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Spectral diffusion in an inhomogeneously broadened EPR line (unresolved hyperfine structure) is con
sidered. The variation in the spin level populations is due to simultaneous electron and nuclear spin 
flip induced by spin-lattice interaction. The spin-packet model is not valid in this case. Kinetic 
equations are presented for the spin-state populations. These equations can be solved exactly for 
nuclei with spin 1/a. It is shown that besides the spreading of the "holes" that are burnt out in the 
EPR line, spikes should be observed at certain frequencies (increase of high-frequency power ab
sorption). The hyperfine coupling constants in forbidden EPR lines can be determined on the basis 
of the results of the present investigation. The role of independent nuclear spin flips in spectral dif
fusion is discussed. 

1. INTRODUCTION 

WHEN a certain section of an inhomogeneously broad
ened EPR line is saturated, dips appear in definite 
places on the line (including on the saturation sec-
tion), l 1 - 4 J and vanish gradually after the saturating field 
is turned off. This process of return to the equilibrium 
state may be accompanied by distortion of the line sec
tions unaffected by the saturation. Such a propagation 
of the shape distortion along the line is called spectral 
diffusions' the concept of which was firs~ introduce~ by 
Portis. l J This phenomenon can occur 1f there ex1sts 
some mechanism causing a time variation of the local 
fields at the electrons, and consequently leads to a time 
variation of the difference between the spin populations 
of the electrons with given resonant frequency. In the 
investigation of EPR in solids it was observed that the 
shape of a line inhomogeneously broadened by hyperfine 
interaction of paramagnetic centers with the close nu
clear surrounding is strongly influenced by simultane
ous reorientation of the electron spin and of the spins 
of the nuclear surrounding, as well as by the spontane
ous flipping of the nuclear spins, due to direct coupling 
between the nuclei and the lattice. The present paper is 
devoted mainly to a theoretical investigation of spectral 
diffusion due to the first of these processes. The influ
ence of the second type of diffusion is considered only 
qualitatively in a section devoted to a discussion of the 
results obtained in this paper. 

If the time dependence of the EPR line shape is due 
to the hyperfine interaction (HFI) mechanism consid
ered in the paper, then the law governing this depend
ence makes it possible, generally speaking, to deter
mine all the constants of the HFI that broaden the EPR 
line. The determination of the HFI constants, especi
ally in the case of an unresolved hfs, is an important 
and very timely problem, an unambiguous solution of 
which is sometimes quite difficult. 

2. HAMILTONIAN OF THE SPIN SYSTEM AND 
JUSTIFICATION OF THE USE OF KINETIC 
EQUATIONS 

We shall assume the concentration of the paramag
netic centers to be low enough to neglect the interac-
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tion of the electron spins with one another, and the ex
ternal magnetic field to be strong enough compared 
with the local field produced at the electron by the mag
netic moments of the nearby nuclei. In addition, the 
dipole-dipole interaction of the spins of the nuclei close 
to the electron can be neglected compared with their in
teraction with the electron spin. 

Since the interaction between the electron spins is 
small at low concentrations, the electrons can be re
garded as independent of one another and we can con
sider a system consisting of one electron coupled by 
hyperfine interaction with N surrounding nuclei in an 
external constant magnetic field H0 directed along the 
z axis. Then the spin Hamiltonian of such a system can 
be written in the form 

N N N 

de=nweS'-nwn~l;' +8' ~A;l;'+S'~ (B;f;++B;'J;-), (1} 
i=i i=i i=1 

where we = YeH0 and wn = YnH0 are the Zeeman fre
quencies of the electron and of the nuclei, respectively, 
sz and Jf are the z-components of the electron spin S 

and of the spin Ji of the i-th nucleus, and Jt = Jx ± Jl. 

The third and fourth terms in the right side of (1) cause 
inhomogeneous broadening of the EPR line. The eigen
values of the energy of such a system l BJ are 

N 

EM, m,, m, ... ,m N = Mfzwe + 2j mif'(nwn- MA;) 2 + [B; [". 
(2} 

i=l 

Here M = ± Y2 and mi = -Ji, -Ji + 1, ... , Ji- 1, Ji
magnetic quantum numbers of the electron and i-th nu
cleus, respectively. 

