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The fluctuations of the current density and of the electron concentration in a nonequilibrium state, 
which is created in a semiconductor due to the action of a strong electric field, are investigated 
theoretically. A kinetic equation is derived for the cor relator of the fluctuations of the distribution 
function with both the electron-phonon scattering and the electron-electron interaction taken into 
consideration. An expression is obtained for the spectral density of the fluctuations in the case of 
small frequency w and small wave vector q. It is established that inter-electron collisions lead 
to an additional correlation between the electrons in a nonequilibrium state, violating the direct 
relation between the correlator of the currents and the diffusion coefficient of the "hot" electrons, 
a relation which exists when such collisions are neglected. A theory of the scattering of light by 
"hot" electrons is constructed. It is established that the intensity of the scattering may increase 
in the presence of an electric field, especially if the momentum transferred to the light during the 
scattering is directed along the electron drift. This is associated with the possibility that the ef
fective screening radius may increase in the presence of a strong electric field, thanks to which 
the intensity of the long wavelength fluctuations of the electron concentration is increased. 

1. INTRODUCTION 

IN the present article the electron fluctuations in a 
nonequilibrium stationary state, arising in a semicon
ductor upon the imposition of a constant electric field, 
are investigated theoretically. In such a system a 
direct connection between the fluctuations of physical 
quantities and the reaction of the system to a weak ex
ternal influence, similar to the connection which was 
established by Callen and Welton[1l for equilibrium 
systems/1 no longer exists. 

However, it is more or less natural to expect that 
even in a nonequilibrium state both the reaction of the 
system and the fluctuations are described in a certain 
sense by similar kinetic equations. In fact, one can 
express the fluctuations of the current density, of the 
electron concentration, and of other physical quantities 
in terms of the fluctuations of the electron distribution 
function. If it is assumed that at each instant of time t 
the electron distribution function Fp + li F p( r, t) fluc
tuates around the average value Fp, then the fluctua
tions of the distribution function will be characterized 
by the correlators ( Fp(r, t + T)liFp 1(r', t)). Here the 
angular brackets denote an averaging over all instants 
of time t for a fixed value of T. In what follows we 
shall frequently omit the argument t over which the 
averaging takes place. 

We will show that the correlator (liFp(r, T)liFp 
( r ', 0)) satisfies a kinetic equation with respect to 1the 

1> A number of theoretical articles (see [2-9]) and also the review[ 10) 

and subsequent articles by Lax (see [1 1 )) have been devoted toques
tions about fluctuations near a stationary nonequilibrium state in vari
ous cases. Spatially-inhomogeneous fluctuations in a nonequilibrium 
state in semiconductors were recently treated by the Langevin method 
by Kogan and Shul'man.[l9 ] 

variables p, r, and T. This, of course, constitutes the 
similarity of both problems which was mentioned 
above, since the change of the electron distribution 
function associated with an external influence on the 
system is determined from the same kinetic equation. 
However, in order to solve the kinetic equation it is 
necessary to specify the initial condition, i.e., the 
value of the desired function, for example, at T = 0. 
For a problem about fluctuations this means that it is 
necessary to know the quantity (liFp{r)liFp/r')), 
which differs from the equal-time oinary distribution 
function of the electrons by the additive term FpFp1. 

In the case of thermodynamic equilibrium the 
binary function can easily be expressed in terms of 
the one-particle function, and as a result the problem 
about the reaction of the system and about the fluctua
tions turn out to be completely equivalent. In the case 
of a nonequilibrium system, however, in order to find 
the binary equal-time distribution function it is neces
sary to solve the special kinetic equation, which this 
function satisfies, with respect to two pairs of vari
ables: p, r and p1, r'. Thus, the theory of fluctuations 
in a nonequilibrium stationary state is described not 
by one equation but by two. It is precisely this aspect 
which makes the problem of fluctuations more compli
cated than the problem of the system reaction. 

Our goal is to derive equations for the kinetics of 
the fluctuations under the same assumptions for which 
the kinetic equation for the one-particle electron dis
tribution function in a strong electric field is usually 
derived. Later these equations are solved by us for 
the fluctuations with sufficiently small frequency w 
and small wave vector q. More precisely, in this case 
one is able to express the correlator of the fluctuations 
in terms of such parameters, characterizing the non
equilibrium electron system, as the differential conduc-
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tivity O'ik, the drift velocity V, and the diffusion coef
ficient Dik. One more quantity, which has the physical 
meaning of the correlator of the current fluctuations 
for q = 0 and w - 0, enters into this expression. It 
should be noted that according to Lax[lo] (see also[3l) 
even in a nonequilibrium state this correlator is not an 
independent quantity, but can be expressed in terms of 
the tensor Dik. However, as was shown in the authors' 
article, [a] electron-electron collisions in a nonequili
brium state lead to an additional correlation, and as a 
consequence the direct connection between these two 
quantities is lost, so that for us they play the role of 
independent parameters of the theory. 

In conclusion we consider the problem of the scat
tering of light by "hot" electrons in semiconductors, 
caused by the fluctuations of the electron concentra
tion. An expression is obtained which describes the 
angular distribution of the scattered light and its spec
tral composition. In this connection the following in
teresting property is observed. 

