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The absorption and dispersion of sound in a superfluid liquid is investigated near the .\. point. A new 
derivation is given of the equations of hydrodynamics of a superfluid liquid near the .\.point, which 
contains some refinements in comparison with the original derivation of L. P. Pitaevskii. The mech­
anism of sound attenuation is the transfer of energy to second sound quanta with a wavelength of the 
order of the correlation length. Formulas are derived for the dispersion of the velocity of first sound 
and the attenuation coefficient of second sound. 

THE problem of the absorption of sound near the .\. 
point in superfluid helium was considered in [ lJ on the 
basis of the thermodynamic theory of Landau -for second 
order phase transitions. l 2 J In the theory[ 2 J of second 
order phase transitions, the expandibility of the thermo­
dynamic potential in a series in powers of the small 
"order" parameter is assumed; this has not been con­
firmed at recent date[ 3 J -the heat capacity at the.\. 
point has a singularity in contradiction with this as­
sumption. However, it can be shown that the study of 
the problem of sound propagation near the.\. point can 
be carried out without the use of the Landau thermody­
namic theory. 

For the study of the problem of sound propagation 
near the .\. point, we use the hydrodynamic equations ob­
tained by Pitaevskii. [4 J Since the derivation of these 
equations and their form require some refinement, we 
shall begin with their derivation. 

1. THE HYDRODYNAMIC EQUATIONS OF A SUPER­
FLUID LIQUID NEAR THE ~ POINT 

Closeness to the .\. point is characterized by a small 
parameter-the density of the superfluid part of the liq­
uid Ps· Introduction of a certain complex function lj!(r, t) 
= TJ exp icp is convenient; this function is so defined thae) 

li 
v,=-V<p. 

m (1.1) 

For small values of Vn and Vs, we expand the energy 
per unit volume E in a series in Vn and V1{J: 

v 2 /i2 

E=(p-ml'iJI 2)--"-+-IV.PI 2+Eo(p,S, I.PI 2). (1.2) 
2 2m 

Further, expressing 1jJ in terms of Ps and Vs, we get 

Vn2 v,Z fi2 (Vp,)2 (1.3) 
E= Pnz-+Ps2+Sm2 -p-, -+Eo, Pn = p-mi1Jll 2. 

We transform to a coordinate system moving with 
the velocity of normal motion Vn, and introduce the mo­
mentum of the relative motion of the liquid in this sys­
tem: 

!)The notation is the same as in [4 ]. 

p = j- PVn = i2fi (lj)Viji- iJiVIjJ)- ml'iJ l"vn. 

The energy E is then, in accord with the Galilean 
transformation, equal to[ SJ 

Vn2 
E=p2+Pvn+Erel 

(1.4) 

(1. 5) 

where Erel is the sum of the internal energy and the 
energy of relative motion. Comparing (1.5) with (1.2), 
we find 

m I( iii ) 12 EreJ=2 -m-vn 'I> +Eo(p,S,I1JJI 2). (1. 6) 

For finding the equilibrium value of 1jJ it is necessary 
to minimize the thermodynamic potential of the system 
cf> which, in accord with (1.6), is equal to 

ell=; I (- ~ V -vn) ljJ 1
2 

+Cllo(T,p, IIJJI2). (1. 7) 

The minimum must be sought for fixed values of the 
thermodynamic variables T, p and the relative velocity 
Vs- Vn =PIPs· We introduce the Lagrangian multiplier 
u and vary the integral J (cf> + Ps 1 u · p)dV successively 
in 1jJ and Yn· In this way we find the two conditions 

m 1\ _ in V _ Vn )21P + iJCllo m.p _ ilt ( V ~'I>+~ v.p) (1. 8 ) 
2 m iip, 2 Ps Ps 

1 up 
--mvnuljl--2 mljl = 0, 

Ps Ps 
(1. 9) p +u = 0. 

Eliminating the Lagrangian multiplier u from these 
two conditions, we obtain an equation defining the equi­
librium value of 1jJ: 

[ 1 ( ifi ) 2 ifi 1 2 --,;;V-vn +l-ls+ 211l(), divpj mljl=O, (1.10) 

where 

( iJ<llo) ( iJE o ) fts= - = -
iJp, T,p iJp, P,S • 

( 1.11) 

Equation (1.10) recalls the fundamental equation of the 
Ginzburg-Landau theory for superconductors. However, 
in the theory of superconductivity, the function 1jJ (its 
modulus and phase) is completely determined by the 
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given magnetic field and therefore the minimum of the 
thermodynamic potential is found for fixed values of the 
vector potential of the electromagnetic field A. 