The figure shows the energy-level scheme (2). Each 
level is determined by the number M and the combina
tion of numbers (mH m2, ••• , mN) = { mi} of all N nu
clei. It is convenient to assume that each such combina
tion determines an N -dimensional vector m = { mi}, 
and we shall denote the levels as follows: (M = ~. m) 
and (M = -%, m'). 

The characteristic scale of the frequency of the sys
tem under consideration is the width .:l w* of the inho
mogeneously broadened line. So long as the line broad
ening due to the spin-lattice interaction 1/T1 or the 
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electron spin-spin interaction 1/T2 is much smaller 
than t.w*: 

1/h 1/T2 <!if,/J.w', (3) 

rapidly oscillating terms, containing nondiagonal ele
ments of the density matrix, drop out from the equa
tions for the density -matrix terms that are diagonal in 
the eigenstate s of the Hamiltonian ( 1). l 71 This means 
that we can describe the system by means of the popu
lations of the spin states PM(m) which obey the kinetic 
equations. 

The interaction between the electron and the lattice 
leads to transitions between states with M = Ya and 
M = -Ya, which establish the equilibrium values of the 
populations. An important factor here is the absence of 
limitations on the selection rules with respect to t.mh 
owing to the presence of the last term in (1), which 
mixes states with different values of mi. This means 
that the electron spin, interacting with the lattice, can 
flip together with the spins of the nuclei surrounding it. 
The here-considered mechanism of spectral diffu
sion consists in the following. If the populations of sev
eral pairs of levels with ~M = 1 have assumed values 
different from the equilibrium values by virtue of some 
action on the system, for example under the action of a 
high-frequency field (the wavy arrow in the figure shows 
only one such pair of levels (M = Ya, l'fl) and (M = - Ya, 
m'), then the return of the system to equilibrium will be 
accompanied by all possible transitions (M = Ya, m) 
- (M = -Yz, m') and (M = ·-Yz, m')- (M = Yz, m), 
which lead to a deviation from the equilibrium values of 
the populations of all the levels of the system, and this 
in turn leads to a change in all possible population dif
ferences P-1 ; 2 (m') - p112(m), and consequently to a dis
tortion of the shape of the entire EPR line. 

Since the EPR line is formed in this case, generally 
speaking, by all the possible transitions ( M = Ya, m) 
- (M = -Ya, m'), it is convenient to describe the inho
mogeneously broadened EPR line by the populations of 
the energy levels of the spin system. The usual descrip
tion in terms of spin packets, after Portis, l 81 presup
poses that each packet is determined by a pair (or sev
eral pairs) of levels with different values of M, between 
which transitions occur under the influence of the high
frequency field, and the levels that enter in different 
packet-pairs are not connec.ted by such transitions. The 
difference between the populations of the states entering 
in the packet determines the intensity of absorption of 
the high-frequency field energy at the frequency corre
sponding to this packet. In the Portis model, any change 
of the populations of the states that enter in one packet 
does not change the populations of the states in other 
packets (neglecting the interaction between packets). On 

the other hand, in the case considered by us, this is not 
so, since the line is formed by transitions between all 
levels of the system. In our case, therefore, the EPR 
line cannot be described with the aid of the spin-packet 
model. 1 > 

If the detecting field is sufficiently weak, so that the 
populations of the spin states practically do not change 
upon detection, then the observed EPR line shape can 
be represented in the form of a sum of contributions 
from different packets. But to describe the spectral 
diffusion it is necessary to use the spin-level popula
tions. 

Since the nuclear spins do not interact with one an
other, the spin wave function can be written in the form 

N 

'¥M,m = X(M) I1 q>;(M,m;), (4) 
i=1 

where x(M) is the eigenfunction of the operator sz, and 
C,Oi(M, mi) is the eigenfunction of the Hamiltonian of the 
i-th nucleus 

dG; = (MA;-Iiwn)l;'+M(B;J;++BN,-). (5) 

Then the probability W + of the transition from the 
state (M = Ya, m) to the state (M = - 1h, m') and the 
probabii.ity Wt of the inverse transition (M = -Ya, m') 
- (M = Ya, m) can be represented in the form 

N 

W 1 = 2+1 
1 Ti 1JFi(m;, m;'), (6) 

where 

r li=l 

2 1 N 
Wt = _Y __ rr F (m· m') 

·f + 1 Tti=l ' ,, ' , 

F;(m;, m{) = l<·cp;(l/2, m;), cp;(- 1/2, m;') >1 2 (7) 

and 1/T1 is the average velocity of the electron spin
lattice relaxation, while y = exp ( -li we/2k T) is the 
Boltzmann factor. For nuclei with spin 1h, the quantity 
Fi(mh mi) depends only on the modulus of the differ
ence I mi- mif. This circumstance had made it possi
ble to solve exactly a system of 2 exp (N + 1) kinetic 
equations for the populations of the states describing 
the relaxation process in the system. 