Electron fluctuations taking place in volumes with 
linear dimensions of the order of the wavelength of the 
light play a role in the scattering of light at not too 
small angles. In this connection, if the electron con
centration is large enough so that the Debye radius is 
much smaller than this characteristic size, the fluc
tuations of the electron concentration turn out to be 
strongly suppressed due to Coulomb repulsion of the 
electrons. As noted by Wolff,[12l this property reduces 
the intensity of the scattered light. 

It is shown by us that in a strong field the field
dependent effective screening radius, which is propor
tional to the root of the ratio of the diffusion coefficient 
to the differential conductivity, enters into the expres
sion for the intensity of the fluctuations. In a number 
of important cases this ratio may increase appreciably 
due to the effect of the electric field, which must lead 
to a substantial increase in the scattering intensity. 

2. DETERMINATION OF THE CORRELATORS. A 
DIAGRAM TECHNIQUE 

Let us consider a semiconductor located in a strong 
electric field. Let the density matrix of the system at 
the moment of time t = 0 be p 0 • Then the fluctuations 
of the current density are determined by the following 
averages: 

1 
(Oj;(r' + r, t + -r) Oj,(r', t)) == T[j;(r' + r, t + 't)h(r', t) 

+ ik(r', t)j;(r' + r, t + -r)]- J;Jk. (2 .1) 

Here the bars denote an averaging over the density 
matrix Po of the Heisenberg operators h{t) and their 
products; 

j(t) = S+(t)jS (t), (2 .2) 

where j is the Schrodinger operator for the current 
density, S{t) is the evolution operator: 

iS= (Ho + V)S, (2.3) 

Ho + V is the total Hamiltonian of the system, and 
fi = 1. Both the (strong) electric field and the interac
tion are included in V; thus Ho in Eq. (2.3) is the 
Hamiltonian of the free particles without the field. We 

shall assume that in the system after a sufficiently long 
time interval (formally as t - oo, and in practice after 
a time interval of the order of the relaxation time) a 
stationary state is established which does not depend 
on the state at t = 0. Precisely such systems in a non
equilibrium state are described by a kinetic equation2l 

(see[•3 l). In view of this, the averages in formula (2.1) 
do not depend on t for large values of t. The fact that 
the final state is independent of the initial state allows 
us to express p 0 in the form 

po=exp(- Ho~·,Jv) (2.4) 

and to put S ( 0) = 1. ( N in Eq. (2 .4) denotes the opera
tor for the number of particles, iJ. is the chemical po
tential, and T is the temperature in energy units). The 
spectral density of the fluctuations is defined by the 
Fourier transform of (2 .1) with respect to r and T: 

1 "" 
(Oj;{-r)Oj.).,q = 2nr -~ d-r) d3reiroHqr (6j;(r,-r)Oj.). (2.5) 

We note that in the presence of a homogeneous elec
tric field the average (2 .1) does not depend on r'. It is 
convenient, however, to calculate not (2.5) but the 
following expression: 

1 ... 
[j;{-r)jk]roq =r~ d-r) d3reirot-iqrj;(r,t+T)j.(O,t). {2.6) 

0 

The total Fourier component of (2 .1) is expressed in 
terms of the quantities (2.6) in the following way: 

1 
({)j;(-r) 6h).,q =-,--- {[j;(-r);.Jc,. + [j;j.(-r)]_.,,-q 

·Ht 

+ [j.j;(T)]roq + [jk(<)j;]-ro, -q}- J;/hb(w){)q,o. {2. 7) 

The correlator [ h ( T) jk lwq can be expressed in terms 
of the two-particle distribution function gq'{ PP• ), 
which is defined as follows: 

where 

.. 
gq"'(pp,)=) gq(p,<IPt)eiro<d-r, 

0 

gq(p, •I p,) = lim Gq (p, t + •IP~o t) 
t~ 

Gq (p, t +TIP!, t) 

(2.8) 

= (Sp Po)-1 Sp poS+(t + -r)at-.,2aPHt:zS(t + -r)S+(t)at,H/2ap,-q/2S(t). 

We have 
(2.9) 

e' 
[j;('t)jk)roq =y-'2 ~V;Vk'gq"'(pp'). (2.10) 

pp' 

Here aj) and ap are the electron creation and annihila
tion operators, e is the charge, v is the electron's 
velocity, and r is the volume of the system (for 
brevity we do not take the electron spin into considera
tion). 

Let us derive an equation for the function gq' ( PP1 ). 
We consider both scattering by phonons and the elec
tron-electron interaction. In the derivation of the equa
tion we shall use the diagram technique of Konstantinov 
and Perel',P4 l and also the electric field will be taken 
into account to all orders of perturbation theory, 

2lThe stationary state of a semiconductor in a strong electric field 
may turn out to be unstable (for example, in the presence of the Gunn 
effect). Our investigation does not pertain to such cases. 
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neglecting however the influence of the electric field on 
collisions. 