In the work of Pitaevskii, [ 41 the equation defining 
the equilibrium value of l/J was found by variation of the 
total energy E in terms of l/J for fixed values of the 
momentum j = p + pVn- In the equation thus obtained, 
the term (ili/2mp 8 ) div p is absent in comparison with 
(1.10). The equation obtained in [ 41 is equivalent to two 
conditions: its real part is identical with Eq. (1.10) and 
the imaginary part gives the extraneous condition div p 
= O, for which there is no foundation. Such a result ap­
peared as the result of an unfounded assumption on the 
extremum of E relative to If for fixed j. The equilib­
rium value of Ps can be found from the condition of 
minimum energy. Here it is necessary to choose the 
density p, the entropy S, the momentum j and the veloc­
ity of superfluid motion v 8 as independent variables, 
the values of which ought to be fixed. The fact that such 
a choice of variables appears natural can be established 
in the limiting case when the gradients of Ps and spe­
cific quantum effects are small. Here the equations of 
hydrodynamics can be obtained from the law of energy 
conservation. The energy in this case is expressed as 
a function of p, S, j and v8 and the laws of conserva­
tion are used for these quantities. [ 51 

In the given problem, a new independent variable Ps 
is present, the equilibrium value of which can be found 
from the condition of the minimum of the total energy 
JEdV relative to Ps for fixed values of all the remain­
ing variables. By varying JEdV in p 8 , we obtain the 
desired condition 

f12 h2 (v,- Vn)2 
--4 2~p.+-8 2 (Vp,) 2+P• 2 +P•~i•=O. 

m m Ps 

Expressing Ps and v8 in these equations as functions 
of l/J with the help of (1.1), we write down the resultant 
condition in the form of an equation for If: 

1 ih ih J [2( --;;;V-vn)+li•+zmp, divp m"¢=0. 

Thus we again obtain condition (1.10). The given deriva­
tion indicates that the equilibrium value of the modulus 
of the function l/J (the density p 0) corresponds to the 
minimum of the energy for the given phase of cp (the 
velocity v 8 ). 

In the nonstationary case, it is assumed that the 
state of the system is defined by furnishing l/J (the same 
as for the other thermodynamic variables), i.e., l/J sat­
isfies the linear differential equation in t. By analogy 
with quantum mechanics, the equation for l/J is written 
in the form 

( 1.12) 

where L is some linear operator. Since the value of 
Ps can relax, the operator L contains a n2n-Hermitian 
part. The Hermitian part of the operator L, by analogy 
with the Schrodinger equation, is written in the form 

(1.13) 
where 

(1.14) 

Here J.J. and J.J.s are defined by the thermodynamic iden­
tity for E0 : 

dEo = TdS + 11dp + lisdp,, (1.15) 

U represents the potential energy of the superfluid part 
of the liquid. 

So far as the anti-Hermitian part is concerned, which 
describes the approximation of Ps for the equilibrium 
value, for small departures from equilibrium we can 
write 

[ 1 ( ih ) 2 ih ] iA ~ -~V-vn +lis+--divp mljJ, 
2 m 2mp, (1.16) 

where A is some dimensionless kinetic coefficient. 
Finally, we have the following equation for 1/J: 

. o¢ ft2 [ 1 ( th )2 
'hat=-2m~..P+(Ii+~is)m..p-iA 2 - m V-vn +lls 

ih 
+ 2mp, divp J m..p. (1.17) 

The coefficient A should be real, since in the opposite 
case a transport of the superfluid part of the liquid with 
normal velocity would have been possible. The remain­
ing equations of hydrodynamics are written as usual in 
the form of conservation laws: 

Mass 

: +divj =0, 

Momentum 

p =-Eo+ TS +liP+ !lsPs, 

and, finally, the law of entropy growth 

as R 
-+divSvn=-T, 
i}t 

( 1.18) 

(1.20) 

(1.21) 

in which the dissipative function is found from the en­
ergy conservation law in the form 

2A,[1( iii )2 iii l 2 
R=h 2 --;;:V-vn +li•+zmp, divp m..P\ .(1.22) 

In Eqs. (1.19) and (1.21), the dissipative terms that 
are due to the viscosity and the thermal conductivity 
are omitted. These terms have the usual form.[ 51 As 
will be seen from the following, they do not play im­
portant roles in processes of dissipation of sound in 
superfluid helium near the ,.\ point. 