The investigation that follows pertains to a system 
containing nuclei with spin Ya. Such a situation is en
countered in many organic compounds, when inhomo
geneous broadening is due to the interaction between 
the unpaired electron and the protons surrounding it. 

In this easel 61 

[ . e.J,-o~•;, ]1-lm,-m;'l[ 9'!.-8~'/'llm,-m;'l 
F;(fm;-m;'f)= sm2 2 cos2 2 , 

(8) 

where the angles ek are determined from the follow
ing expressions: 

(9) 

It follows from (6)-(9) that in order for the probabilities 
of the "forbidden" transitions (~M = ± 1, ~mi = ± 1) to 

t) Arguments concerning the non-applicability of the packet model 
to the general case of an unresolved hyperfine structure in the EPR line 
were advanced by T. I. Sanadze in the course on Magnetic Relaxation 
(Telavi, October, 1968). 
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be approximately equal to the probabilities of the "al
lowed" transitions (.~M = ± 1, t.mi = 0), it is necessary 
to satisfy the condition 

(10) 

Under this condition, the spectral diffusion should be 
most noticeable, since the presence of all possible 
transitions with nonzero probabilities leads to a change 
in the differences of the populations of electrons at all 
possible resonant frequencies. 

3. SOLUTION OF KINETIC EQUATIONS 

All the subsequent calculations are carried out in the 
high-temperature approximation accurate to terms of 
first order in x = liwe/2kT. Using (6), we write the ki
netic equations for the populations of the spin states 
p112(m, t) and p_112(m', t): 

dp•;,(m,t) =_1+xP•;,(m,t)~ ITF;(Im;-m{l) (11) 
dt 2Ti m' i=l 

1-x IT 'I X --~p-•;,(m',t) .. F1(lm;-m; ), 
r 2Tt m' i=i 

dp-•;, (m', t) 1- X N 

dt --=- 2T, P-v,(m',t)~ ITF1(1m1-m{l) 
m i=1 

1+x N 
x-;;--T ~P·;,(m,t) IIF;(Im;-m{i). 

- 1 m i=1 

With the aid of (8) we can show that 
N N 

~ fTF;(Im;-m;'l)=~ ff F,(lm1-m;'l)=1. 
m' i=i m i=i 

The second terms in (11) couple all the 2 exp (N + 1) 
equations; this corresponds to the coupling of a given 
level (M, m) with all the levels defined by the quantum 
number - M. The fact that II Fi (I mi - m{ I) depends 
only on the differences I mi- mi I makes it possible to 
split the system (11) into 2N independent pairs of equa
tions with the aid of the linear transformation 

PM(m) = ~ PM(k)exp(inmk), (12) 
k 

where the components of the N -dimensional "vector" 
k = {k1, k2, ... , kN} assume the values ki = 0; 1 (i = 1, 
2, ... , N), and the summation is over all the 2N pos
sible values of k, while 

hr(k) = 2-N~ PM(m)exp(- inmk). (13) 
m 

For PM(k) we obtain the equations 

dp•;,(k) =-1+x P\O(k)+1-x P-•;,(k)f(k), 
dt 2T1 2T1 (14) 

dp-•;,(k) 1- x 1 +x 
--dt-=- 2T1 P-•;,(k)+2J\py,(k)/(k), 

where 
N 

/(k)= IT [F;(O)+F;(1)exp(ink;)]. (15) 
i=i 

The solution of the system (14) is 

P''· (k, t) = MI (k) exp [-AI (k) t] + M2{k) exp [ -A2 (k) t], (16) 

P-" (k, t) = NI (k) exp [-AI (k) t] + N2 (k) exp [ -A2(k) t], 

where 

(17) 

and 

N1,2(k) = [±sgnf(k) + (1 I f(k) ± sgn f(k) )x)MI,2(k), (18) 

while the constants M1 2 (k) are given by the initial 
conditions. The symbol sgn f = If 1/f denotes the sign 
function. With the aid of (12), (13), and (16)-(18), we 
can write the general solution of the kinetic equations 
(11) in the form 

p•;,(m,t)=2-N-1 ~ ~ {[ (1-x)P-•~t(m",O)sgn/(k) 
k m" 

x( 1- lf~k) I )py,(m",O)] exp( - 1 -~)~) I t) 