We carry out the calculation to the lowest approxi
mation in the interaction constants, confining our at
tention to the case of nondegenerate electrons. In ad
dition, we shall assume that the concentration of elec
trons in the conduction band does not change under the 
action of the electric field. We restrict our attention to 
the case when the phonon distribution function remains 
an equilibrium distribution3 > whereas the electron dis
tribution function Fp naturally may be strongly non
equilibrium. We shall assume that the usual criteria 
for the existence of a kinetic equation are satisfied: 

f Ol q ) 
~-~1, -·"{1, -~1. (2.11 
Ep'te Ep p 

Here Ep and p are the characteristic energy and mo
mentum of the electron, respectively, and Te is the 
relaxation time of the electrons. 

We define the double Laplace transform of the func
tions Gq(p,t+TIPt,t) likethis: 

00 .. 

Gq'" (ppt) = ~ dT} dt e--st-a< Gq (p, t + T I Ph t). (2 .12) 

In connection with the evaluation of the two-particle 
distribution function Gq ( pp1 ) on the contour of Kon
stantinov and Perel', a second pair of terminal points 
appear (see Fig. 1 ). 4> Correspondingly two types of 
sections appear, an s section and a a section. The 
remaining rules of correspondence between diagrams 
and analytic expressions are completely retained, and 
therefore we shall not deduce them here. Let us carry 
out a classification of the diagrams. FollowingP4 l, we 
shall collect the diagrams containing a given number of 
free sections (in s and in a) to lowest order in the in
teraction constants. Similarly (H 81 we obtain the 
graphical equation shown in Fig. 2 for G9_a( pp1 ). 

The first term in Fig. 2 corresponds to the sum of 
the diagrams containing a unique (always existing) free 
section between the pairs of terminal points p and Pt· 

I p1 + qf2 
------------t--?------t---<lp+f/2 

j p;- f/2 I 
-------- --,-+-----<i+-P-9/Z 

FIG. I. 

FIG. 2. 

'lThis holds under the hypothesis of a sufficiently large heat capac
ity of the phonon system and a sufficiently small relaxation time for the 
long wavelength phonons with which the electrons interact directly. 

•loue to the averaging over the matrix p 0 , the contour shown in 
Fig. I is simpler than in [ 14 ) (the vertical parts are absent). Such a 
method of averaging was used by Keldysh [ 13 ) in order to develop a 
diagram technique for nonequilibrium processes. However, all of the 
following derivation would become only slightly more complicated if 
Po were chosen in the form exp(-(H 1 -1-LN)/T), where H 1 is the total 
Hamiltonian of the system in the absence of the field. Such a choice for 
Po would correspond to a representation involving equilibrium of the 
system up to the moment t = 0 when the field is switched on. 

-a 
--=: [8:: 0::: 

b c d 

FIG. 3. 

In the second term the crosshatched rectangle repre
sents the "irreducible part," calculated to lowest order 
in the interaction. Diagrams of the type depicted in 
Fig. 3 are contained in this part. Diagrams a and b in 
Fig. 3 (and the diagrams analogous to them) will give 
the terms eE · (ajap) and Ilat (E is the electric field, 
and Ilat is the usual electron-phonon collision operator) 
in the equation. Diagrams c and d describe the elec
tron-electron interaction, where diagram c (and the 
diagrams analogous to it) describe pair collisions, and 
diagram d (and the diagrams analogous to it) describe 
the interaction via the self-consistent field. The blocks 
depicted in diagrams c and d are collected on the en
tire contour, and in the second term on the right hand 
side of Fig. 2 they should be represented by having the 
appropriate function G superimposed on the block. 
The one-particle distribution function 

(2 .13) 

obviously corresponds to these blocks. We note that in 
connection with an evaluation of expression (2 .13) the 
diagrams of type d give zero contribution. 5> 

Now let us consider the first term on the right hand 
side of the equation shown in Fig. 2. It is not difficult 
to see that in this term one can neglect the diagrams 
in which there are points lying between pairs of termin
als (i.e., in the cross-hatched region). The rejected 
diagrams for an equal number of free sections contain 
the interaction constants to a higher power. The sum 
of the remaining diagrams is nothing else than the two
partie le distribution function at one instant of time, 
Gq(p, tIP~> t). Having rearranged the creation and an
nihilation operators, it is convenient to represent this 
function in the following form: 

(2 .14) 

!llq (pp!) = (Sp po) -I Sp poS+(t) a";,-q;2 at,H/2 ap,-q/2aPH/2 S (t), (2 .15) 

In our approximation, one is able to obtain a closed 
equation (see Fig. 4) for the function 4>q ( pp 1 ). In this 
figure (we assume q "" 0) the block A describes the 
interaction of an electron p from an isolated pair con
taining a "phonon" (field + scatterer ), and block B de
scribes the same interaction for the electron p1 • Dia
grams C and D describe the interaction of electrons of 

c D 

FIG.4. 

s) Just as in considerations of spatially homogeneous fluctua
tions.[8) 



GANTSEVICH, GUREVICH, and KATILYUS 279 

an isolated pair with each other, where diagram C (and 
the diagrams analogous to it) correspond to scattering, 
and diagram D (and the diagrams analogous to it) cor
respond to the long-range Coulomb interaction. 