In the case of small gradients we replace -itim - 1Vl/J 
everywhere by v8 . As a result, Eqs. (1.17) and (1.21) 
take the following simple form: 

(1.23) 

p + div (p,v, + PnVn) = 0, ( 1. 24) 

i} i} 
ot (p,Vn + PnVni) + OXk (pnVnjVnk + PsVsiVsk + p{Jik) = 0, (1. 25) 

S+d' S 2Am[ (vn-v,)2]2 lV Vn = -h- lis+, 2 p,, (1.26) 
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(1.27) 

We apply the equations given above to the study of 
the problem of sound propagation. They differ from 
those obtained in [41 by the fact that in Eqs. (1.23) and 
(1.26) dissipative terms of the type of second viscosity, 
containing the coefficient A, are absent. 

2. THE RELAXATION MECHANISM NEAR THE 
~ POINT 

The relaxation of the density of the superfluid com­
ponent of Ps is described by the right hand side of 
Eq. (1.27). Here the velocity of approach to equilibrium 
is determined by the A kinetic coefficient. We consider 
the mechanism of the dissipation of sound energy near 
the A point. The system is characterized by a certain 
correlation length ~. At lengths of the order of ~ the 
correlation of phase cp is damped out. According to 
Eq. (1.23), this length will also be characteristic for the 
temperature correlations. It is therefore evident that 
second sound can be propagated only in the case for 
which k~ << 1, where k is the wave vector of second 
sound, i.e., when the wavelength of second sound is 
greater than the correlation length ~· Waves of second 
sound with wavelengths of the order of ~ will be com­
pletely dissipated. Thus there is some characteristic 
time T = ~/u2 (u2 is the speed of second sound) which 
determines the rate of energy dissipation of waves of 
second sound. [ 6 • 71 The energy dissipation in first 
sound then takes place by decay into waves of second 
sound and is characterized by the same time. 

By giving such a mechanism of dissipation, we easily 
find the temperature dependence of the dimensionless 
coefficient A. It is evident that A can depend only on u2 

and ~. while the rate of relaxation should be propor­
tional to the speed of second sound. Using the dimen­
sional constants ti and m that are at our disposal, we 
find 

(2.1) 

Such a determination of the value of A is equivalent to 
the introduction of the characteristic time T = ~/u2 • 
Actually, it follows from (1.19) that the characteristic 
relaxation time T is determined by the relation 

1 2Am iltt• 
~ = -fi- iJp, p,. (2.2) 

The basic part of the potential /1-s, by definition of ~. is 
of the order of ti 2/m2 ~2• It therefore follows from (2.1) 
and (2.2) that 

(2.3) 

It has been shown in [ 81 that such a definite relaxa­
tion time has a general dependence on the temperature, 
not depending on the critical indices of similarity the­
ory, [ 91 i.e., not depending on the form of the singular­
ity in the thermodynamic functions near the A point. Ac­
tually, from the expression for u2 / 51 

Uz = v fl_s_ a2T 
Pn C ' 

and the obvious relations for the principal part of the 
heat capacity C 

we get 
1 maTe 
~~-fi-e~ e. (2.4) 

Thus the relaxation time T is inversely proportional to 
the difference T c - T. It is curious that Eq. (2.4) gives 
the correct order of magnitude of the time T, in excel­
lent agreement with experiment (1/T ~ 1011 E). 

We note that the ordinary viscosity and thermal con­
ductivity, which are due to collisions of the excitations, 
will be characterized by very small times of an entirely 
different order[ 51 and therefore their contribution to 
the energy dissipation of the sound will be insignifi­
cant. 

