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Absorption of the energy of a high-frequency magnetic field by a uniaxial antiferromagnet is consid
ered for the case when the stationary field and high-frequency magnetic field are perpendicular to the 
easy axis. It is shown that in the harmonic approximation the absorption consists of a resonant part 
and a threshold part. If the stationary magnetic field strength is less than a certain critical value, the 
absorption coefficient tends to infinity on the right-hand boundary of the absorption band, and this 
anomalous behavior is related to the properties of the spin-wave dispersion law. 

J F a constant magnetic field and a high-frequency mag
netic field are directed along the easy axis of an anti
ferromagnet, then the absorption in such a system has a 
non-resonant character. In particular, when WTs >> 1 
(T s is the smallest relaxation time in the spin-wave 
system and w is the frequency of the alternating field), 
the absorption is connected with the decay of a quantum 
fiw into two non-interacting spin waves, and this mech
anism is a threshold mechanism, i.e., it contributes 
only in a definite frequency interval. On the boundaries 
of this interval, the absorption coefficient vanishes, and 
its derivative with respect to the frequency has a root 
singularity (see, for example,l 11 ). The situation is dif
ferent if the constant and high-frequency fields are 
perpendicular to the easy axis. 

In the present paper we find the high-frequency mag
netic susceptibility for this case, and show that when 
wT s >> 1 the absorption of the high-frequency field 
consists of a resonant component and a threshold com
ponent, the resonant frequency being located to the left 
of the threshold-absorption band. 

If the constant magnetic field H exceeds a certain 
critical field Her• then the threshold absorption does not 
differ qualitatively from the one mentioned abovel 1J. On 
the other hand, if H < Her• then it turns out that the ab
sorption coefficient vanishes as before on the left boun
dary, increases monotonically, and then tends to infinity 
on the right boundary of the absorption band. Such an 
anomalous behavior of the absorption is connected, as 
will be shown below, with the properties of the disper
sion law of the spin waves as a function of the constant 
magnetic field. 

1. The Hamiltonian of the system considered by us 
has the following form: 

(1) 

Here J is the constant of exchange interaction between 
the nearest neighboring atoms in the antiferromagnet, 
a > 0 is the anisotropy constant, J.L is the magneton, and 
H is the external magnetic field, directed along the y 
axis. The indices 1 and 2 number the magnetic sub
lattices, the z axis coincides with the easiest mechneti
zation axis, and Szj (j = 1, 2) is the spin-vector operator 
in the l-th site. 

Employing, as usual, the quasiclassical analysis, we 
can easily find the ground state of the antiferromagnet 
with Hamiltonian (1). It is characterized by the angles 
1J 1 and 1J 2 of the moments of the first and second sub
lattices respectively with the easiest magnetization 
axis. As the result of minimization of the energy with 
respect to these angles, we find that 

sin Bt ==sine= HI J!A, H,;;; H-<, (2) 

and 1J 2 = 1f- IJ. The field HA for a simple cubic lattice 
is determined by the equation J.L H A = 12 JS + 2 aS. If 
H:::: HA, both angles are equal to 1f/2. 

Starting from the obtained ground state, we express 
the Hamiltonian (1) in terms of the creation and annihila
tion operators, accurate to the quadratic terms in these 
operatorsl 2J. As the result, the Hamiltonian (1) will 
contain, besides the energy of the ground state, also 
terms of second and higher orders in the Bose opera
tors. The quadratic part of the Hamiltonian is diagonal
ized, as the result of which we obtain 

d'& = d'&o + ~ (eklakl+au + ek2au+ ak2}+ ;}'&', (3) 
k 

where d'&a is the energy of the ground state and :Je' con
tains terms of third and higher orders in the operators 
ak: and ak. The energies of Ek1 and Ek2 of the two 
branches of the spin-wave spectrum are determined in 
our case of a primitive cubic lattice by the equation 

where 

eu2 = (A - Bk} 2 - (C- Dk} 2, 

e1<22 = (A+ Bk} 2 - (C + Dk} 2, 

s 
JlHA 

A= --+aScos2 9, 
2 

B~t = 2JS sin2 8 ~cos k;a, 
j=1 

s 

C = aSsin2 9, Dk = 2JScos28 ~ cosk;a. 
}=:I 

(4) 

(5) 

(the angle IJ is determined from (2), kj is the projection 
of the wave vector of the spin wave on the crystal axes 
(j = x, y, z), and a is the crystal-chemical lattice con
stant. 