Thus, we have deduced our equations graphically. 
In the following Section we reduce these equations to 
analytic form for s -0 and a- -iw. We note that to 
the approximation adopted by us 

Gq(p, t +-rip~, t) = Gq(pi, tip, t + -r), (2.16) 

so that the correlators on the right hand side of Eq. 
(2.7) are equal in pairs. 

3. EQUATIONS FOR THE KINETICS OF THE 
FLUCTUATIONS 

The system of equations for the functions gq (ppt) 
and ~q.(PPl) (corresponding to unequal-time and equal
time bmary distribution functions), which is developed 
in the preceding section, is :61 

aF 
{- iw + iqv + .7'p)gq"'(PPI)- iqUq -~- ~ gq"'(p'p!) 

i)p P' 

= F p<'\pp, + Cl>q (PP!), (3.1) 

[iq(v- v1) + .7' p + .7'p,] Cl>q(PPI) = iqUq { a;• [ Fp, + ~ !llq(p'pi)] 
p P' 

- ~F·~[ F.+~ !llq(pp/) ]}-1:'., {F,F}. (3.2) 
PI p, 

To this system one should add the equation for the 
stationary one-particle electron distribution function: 

( {} tat ) (3 3) eE {}p + lp Fp + lp•• {F,F} = 0. • 

Here I lattice is the electron-phonon collision operator, 
lpe( F, F) is the term describing the electron-electron 
collisions (quadratic in F). It should be noted that if 
electron-electron collisions play an essential role then 
it is necessary to simultaneously take the scattering 
of electrons by ionized impurities into account; in this 
case we shall assume that the corresponding collision 
operator is included in Ilat. The sum of the operators 
corresponding to the field and to the linearized colli
sion terms of the kinetic equation (3.3) is denoted by 
.7':7) 

{} tat ( ) .7'p==eE8p-+l• +I ... {F}. 3.4 

Equation (3.1) has the following obvious physical in
terpretation. Let us suppose that a small correction 
f(r, p) to the steady-state electron distribution func-

6> Similar equations for the binary distribution functions, but with
out an explicit isolation of the collision terms, were obtained (by Bogol
yubov's method) in a number of articles (see [ 15- 17 ] ). 

7> We present an explicit expression for the linearized operator 
I pee {F }: 

~~· {F}1jl = ~ [W~~~·. (Fp1jlp, + Fp,1jlp)- WE/.' (Fp·1jlp,' + Fp,1jlp·)], 
P'PtPt' 

where W is the probability of electron-electron scattering (the upper 
indices correspond to the initial state of the scattered particles). In the 
Born approximation the cross section for Coulomb scattering diverges 
for small momentum transfer. This divergence would be eliminated by 
taking higher approximations into consideration (compare with [ 18 ] ). 

tion appears at the instant of time T = 0. Then the time 
evolution of this quantity, more .Precisely, of its 
Fourier component fq(p) = f e-lq ·rf(r, p)d3r will, 
according to (3 .1 ), be exactly described by the same 
equation which the function g( p, T I p1) satisfies: 

(: +iqv+:r.)tq(p,-r)-iUqq 8:• ~fq(p',-r)=O. (3.5) 
,; p p' 

The last term in (3.5) describes the change of the dis
tribution function due to the action of the self-consistent 
field. This field is determined from the solution of 
Poisson's equation and equals -iUqq4fq(p', T), where 

p 
(3.6) 

Here €ik is the dielectric tensor of the crystal. 
Then the fact that the function g( p, T I P1 ) also satis

fies Eq. (3.5) indicates the validity of Onsager's prin
ciple in connection with the case we are considering. 
The initial condition for the function gq ( p, T I p 1 )-the 
right hand side of Eq. (3.1)--is given by 

gq(PPi) == gq(p,-rlp,) IT~O = Fp6pp, + !llq(ppj). (3.7) 

The quantity gq(pp1) represents the equal-time binary 
distribution function; Eq. (3.2) serves as its definition. 
This equation describes the onset of a correlation of a 
distinct pair of electron states (with momenta p and 
p1) under the action of the external field E, of the 
self-consistent field of the fluctuations, of the inter
action of the electrons with the scatterers, and also of 
the interaction between the electrons in state p and 
those in state p1. The latter interaction comes about 
by means of both the long-range Coulomb interaction 
(the terms proportional to Fp1BFp/ap and FpBFpJapl 
on the right hand side of Eq. (3.2) and pair collisions, 
which are described by the expression81 

l ee {F F} ~ pp, F P'P,' F -., , = .<::.J (Wp•p,'Fp ••- Wpp, Fp' p,'). (3.8) 

It is not difficult to verify that in the equilibrium 
case when Fp = exp{(!-l - €g )/T}, as a consequence of 
the fact that ~~JF, F} = 0 1 and BFp/Bpi = -viFp/T 
Eq. (3.2) satisfies the following expression: 

eq 1 FpFp, ( ) 
Cl>q (pp,)= ---·---. 3.9 

N 1 + q2/x;q 

where N = ~ Fp = no Y is the total number of particles, 
p 

(3.10) 