3. SOUND DISPERSION 

For the study of sound propagation, we transform the 
set of equations (1.23)-(1.26) to linearized form, after 
which we eliminate the velocities Vn and Vs. As a re­
sult, we obtain two wave equations: 

p -1'1p = 0, 

.. p, p,a 
a-- a21'1T + -!'1J.t, = 0 

p p 

(3.1) 

(3.2) 

in which, in view of the smallness of Ps• we have set 
Pn = p everywhere. Equation (1.27), which describes 
the relaxation of Ps• takes the following form here: 

· p · 2Am , 
Ps +a a= --n-11• p,, (3.3) 

where 11-~ is the variable part of the potential /1-s, 
since the condition of equilibrium in the linear approxi­
mation changes to the requirement 11- s = 0. 

The thermodynamic identity for the potential w = 11-
+ Ta, according to (1.15), is written in the form 

1 p, 
dw = Tda +- dp -- dtts· 

p p 

We use this identity for establishing the connection be­
tween the derivatives of the thermodynamic functions. 
If we choose p and the entropy per unit mass a as in­
dependent variables, then Eqs. (3.1) and (3.2) are com­
pletely uncoupled, thanks to the extraordinary small­
ness of the difference Cp - Cv and the ratio of the 
squares of the velocities u~/u~. We emphasize that 
this does not mean the neglect of the difference Cp - Cv 
in the final formulas. Only terms of relative order 
(Cp/Cy- 1)uUu~ are thrown away. With such accuracy, 
we find an expression from Eq. (3.1) for the square of 
the speed of first sound 

(3.4) 

and an expression for the square of the speed of second 
sound from (3.2) 

u22=~a2 f( iJT) -~( 011') ) . (3.5) 
p L iJa P a iJa p 

We now make use of Eq. (3.3). From Eqs. (3.4) we 
find the expression for the dispersion of the speed of 
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first sound 
1 ( op) ( op ) aft, 1 ( 1 1 ) iun; 

--;-;;-z = op a,~.+ Ofts a, P----ap=;;;;;:- - u1o" + u,~2 1- iw-r ' 

(3.6) 

where u10 is the equilibrium speed of sound as w- 0, 
equal to 

1 (op) Cp(op) 
U102 = Op a,~,= fv Op T, ~ 8 ' (3. 7) 

u1 00 is the speed of sound in the limit wr >> 1, when 
the equilibrium value of Ps lags behind the sound wave. 
The difference u100 - u10 is found from the relation 

_1 _ -~ = (~) ~ = p• op,.!_ (~)( Ofts) (3 8) 
U!~2 u,~' op a Ofts op op p op, p, a • • 

Here we have used the identity (3.4), according to which 

ilp , a ( P•) 
Ofts = P op p . (3.9) 

The time T is determined by the relation 

_!_ = 2Am (~) P•· 
't' fi op, p, a 

(3.10) 

In the variables p, T, Eq. (3.8) takes the form 

1 1 [ a ( p,) 0p / ocr o ( p, )]' 1 ( Oft, ) 
U!o.- u,oo2 = oT p iiT Tr-p ilp p p iJp, p,; 

(3.11) 
The singular part of the derivative (a/ap)(ps/p) is evi­
dently equal to (il/ilT)(p0/p)(ilTc/ilp), i.e., it is ex­
pressed in terms of the derivative along the curve 
T.\(p). Thanks to this fact, the singular parts of both 
components in the square bracket in (3. 11) are reduced 
and the bracket is of the order of Ea(ps/E), where a is 
an index characterizing the singularity in the heat ca­
pacity C ~ca. The derivative oJls/ilps has the order 
of <1> 0 /p~ ~ E 2-a/p~. Thus, the difference u10 - U100 is 
of the order of Ea, i.e., it tends to zero. 

Equation (3.6) describes the dispersion of first sound, 
i.e., it is valid in the region w T ;:, 1. Actually, in this 
region, where WT ~ku1~/u2 ~ 1, we have k~ << 1, inas­
much as ua/u1 << 1. Thus, in the region where WT ~ 1, 
the wavelength of the sound is still greater than the cor­
relation length. 