X [<x-1)P-v,(m",O)sgn/(k)+( 1+ If(~) I )P%(m",O)] 

X exp(- 1 + ~;~k) I t)} exp [in(m- m")k], (19) 

p_y, (m', t) = 2-N-1 ~ ~ { [ ( 1 + I /~k) I ) P-•;, (m", O) 

X(1+x)p•;,(m",O)sgn/(k) ]exp( - 1 -~~~k)l t) 
X [ (1- If(:) 

1
)P-•;,(m",0)-(1 +x)p•;,(m",O)sgn/(k) J 

X exp(- 1 + ~;~k) I t) }exp [in (m'- m") k]. 

4. OBSERVABLE FORM OF THE EPR LINE 

In order to determine the form of the EPR line in 
terms of the populations (19), let us find the power ab
sorbed by the system in a weak detecting high frequency 
field Hx = 2H1 cos wt. The rate of change of the popula
tion difference 

n(m', m, t) == P-'1, (m', t) - P'h (m, t) (20) 

under the influence of this field, which induces transi
tions between the levels (M = - %, m') and (M = %, m), 
is 

( dn(m',m,t) ) =- 2W[(1/2,m)~(-1/2,m')]n(m',m,t), (21) 
dt rf 

where W[(%,m)- (-l,~,m')] is the probability of the 
transition (M = %, m') - (M = %, m) under the influ
ence of a weak detecting field. 

In the first perturbation theory-approximation, using 
(4), (7), and (8), we obtain 

N 

W[(•/2, m) ++(- 1/2, m')] =_:I_ w12g(w - wm,m•) IT F;( I m;- m{ I). 
2 i=l (22) 

Here w 1 = YeH11 g( w - w m m') is a function of the 
shape of the packet and determines the broadening of 
the levels of the spin system, and 

(23) 

The absorbed power, defined by the expression 

1 "' ( dn(m', m, t) ) 
Ua = -2N/!w 2J dt , 

m, m' rf 
(24) 

can then be rewritten with the aid of (21) and (22) in the 
form 

(25) 
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where Ne is the total number of electrons in the sam
ple, and the function of the shape of the envelope of the 
packets is 

N 

h(m',m,t)=n(m',m,t) IJF;(im;-m/1). (26) 
i=i 

Under the chosen normalization condition 

~ [p_y,(m,t)+ Pll(m,t)] = 1 
m 

it follows from (19) that the equilibrium line shape is 
determined by the function 

N 

h(m',m, oo) = 2-Nx IJ F;( lm;- m;'l). (27) 
i=i 

Thus, the obtained solution of the kinetic equations 
(19) determines completely the shape of the EPR line. 
However, in order to use these results in each concrete 
case and to determine the law according to which the 
system returns to equilibrium, it is necessary to know 
the populations at the initial instant of time, i.e., at the 
instant of turning off all the actions that take the system 
out of equilibrium (of course, H0 remains). In the gen
eral case this information can be obtained only by solv
ing the problem of taking the system out of equilibrium. 
In one particular but interesting case, it is possible to 
determine the initial values of the populations quite 
simply. If a strong high-frequency field with frequency 
Wrf acts for a short time 7 << TH then changes occur 
duri~ this time only in the populations p_112 (m') and 
p112 (m) of the levels between which this pulse produced 
transitions, 

(28) 

while the populations of the remaining levels remain in 
equilibrium, since the transitions (6) cannot occur with
in a time 7. Then the initial conditions for the popula
tions are as follows: 

I { 2-N-I(f +X), 
P-v,(m ,0)= 2-N-1(1 +ax), 

(29) 

po;,(m,O)= {
2-N-1(1-x), m=l=;;. 