In the general case of a nonequilibrium system 
existing in a stationary state, the entire theory of fluc
tuations is contained in the system of equations (3.1) 

8>We note that the expression (3.8) represents the pair collision term 
without including one summation, so that the usual pair collision term 
in (3.3) is given by 

p, 

9>In the Born approximation which we are using, the existence of 
this equality is obvious. Incidentally, it is preserved even from the exact 
probabilities as a consequence of the Stueckelberg property [ 19] 

~ (W:P~,- WE~~·')= 0. 
PtPt' 
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and (3.2). The main peculiarity of the nonequilibrium 
case consists in the fact that here (in contrast to the 
equilibrium case) it is generally impossible to repre
sent the binary distribution function <Pq ( PPt ) in the 
form (3.9) and the solution of Eq. (3.2) is an independ
ent problem. The system (3.1)-(3.2) turns out to be 
more complicated than the kinetic equation which de
scribes the reaction of a system of electrons in a weak 
external variable field of the form gk = goke-iwt+ iq · r, 
which creates a variable current H = Sik ( w, q) ~k· 
This is one of the reasons why the fluctuation-dissipa
tion theorem is not satisfied in nonequilibrium systems, 
i.e., the fluctuations in a semiconductor are not related 
to the tensor Sik(w, q) by any general relationship 
whatsoever. 

4. CALCULATION OF THE EQUAL-TIME BINARY 
DISTRIBUTION FUNCTION FOR qle « 1 

Equations (3 .1) and (3 .2) can be solved compara
tively easily in the important case when wTe « 1 and 
qle « 1. Here Te is the characteristic relaxation 
time of the electrons, 101 and Ze is the corresponding 
mean free path. Under these conditions the principal 
terms in Eqs. (3.1) and (3.2) will be the terms contain
ing the operator fJ. In order to solve the problem, it is 
necessary for us to find the inverse operators to ffp 
and ( ffp + ffp1 ). Since 

:J'piJFp I oN= 0 (4.1) 

(it is not difficult to verify this by differentiating the 
kinetic equation (3.3) with respect toN), the solution of 
the equation 

One can easily prove property (4 .6) by using Eqs. (4 .2) 
through (4.5). 

Now let us consider the solution of the equation for 
<Pq (pp1 ) under the assumption qZe « 1. For this pur
pose let us transform {3.2) to a form which is conven
ient for iterations with respect to qle: 

oFp oFp, . { oFp, [ 
ll>q(PPt)=A· aN·aN-+cppp,+,qUq(:Yp+:Yp,)-1 8p;- Fp 

+ ~ !llq (pp/) J- ?J~ [ F p, + ~ !llq (p'pl) ]} 
p,' p p' 

- iq($p +f)' p,)-i(v- vi)ll>q (ppi). (4 .7) 

The function cppp1 is the solution of the equation 

(fJ'p +ff p,)cppp, = -l";p, {F,F}, (4.8) 

with the following properties:fBl 
oFp 

~ cppp,=N BN -Fp, ~ cppp,=O. {4.9) 
Pt PPt 

We note that in equilibrium cppp is obviously equal to 
zero. In order to determine the ~onstant A we shall 
use "the equation of continuity" 

(4.10) 
pp, 

which is obtained by a summation of the original equa
tion (3.2) over p and Pt· Let us represent <Pq(PPt) in 
the form 

(4.11) 

For q,<o> let us choose the first two terms in Eq. (4.7) 
<o> oFp oFp, 

ll>q (PPt) =A oN oN + cppp,. (4 .12) 

fJ'px = YP (4 .2) Then, with (4 .9) taken into consideration, one finds 

is determined to within a term of the form const a 
x F p/8 N .w In order to make the inverse operator 
single-valued, it is necessary to impose one additional 
condition on it. As such we require 

(4.3) 
p 

In addition, we note that for the functions we are con
sidering, one always has 2::; ffpXp = 0, so the operator 

.7p1 is defined only with re~pect to functions possessing 
the property 

~ YP == 0. 
p 

Correspondingly, for the operator ( fJ p + ffp1 t 1 we 
have 

(4.4) 

oFp oFp, 
(.7 p + :y p,) . aN TN- = o, ~ (:Y p + :y p,) -• ypp, == o, ~ ypp, == o. 

pp, (4.5) pp, 

Thus, the defined operator {:Yp + ffp 1 t 1 possesses the 
following property (which we will need later on): 

(4.6) 
p, p, 

10>For convenience of discussion, we shall assume here and below 
that only one such time occurs in the problem. If several such times 
occur, then in the corresponding criteria one must insert the largest of 
the times. 

u>we are considering the case when the kinetic equation (3.3) (or 
( 4.1 )) has only one solution. 

- iq($ p + $ p,)-1 (v- Vt) !ll~01 (PPt). (4.13) 

We substitute this expression into (4.10). Exchanging 
the indices of summation p and P1 and using the 
property (4.6), we obtain the following expression for 
A: 

A= -N(1 +~~)( 1 +f..)-1
, 

xz Dn x2 
(4.14) 

where 

(4.15) 

and also 

(4.16) 

and analogously for the other tensors. (We shall as
sume that Kle « 1. Only under this assumption-does it 
make sense to retain terms of the type q 2/ K.) 