We now return to second sound. In this case, the 
condition wr ~ 1 is identical with the condition k~ ~ 1; 
therefore, it is legitimate to consider only the case 
wr << 1, i.e., the case of small damping. From 
Eq. (3.5) and Eq. (3.3), we get in this case 

u,'=uzo'[!1-iw{~~)(iJ:; +~)(a:(:')+~)]· (3.12) 

The function Ps. as follows from the theory of similar­
ity, changes with temperature according to the law 1/E 
~ E exp (2- a)/3; therefore, ilps/ila >> p/a. 2 > 

We introduce the heat capacity CPs= T(oa/oT)ps• 

which is characteristic for fast processes, when as the 
temperature changes the density Ps does not have time 
to change. The connection between CPs and the equilib-

2lOnly in the limiting case of the thermodynamic theory of Landau 
is Ps ~ E and the given terms have the same order of magnitude. 

rium value of the heat capacity C0 = T(ilo/ilT)Jls follows 

from the thermodynamic identity (3.4): 

Co ( ilp. ) il ( p, )( ocr ) ( Oft,) 
G;- 1 = a;; ocr p iiT " op, a· 

s • 

With the help of (3.13), we can rewrite Eq. (3.12) 
following simple form: 

(3.13) 

in the 

Uo'=u,o'[1-iw-r(~:, -1)]. (3.14) 

Equations (3.6) and (3.14) allow us to compute the damp­
ing coefficients of first and second sound, respectively. 
We have 

Ill= Im~ w'-r 1 (1- u,o• ) 
Ut 1+w'-r2 2u!O u1~2 ' (3.15) 

a,=Im~=w"-r-1-(~-1). (3.16) 
il2 2u.o Cp8 

Since the difference u100 - u10 ~ Ea and T ~ 1/E, then 
a 1 ~ E exp (-1 +a), which agrees well with the tem­
perature dependence of a 1 observed in the experiments 
of Barmatz and Rudnick. [ 10 1 3 > 

Experiments on the observation of the damping of 
second sound below the .\point, carried out by Ty­
son, [ 61 confirm the temperature dependence of a 2 

which follows from (3.16). The difference C/CPs- 1 

does not depend on the temperature for small E. Actu­
ally, according to (3.13), we have 

~ -1 ~ _!_( ilp, ) 2 Oft• ~ - 1- ~ ~a. ~ const 
Cp, Co oT op, e"""' e2 p." . 

In [ 61 the damping of second sound is characterized by 
the damping constant, which is determined in the follow­
ing way: 

D, = Im,w / k2 

and, in accord with (3.16), is equal to 

D2= u2o'-r(Co/Cp8 -1). (3.17) 

The temperature dependence follows from (3.17): 

and agrees well with the experimental data[ 61 and with 
the predictions of the theory of dynamic similarity. We 
note that for damping of first sound the theory of dy­
namic similarity is generally not applicable. The de­
pendence a 1 ~ E exp ( -1 + a) cannot be obtained from 
considerations of similarity only. 

The problem of the dispersion of first sound is en­
tirely analogous to the problem of the dispersion of 
sound in the presence of slow processes of approach to 
the state of equilibrium in ordinary hydrodynamics. 
Equation (3.6) has the typical form which the theory of 
Mandel'shtam-Leontovich gives in ordinary hydrody­
namics. [ 111 So far as second sound is concerned, here, 
thanks to the presence of a third term in Eq. (3.2) con­
taining Jls explicitly, the situation differs somewhat 

3lThe experiments of Buckingham and Fairbank [3] indicate that 
the singularity in the heat capacity is logarithmic or a power series with 
a very small exponent a, so that one can set a = 0 in comparison with 
experiment. 
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from the ordinary. It is true that this term is small in 
the case of superfluid helium; however, in the limiting 
case of the classical theory of phase transitions of Lan­
dau, it has the same order of magnitude as the first two 
terms in (3.2). 

The system of hydrodynamic equations for a super­
fluid liquid near the A point contain an extraneous equa­
tion for the function Ps in comparison with the usual 
equations of two-component hydrodynamics. It might 
appear that this should lead to the possibility of propa­
gation of a new type of oscillation. However, Eq. (1.27) 
has the form of the equation of continuity and, eliminat­
ing div Vs from it and Eqs. (1.24) and (1.26), we obtain 
only the connection between the changes of the thermo­
dynamic quantities and Ps in sound waves. A new wave 
equation does not appear and therefore there are no new 
types of oscillation. 

The author expresses his deep gratitude to V. L. 
Prokzovskii in collaboration with whom the problem of 
the dissipation mechanism near the A point was consid­
ered. The author also thanks A. F. Andreev and L. P. 
Pitaevskii for useful discussions. 
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