2-N-1(1- ax), m = m 

where a = n(m'' m, 0)/ n(m'' m, 00) is the relative 
change of the population difference under the influence 
of the high-frequency field pulse. The initial condi
tions (29) and (19) yield the complete solution of the 
problem. If the impulse of the high-frequency field 
equalizes the populations in the saturable part of the 
line (a = 0, strong saturation), then the expression for 
n(m', m, t) is particularly simple: 

n(m',m,t) = n(m',m, oo) { 1-2-N-1 

Xexp(- 2~) ~((exp[in(m'- m')k] + exp(itt(m -tm)k]) 
I k 

l!(k)lt -
Xch---- (exp[itt(m'- m)k] 

2T1 

X exp{in(m- m')k])sh 1/(k) It signf(k)J}. (30) 
2T1 

Let us analyze qualitatively the temporal dependence 
of the line shape. At the initial instant (after determina
tion of the action of the high-frequency field pulse) the 

population p_112 (m') is smaller than the equilibrium 
value and P1;2 (m) is larger than the equilibrium value. 
This means that at all the frequencies corresponding to 
the transitions from the states (M = -Y2, m') and (M 
= Ya, m') (these transitions are designated by solid lines 
in the figure) the differences correspond to populations 
lower than the equilibrium values, i.e., "holes" appear 
in the line. The appearance of additional "holes" was 
investigated in [ 2- 41 and was called in [ 21 the "effect" 
of discrete saturation of the EPR line. The number of 
relaxation transitions (M = Ya, m)- (M = -Ya, m') per 
unit time will be larger than the number of transitions 
(M = - Y2, m')- (M = Ya, m), since the population 
P-1; 2 (m') is smaller than the equilibrium value, i.e., 
the population of any of the levels with M = Ya will de
crease. In exactly the same way, the population of any 
level with M = - Ya will increase. This means that the 
differences of the populations n(m', m, t) first increase 
with time, and the differences of the populations 
n(m'' m, t), where m' * m' and m * m (levels not af
fected by the high-frequency pulse) turn out to be larger 
than the equilibrium values, i.e., bursts of absorption 
intensity will be observed at the corresponding frequen
cies wm and m' (undistorted regions of the EPR line). 
These bursts reach a maximum after a time ...... T1 (as 
seen from (19)), and then gradually vanish. The burned
out holes also vanish and the line shape becomes equi
librium. 

Expression (30) for n(m', m, t) confirms fully this 
qualitative analysis. 

5. CASE OF EQUIVALENT NUCLEAR SPINS 

If the nuclear spins determining the hyperfine broad
ening of the EPR line are equivalent, the results ob
tained above can be simplified, since the system is de
scribed by a smaller number of variables-the popula
tions of the energy levels, the number of which is much 
smaller than that of the states. For simplicity we shall 
assume that all N nuclear spins are equivalent. The 
general case when several groups of equivalent nuclear 
spins are present can be considered in the same man
ner. In formula (1) we have Ai =A and Bi = B. The 
energy level is determined by the numbers M and 

N 
a=.E mi: 

1=1 

EM, a= Mliwe+ al'(liwn -MA) 2 + IBI 2• (31) 

In this case it is convenient to introduce, for the de
scription of the system, the population PM(a, t) of the 
energy level EM, a- In order to express the EPR line 
shape in terms of these populations, we express the 
populations of the states PM(m, t) in terms of PM(a, t) 
and use the results obtained above: 

1 
p•;,(m, t) Ia = CN!Z-a P•;,(u, t), 

N 

P-•;,(m', t) Ia• = CN~>-a'p_,;,(u', t), 
N 

(32) 

N 
where the index I a denotes the condition 6 mi = a, 

i=1 

and the binomial coefficients CN exp (N/2 - a) in (32) 
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indicate the degeneracy multiplicity of the energy level 
relative to the vectors m with a given projection sum 
N 
I; mi = a. Thus, Eqs. (32) and (19) determine the 

i=l 
sought populations of the energy levels (M = Ya, a) and 
(M = - %, a'). In this case (19) can be simplified. For 
any nucleus, the quantities Fi( I mi-mi 1), defined by (8), 
no longer depend on the number of the nucleus: 

F·(O) = F - . 2 EJ•;,- 6-v, 
1 -o-sin 2 , 

8y,- El-'/, 
F;(1) == F1 = cos2 2 

2MIBI 
tgEJM= MA-Iiw,' 

and consequently (15) can be rewritten in the form 

/(k) = (Fo-Ft)• == f(s), 

N 

(33) 

(34) 

where s = .E ki. Substituting (34) and (19), we obtain 
1=1 

with the aid of (32) 