The vector V and the tensors O'ik, Dik, and ®ik are 
defined in the following way: 

8Fp 
V;=~ v; aN, 

p 

e2 oFp 
a··=--~ v·:Y-1 __ 

lK 'YP oGJ l Q > 
, P Ph 

(4.17) 

(4.18) 

(4.19) 
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8th=!~ V;f1p-1(Vk-V•')CfPP'· (4.20) 
pp' 

The first three of these quantities have the meanings 
(see the Appendix), respectively, of the differential 
drift velocity, the differential conductivity, and the 
diffusion coefficient. The tensor ®ik associated with 
the function fPpp' is the specific quantity which char
acterizes the additional correlation of the components 
of the current density vector associated with pair col
lisions. 

Thus, neglecting terms of order qle the equal-time 
binary distribution function has the form 

gq (PP1) =Fp6pp, +<ilPP -NaFp aF~, 1 + q28n/x2Dn (4.21) 
' aN aN 1 + qz;xz 

For q << K this expression goes over into 

( aF aF 
gq PP1)=Fp6pp,+<ppp,-N--• --•·-

aN aN ' 
(4.22) 

i.e., the expression obtained by the authors in(aJ. Sum
ming (4 .22) over p or P1 with (4 .9) taken into consid
eration, we obtain zero. This means that the number 
of electrons does not fluctuate in volumes whose linear 
dimensions are large in comparison with K-1. 

5. EVALUATION OF THE CORRELATOR OF THE 
CURRENTS 

Let us solve Eq. (3.1) for qle « 1 and wre « 1. 
Having in mind an evaluation of the current correlator 
(2.10), it is convenient to multiply (3.1) by Vk1 and sum 
over P1, introducing the function Yk(p): 

'Yk = ~ gq'"(ppi) Vki. (5.1) 
p, 

The correlator [ii ( T) jk J wq is expressed in terms of 
Yk in the following way: 

ez 
[it("f)ikJoq=~~ V!Yk(p). (5.2) 

p 

From Eq. (3.1) we obtain the following equation for 
Yk for qle « 1 : 

( aF. "" , - iro + iqv + .?' p)YA- tqUq --~ 'YA(P) 
ap P' 

=VkFp+ ~v/(ll>q<0l(pp')+ll>q<1>(pp')), (5.3) 
P' 

where ~<O> and ~u> are given by formulas (4.12) and 
(4.13). At q = 0 Eq. (5.3) takes the form 

(5.4) 

Equation (5.4), which describes the spatially-homo
geneous fluctuations, was obtained previously) 8 l Its 
solution as w- 0 is given by 

YA0 = .?' .-1(vk- V•)N a:; - .?' .-1 ~ (vk- vk')<!lPP' (5.5) 
p' 

and in this case the correlator (5.2) is given by 
e2no 

U;("f)h]o = --y(D;k- 8;k)· (5.6) 

Thus, for q = w = 0 the total current correlator (2.6) 
is given by 

Neglecting pair collisions, ®ik = 0, and 

e2no (5.8) 
(6j;6h)o = 2:n::r' (D;k + D•;), 

i.e., there is a direct relation between the correlator 
of the currents and the coefficient of diffusion. This 
property has already been noted by Lax[10 l and 
Price.£31 However, as is clear from formula (5.6), 
pair collisions violate this relation. 

Now let us evaluate the correlator of the currents 
for nonvanishing values of w and q. The iterative pro
cedure used in the previous Section may also be ap
plied to Eq. (5.3), which in this sense is not any more 
complicated than the kinetic equation considered in the 
Appendix. Operating in similar fashion, to the first 
approximation in wr e and qle we obtain: 

{ ~ . ~ . ~} Yk=Y•"+Ck --!Qz.?'p-1(v,-V,)--+!qzUq,?'p-1- (5.9) 
aN aN ap, 

Hence 

U;(-r)j,J,.q={it("f)jk]o+::c.(v;-i 4n2 qrau-tq,D;z). (5.10) 
, - euq 

The constant Ck = L)yk(P) is determined from the 

"equation of continu~ty," which is obtained by the sum
mation of (5.3) over p: 

-iroCA + iqz ~ V('/k = q2;v ( 1-~) 
P q"+ xz Du 

x( v. + t~q/akz + tq,v.,)- tq,(Dk,- ekz)N. 
suq" 

(5.11) 

We used the property (4.6) in order to evaluate 
L:;~0>(pp'). From Eqs. (5.10) and (5.11) we obtain 
p 

ck { q2 
( e11 ) ( 4n ) v= q2+x" 1-~ VA+t suq" Q!Cfkl+tq,Dkl -tq,(Dzk+Dkl 

- 8u.- Ehz) }{ 4:1~11 + q2Du- i(ro- qV)} - 1
• (5.12) 

The total correlator of the currents is given by 
1 

(Oj;("f)Oh)wq = 2;" {U;("f)jk]roq + Uk ("f)j;J-w,-q}. (5.13) 

Formulas (5.10), (5.12), and (5.13) solve the posed 
problem. 12> 

We also present an expression for the spectral 
density of the fluctuations of the concentration, 
( tin2)wq• which is simply related to the correlator of 
the longitudinal (i.e., in the direction of the vector q) 
currents, 

(5.14) 

(5.15) 

We recall that, according to Eqs. (4.15) and (4.16), the 
quantities Du, au , and ® 11 depend on the direction of 
the vector q. 

