 0 <u2 + \'" oe 

is valid for the absorption coefficient. Here p( E) is the 
density of states in the magnetic field, which has been 
well studied in a number of works. 

In conclusion, I take the occasion to thank V. L. 
Gurevich for direction of the research and v. G. Skobov 
for useful discussions. 
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