N N/2 
p,1, (a, t) = 2-N-I ~ ~ a(s, a, a") {[ (1- x)P -%(a", O)sign f(s) 

s=Ocr"=-N/2 

( x ) J ( 1-l/(s) I ) X 1-~ P•;,(a",O) exp - 2T1 t 

+[ (x-1)P_y,(a",O)signf(s)+ 

( x ) 11 J ( 1 + if(s) I )} x 1+~ P•;,(a ,0) exp - 2T1 t , 

N N/2 (35) 

p -'b (a', t) = 2-N-1 ~ocr"~N/2 a(s, a', a") { [ ( 1 + if(:) I ) p -•;,(a", 0) 

where 

X(1+x)P•;,(a",O)signf(s) ]exp(- 1 --;~1(s)l t) 
X [( 1- if(:) I )P-•;,(a",O) 

-(1+x)Py,(a",O)signf(s) ]exp(- 1 ~~(s)i t)}, 

To express the absorption line shape in terms of the 
population difference (35), it is sufficient to carry out in 
the expression for the absorbed or (25) summation over 
the vectors m and m' with the given sums of the pro
jections 

N N 

~ m; = a and ~ m;' =a'. 
i=1 i=i 

It is necessary to take into account here the fact that for 
equivalent nuclear spins it follows from (33) that 

N 

IT F;( !m;- m/1) = F:!--(m-m1'Fim-m')'. (36) 
i=1 

Then expression (25) is written in the form 

Ua = !!...N,,iww 12 ~ g(w -wa,a•)h(a', a, t), (37) 
2 cr,cr' 

where the packet envelope shape function is determined 
by the following expression: 

h(a' a t)=2-N[ P-v.(a',t) _Py,(a,t)] ~ 
' ' CN/2-cr' CN!,-a LJ b(s,a,a')(F0-F1)•, 

and IV N s~O (38) 
s 8 

b ( s, a, a')= C N' ~ ~ (- 1) n+mC nC mCNI2+a-nC N/2-ta'-m L.J L.J s s N-s N-s , 
n=Om=O 

and in the case of equilibrium, as follows from (35) 

N 

h(a', a, oo) = 2-mx ~ b(s, a, a') (F0 - F1)'. (39) 
s=O 

We note that the dependence of all the obtained re
sults on the hyperfine interaction constants enters only 
via the powers of the difference F0 - Fl" This circum
stance allows us to confine ourselves to several of the 
lower powers of F0 - F1 in the formulas given above, if 
the probability of the forbidden transition is close to 
the probability of the allowed transition, i.e., if condi
tion (10) is satisfied and F0 ~ Fl" 

If I F0 - F 1 1 << 1, then the results greatly simplify. 
In this case we can write in place of (34) 

f(s) ~ 6,, o. (40) 

Substituting (40) in (35), we obtain 

Py,(a,t)=Py,(a,oo)+O(a)exp(-Tt )+R•;,(a)exp( - 2; ), 
I I (41) 

p_,1,(a', t) = P_v,(a', oo)- Q(a')exp(- ;J + R_•;,(a')exp(- 2;,), 

where 
PM(a, oo) = 2-N-1(1- 2Mx)CJ:12-<>, 

N/2 

Q (a)= 2-N-I [X-' ~ (P -'/, (a'', 0)- P'/,( a", 0)) ] C;';t2-cr' 

o"=-N/2 

N N/2-IJ N/2 

RM(a) = 2-Nc:/2-cr ~ (-1)' ~ c;;/2-crc;,;~+cr ~ 
s=1 m=O o"=-N/2 

s 

X~ (-l)"C,nC{:~,+cr"-n. 
n=O 

CI'li2-o" 
N 

The packet envelope shape function is then determined 
from (38) and (41) by means of the following time de
pendence: 

h a' CN/2-a N/2-cr' 
( ,a,t)=2-N{ N p_,,,(a',t)-CN Py,(a,t)]. (42) 

Thus, the behavior of the EPR line in this simple case 
of equal probabilities of the forbidden and allowed tran
sitions is described only by two exponentials, 
exp (-t/T1), and exp (-t/2T1). From (41) and (42) we 
get in this case a useful formula for the equilibrium 
function h(a', a, oo ): 

(43) 

In concluding this part, we note once more that a quali
tative description of the process of spectral diffusion in 
the case of equivalent nuclear spins does not differ in 
any way from the description of this process indicated 
in Sec. 4. 