One can give the expression for the correlator of 
the longitudinal (along q) currents a form which, in the 

12>We note that expression (5 .11) is not directly applicable for q = 0 
since expression (3.6) for Uq, which makes sense only for q =I= 0, was 
used in its derivation. At q = 0 it is necessary to assume q 2Uq = 0, and 
in Eq. (5 .II) the first term remains. 
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case of equilibrium, goes over into the fluctuation
dissipation theorem and, by the same token, empha
sizes the difference from it in the case of a nonequili
brium state: 

T. w 
(.Sin')wq = 2 yp---y-lsil(w,q)+sll(-w,-q)], 

ll.v (J)- q 

where s 11 is defined in Eq. (A.10) and 

T. == n'Y'(.Sin2)o = noe'(Dn- 811) 

all crn 

We emphasize that in the nonequilibrium case the 
quantity T e depends on the direction of the vector q 
and, generally speaking, is not by any means deter
mined by only one average energy of the "hot" elec
trons. 

We note that those very same expressions for the 
fluctuations of the electron concentration and for the 
fluctuations of the current density may also be ob
tained by using the Langevin method if it is postulated 
that in the system there exist random external currents 
whose densities gi ( r, t ) satisfy the correlation re la
tion 

gi(r, t)gk(r', t') =n0e2(Dik+Dk;-El;k-Elki).S3(r-r').S(t-t'). 
(5.16) 

Here the total random current should be expressed in 
terms of the external current according to the formula 

(5.17) 

(where on(r, t) is a random correction to the electron 
concentration), the potential of the random longitudinal 
field cp is determined from Poisson's equation 

(5.18) 

and the equation of continuity 
ol)n 

e ----;;t + div 6j = 0. (5 .19) 

has been taken into consideration. 
This system of equations was used in articles by 

one of the authors[a:Jl for an investigation of the fluc
tuations in the electron concentration and the acoustic 
fluctuations associated with them (in[20 J the electron
electron collisions were not taken into account, and 
therefore D appeared in Eqs. (5.16) and (5.15) instead 
of D - ® ). We see that these equations enable one to 
determine the dependence on w and q (i.e., to take 
spatial and temporal dispersion into account) of the 
quantities ( on2 )wq and ( oiiojk )wq in the limiting case 
of small wand small q. 13> 

6. SCATTERING OF LIGHT BY "HOT" ELECTRONS 
Let us consider the scattering of light by the con

duction electrons in a semiconductor which is placed 

13>Since (l)n2)wq, obtained on the basis of Eqs. (5.16)- (5.19), 
coincides with the result calculated above from first principles, we see 
that the critical remarks expressed in [ 21 I , concerning the reason for 
using this system for an examination of the fluctuations in the electron 
concentration and of the acoustic fluctuations associated with them, 
are groundless. In [21 I, in connection with an investigation of the fluc
tuations in a nonequilibrium system, the correlation of the random 
forces was found with the aid of an expression for the entropy. We 
hope to examine in a specific article the questions of to what extent a 
similar "entropy" approach is justified in connection with the fluctua
tions in a nonequilibrium state. 

in a strong electric field. 14> We shall regard the 
crystal as optically isotropic, and we assume that the 
energy spectrum of the conduction electrons has the 
form 

ep = p'/ 2m, (6.1) 

where m is the effective mass of an electron. For an 
unpolarized wave the coefficient of extinction, referred 
to an element of solid angle do and a frequency interval 
dw, can be expressed in terms of the spectral density 
of the fluctuations in the electron concentration:r 12 l 

1 ( e' )' dh,:::; -7" -- (lln2)wq(1 + cos2 t't)dw do. 
2 me2 

(6.2) 

Here c is the velocity of light, w is the change in the 
frequency of light during the scattering, which we shall 
assume to be small in comparison with the frequency 
of the light, q is the change in the wave vector of the 
light, and e is the scattering angle. 

Integrating (6.2) over w, we obtain the total intensity 
dhtotal of the scattering in a given direction. Since 

00 

~ (lln2)roqdw = ~ gq(pp!), 
pp, 

then in the approximation qle << 1, Kle « 1 we have 
(see Eq. (4.21)) 

noq2 ( 811 ) 1 ( e2 )" 
dhuoJIH = q' + x' 1 - -n;- 'T me' ( 1 + cos2 t't) do. (6.3) 

The quantities K, D11 , and ® 11 are defined in Eqs. (4.15) 
through (4 .20 ). They depend on the external electric 
field E and on the direction of the vector q. 