It is seen from (4) and (5) that the second branch of 
the spectrum is obtained from the first by making the 
shift kj - kj + 'If! a. 

2. The interaction with the alternating magnetic field 
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ht = hoe-iwt, polarized along the constant field, is des
cribed by the Hamiltonian 

:Yet=- 11 ~ (Szt + Sz;)ht. 
l 

(6) 

The alternating addition to the projection of the mag
netic moment of the antiferromagnet on the y axis is 
given byl3 J 

• 2 "" 

(JlSY(t))=- z~ h0e-iwt s ei"''Spp0 (Sv,Sv(-r)]d-r, (7) 
0 

where po = z-1e -{3:/e is the equilibrium Gibbs distribution 
for the magnetic system with Hamiltonian (1) ({3 is the 
reciprocal temperature), and sY(T) is the operator of the 
total moment of both sublattices in the interaction repre
sentation. 

In the high-frequency case considered by us (wT s 
» 1) the main contribution to the magnetization is made 
by the terms of the Hamiltonian (3) which do not contain 
anharmonicities, and the interaction between the spin 
waves can be taken into account with the aid of pertur
bation theory. 

Confining ourselves to the quadratic terms in the 
Hamiltonian (3), we obtain after rather cumbersome 
calculations 

_ 1 )+(Dk+C)2(2nu+i)( 1 
ffi- 2ekt!ft + iv ek22 ffi + 2eu/ft + iv 

-(I) -2e:.!n+iJ ]}. v->-+O. 

The first term in the curly brackets corresponds to 
antiferromagnetic resonance at the frequency E oJli 

(8) 

(E 01 = E k1J k = 0). It should be noted that the frequency 
connected with the second branch of the spectrum is 
missing from the resonant term. This is the conse
quence of the fact that the high-frequency field, which is 
polarized along the y axis, excites a normal oscillation 
corresponding to only one natural frequency Eo1/li. This 
can be readily verified by considering directly the equa
tions of the homogeneous oscillations of the magnetic 
moments of the sublattices. 

The remaining two terms are due to decay of the 
photon li w into two spin waves with opposite quasi
momenta (the photon momentum is assumed to be zero). 

3. The imaginary part of the magnetic susceptibility 
x" determines the absorption coefficient of the field 
K(w). Confining ourselves only to the nonresonant part 
of the absorption, we get from (8) 1l 

x 11• ~~i.e.> sin2 9 
x ( ffi) = ffi'x'' ( ffi) = ---cth -- ---;-:=;:::=;::==;:;::;::::;=::::;;;:-

2(2n)"ft2 4 l'cos28[ffio2(8)- ffi 2] 

I lOwing to the summation over k, the contribution from the terms 
contained in the first and second branches of the spin-wave spectrum is 
the same, since ez{kx, ky, kz) = e1(kx + 7r/a, ky + 7r/a, kz + 7r/a), and 
D(kx, ky, kz) = -D(kx + 7r/a, ky + 7r/a, kz + 7r/a). This property holds also 
for lattices having a different symmetry. 

Here x =I; cos k. for a simple cubic lattice, x1 and x 2 
j J 

are the roots of the equation E k1 = E 1 (x) = li w I 2 and lie 
in the interval -3 ~ x ~ 3, with 

( JlHA ) e1'(x) =(Jl.HA/2 +aS cos2e + 2/Sxcos 28) --+aS- 2!Sx . 
2 (10) 

the frequency w 0 is determined by 

ffio•(e)= (JlHAcos2 e +2aScos28)• 
ft2 cos 28 ' 

with w~(e) > 0 only when cos 2 e > 0. 

(11) 

The integrals in (9) are taken over the equal-energy 
surfaces x = x1 and x = x 2, respectively (we note that 
Ek depends on k only via x). 