On the other hand, a numerical determination of the 
character of the diffusion requires knowledge of the ini
tial values of the populations PM(a, 0), which can be 
readily obtained only upon rapid saturation of the line. 
Since the procedure for obtaining these populations is 
described in Sec. 4, we shall not repeat it for the case 
of equivalent nuclei. 
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6. DISCUSSION OF RESULTS 

As already mentioned in the introduction, the ob
tained time dependence of the line shape following the 
action of a "burning" pulse makes it possible to deter
mine the HFI constant for an unresolved hyperfine 
structure. Let us examine in greater detail the method 
of determining these constants. 

Even the positions of the additional holes can lead to 
certain definite conclusions concerning the values of the 
HFI constant. [3, 41 Such an analysis, however, is gener
ally speaking ambiguous, especially in the case when the 
system contains equivalent nuclei, when the frequencies 
of many transitions coincide. Therefore, to find the HFI 
constant we need additional information, which can be 
extracted from observations of the character of the var
iation of the line shape in time, after pulse saturation of 
part of the line. 

Indeed, as seen from formulas (25), (19), (17), (8), 
and (9), the time dependence of the rate of absorption of 
the energy of a control high-frequency field is deter
mined by exponentials having time constants that depend 
on the HFI constants. Thus, we can obtain additional in
formation that enables us to select uniquely the HFI con
stants. It should be noted that when the control signal 
passes through the line the modulation frequency should 
obviously be larger than 1/T 1' 

In our analysis of the problem we have neglected the 
effect of spectral diffusion through the line as a result 
of spin-spin electron interaction. The characteristic 
time of variation of the populations in the entire line, in 
the mechanism considered by us, is Tl' The spin-spin 
interaction of the electrons alters noticeably the popu
lations in the entire line, owing to the cross relaxation 
mechanism, within a timeT'>> T2,l 5 l where 1/T2 is 
the broadening of the hyperfine structure component due 
to the electron spin-spin interaction. Our analysis is 
therefore valid when 

(44) 

At the same time, the condition T2 > T1 is perfectly 
admissible. Thus, the non-resolution of the hyperfine 
structure may be due to dipole-dipole interaction of the 
electrons, i.e., it depends on the concentration of the 
electron spins, but the relaxation of the line shape to its 
equilibrium value is nonetheless ensured by the HFI. 
The condition that the inequality (44) must be satisfied 
imposes an upper limit on the electron-spin concentra
tion for which our analysis is valid. 

Let us discuss briefly the second type of diffusion, 
when the nuclear spins relax principally as a result of 
direct coupling with the lattice. This can occur if the 
spin of the nucleus exceeds ~. when the quadrupole re
laxation turns out to be more rapid than the relaxation 
due to the HFI. [lJ Then, if I R I << A and A* 21:1 wn (see 
condition (10)), each spin flip of the nucleus shifts the 
resonant frequency of the electron by ~w (we are con-

sidering the case of N equivalent nuclei). If a hole is 
burned in the EPR line at the frequency w0 , then, owing 
to the flips of the nuclei, the population difference in the 
neighboring packets with frequencies w0 ± ~w begins 
to change, etc. When ~w << ~w*, we can obtain a dif
ferential equation describing such a spreading of the 
hole. We introduce the relative deviation of the popula
tion differences from equilibrium 

n(w)- n°(w) 
e(w)=---~~, 

n°(<u) 
(45) 

where n°(w) is the equilibrium population difference, 
which in the case of equivalent nuclei has a binomial 
distribution 

n°(kAw) ~ CNN/2-k. 

Then E(w) obeys the equation 

(46) 

where D = %NW(~w)2, W is the nuclear spin-flip prob
ability per unit time, and w is reckoned from the cen
ter of the line. Equation (46) is analogous to the spec
tral-diffusion equation obtained by Portis/ 51 if the dif
fusion is due to dipole-dipole interaction. The second 
term to the right of (46) leads to a predominant shift of 
the hole to the edge of the line, and the first term to a 
gradual spreading of the hole. We shall not investigate 
the solution (46), since this equation is accurate only 
for nuclear spins ]'a. However, the qualitative behavior 
of the spectral diffusion will be the same also for large 
nuclear spins. 

In conclusion, I am sincerely grateful to the partici
pants of the seminar of the Theoretical Division of the 
Institute of Chemical Physics for fruitful criticism and 
discussions. 
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