Since K 2 is, roughly speaking, proportional to n0 , 

with an increase of n0 the expression n0 q 2/ ( q2 + K 2 ) 

ceases (for K 2 >> q 2 ) to depend on the concentration 
n0 • The dependence of the quantity q'h0 / K 2 on the 
electric field is determined by the dependence of the 
ratio D11 /au on E. With heating this ratio increases 
in approximately the same way as the average energy 
of the electrons, and consequently the light scattering 
increases. In addition, with an increase of the heating 
of the electrons, the current in a semiconductor fre
quently has a tendency to saturate, i.e., the differential 
conductivity in the direction of the stationary current J 
decreases abruptly. If in this connection q is chosen 
parallel to J, the ratio Du/au will increase with the 
field faster than the average energy of the electrons, 
and in the indicated direction the scattering of light 
increases even more. 

For qle « 1 and Kle « 1 the line shape of the 
scattered light is determined by expression (5.15). 
This expression is maximal at w = q · V, and the width 
of the peak is determined by the quantity 41Tau/E 11 

+ q2DII. 
In conclusion we wish to thank 0. V. Konstantinov 

and V. I. Perel' for a discussion, and also for indicat
ing the possibility of averaging with the aid of the 
matrix p 0 given by Eq. (2.4) in order to construct a 
theory of nonequilibrium processes. 

APPENDIX 
Let us consider a semiconductor in which, along with 

a strong constant electric field E, there also exists a 

14lThe scattering of light in a weakly ionized plasma in an electric 
field was calculated in [6 ]. 
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weak variable field of the form 

rs. = fSOkexp(-iwt + iqr). (A.1) 

The variable current generated in this connection is 
given by 

l!..j; = ~.~ vJp, 
p 

(A.2) 

where fp is a correction to the distribution function 
which is proportional to the variable field, and which 
is determined from the kinetic equation 

( -iw + iqv + .:J p) fp = -ef!hiJF p I ap.. (A.3) 

Here the function Fp satisfies Eq. (3.3). Summing (A.3) 
over p we obtain the equation of continuity 

- iw] fp + iq.~ vfp = 0. (A.4) 
p 

Let us add Eq. (A.3) to the result of multiplying Eq. 
(A.4) by -a Fp/aN: 

. ( iJF p ~ ) • ( iJF p ~ , \ iJF P 
-zw fp- iJNL.JfP' +zq vfp- iJN L.Jvfp1j+.:Jpfp=-efSka-· 

v· p' P• 
(A.5) 

Inverting .:J we represent (A.5) in a form which is con
venient for iteration in terms of the small parameters 
qle and wre (compare with Eq. (4.4)): 

iJF p iJF p . ( iJF p ~ ) 
fp=B-N-efSk.:J-1-+zw.:J-l fp--L.J fp' 

a ap. aN p' 

- iq.:J-1 ( vfp- a:~ ~ v'fp'), 
p' 

where B denotes the following constant: B = ~ fp 
p 

(A.6) 

= >"~n, and ~n denotes a variable correction to the 
electron concentration. Substituting 

/">=>"~!in iJFp 
p aN' 

into the right hand side of Eq. (A.6), we have 
iJF P iJF P . iJF P ( ) 

fp =>"~!in-- ers • .:J-1-- t'f"l!inq".:J-< (v•- V•) -, A.7 
aN iJp" iJN 

so that the expression for the variable current (A.2) 
takes the following form :15> 

l!ij; = el!in V; + U;kfS k - eD;kMn I ax.. (A.8) 

where the quantities Vi, O'ik, and Dik are defined by 
formulas (4.17) through (4.19). Since Vi= e-1 afijan0 

it makes sense to call this quantity the differential 
drift velocity. Further, O'ik = a]ifaEk is nothing other 
than the differential conductivity. Finally, we shall call 

15lSubsequent iterations of Eq. (A.6) give terms in the expression 
for the current density which are, generally speaking, small under the 
assumption that the parameters qle and WTe are small. An exception 
may, for example, be the region near a bend in the current-voltage 
characteristics, when the corresponding component of the tensor Uik is 
small and it may be necessary to take account of the terms which are 
proportional to the spatial derivative of the component of the variable 
electric field 8.. 

the tensor Dik, which appears in Eq. (A.8) as the co
efficient associated with the gradient of the electron 
concentration, the diffusion tensor. The quantities V 
and O'ik can be independently determined by experi
ment; the same assertion also pertains, at least, to 
the symmetric part of the tensor Dik. 

Eliminating the quantity ~n from Eq. (A.8) with the 
aid of the equation of continuity, we can find the longi
tudinal part sll of the tensor sik which enters into the 
linear relations ~h = Sik~k· We have 

Su = oouu /(w- qV + iq2D 11 ). (A.9) 

In such a form this relation appeared in[22J. 
Having utilized Poisson's equation, one can represent 

the field t in the form of a sum of two terms: the ex
ternal field E <e> and the self-consistent field E<scf> 
which arises due to the redistribution of the charges in 
the semiconductor. Then one can introduce the tensor 
Sik which appears in the linear relations ~h = sikt ke>. 
We obtain the following result for the longitudinal part 
of this tensor ( q"' 0 ): 

su ( oo, q) = oocru 
oo- qV + i(4ncru/eu + q2Dn) 

(A.10) 

The conditions for the validity of this expression also 
include the inequality Kle « 1. 
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