It is clear that the equation E 1 (x) = li w/ 2 has at least 
one real root in the interval -3 ~ x ~ 3, provided only 
the frequency satisfies the inequalities 

It follows therefore that the nonresonant absorption has 
a threshold character both on the low and on the high 
frequency sides. It is easy to verify that the lower 
limiting frequency at any value of the constant field 
H ~ HA is equal to double the energy of the spin wave 
with k = 0, i.e., 

ftffimin = 2et(3) = 2"f2fl.HAaScos8. (12) 

As to the upper limiting frequency, it is different in 
different field-value intervals. If H < Her• where Her 
is determined from the condition 

( Hcr) 2 6/ 
HA = 18J+a' 

(13) 

then the upper limiting frequency coincides with the 
frequency (11), which is double the maximum value of 
the frequency E l(x)/li in the interval -3 ~ x ~ 3. On the 
other hand, if H > Her• then the maximum of E 1(x)/li is 
reached outside this interval. In this case the upper 
limit of the absorption band is reached on the left edge 
of the interval and coincides with the frequency 

(14) 

4. We now investigate the character of the absorption 
near the limits of the band. 

Let H >Her· Then the equation E1(x) = liw/2 has 
only one root x = x 1• Near the lower limit of the absorp
tion band, i.e., at (w- Wmin)/wmin « 1, we have 

ya(6! + a)ft(ffi- ffimin)cos9 
Xt-3- · - 2!8(6! cos2 8 + asin2 8) 

In this case the surface x = X1 reduces to a sphere of 
small radius 

l'a(6l +a)ft(ffi- fllmzn)cos9 
(ka)•= JS(6Jcos28+asin2 8) · 

After integration over the sphere, we obtain for the ab
sorption coefficient near the lower limit of the band the 
following expression: 

1128 sin2 9(6/ cos2 8- asin2 8) 2[a(6/ + a)]''• x( ffi) = -- --'-::=-__::_-~_::..:._:__,____:_____!..;__ 

8na3ft y!S(6!cos•e + asin2 8)'" 
~ftmmzn 

X cth --4-[tt ( ffi - (J)min) cos SJ''•. 

(15) 
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We see therefore that, as usual, the absorption coeffi
cient near the edge of the band tends to zero in propor
tion to the square root, and the derivative d K/ d w has a 
root singularity. A similar result is obtained also near 
the upper limit of the band, except that the coefficient of 
(wmax- w) 1/2 will then be different. 

We now consider the field region H < Her· In this 
case, as already indicated, the upper limiting frequency 
is the frequency w 0, defined by expression (11). The 
equation E1(x) = tiw/2 has at H < Her• as before, one 
root in the frequency interval 

2ei(3) 1 li .,; ffi .,; 2et( -3) I li 

and two roots if the frequency lies in the interval 

2et( -3) I li .,; <0 .,; ffio. 

Then, near the lower edge, i.e., near the frequency 
2El(3)/ti, expression (15) remains in force for the ab
sorption coefficient. 

The situation is different near the upper edge, i.e., 
near the frequency wo. As seen from (9), when w- Wo 
the radical in the denominator tends to zero, whereas 
the surface integrals remain finite. As a result, if 
H < Her• then the absorption coefficient increases with
out limit like (w 0- w)1/2 as w- w0• However, if account 

is taken of the relaxation mechanisms connected with 
the anharmonicities in the Hamiltonian (3), then the 
value obtained for K(w) is finite, albeit larger. 

If the field H is close to Her• and the frequency w 
close to wo, then the surface integrals tend to zero like 
(AAw + BAH) 1/\ where A and B are constants containing 
only J, a, and S, Aw = w- wo, and AH =Her- H. Since 
the denominator in (9) tends to zero like (AAw + BAH) 112 
in this case, the absorption coefficient is proportional 
to (AAw + BAHt114 • 

We note that the lower limit of the absorption band in 
a field H ~ Her is equal in order of magnitude to 
Sti-1v'Jci" ~ 1012 Hz, and the upper one is JS/ti ~ 1013 Hz. 

In addition, as seen from (9), the absorption is pro
portional to (H/HA) 2, and therefore the effect is notice
able at sufficiently strong fields. 
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