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The decay of electron states and the conductivity of a quantum or classical film with surface defects 
(impurities, surface roughness) are investigated. Scattering by widely-spaced roughnesses reduces 
to scattering by potential centers randomly distributed over the surface. The amplitude of scatter­
ing from a surface center in the film is determined in the approximation in which the transverse cen­
ter dimension is small compared with the film thickness. Boundary conditions for the electron dis­
tribution function are found for a classical film. The dependence of the film conductivity on the film 
thickness is discussed. 

THERE are many papers devoted to a theoretical de­
scription of the influence of scattering from the surface 
on the kinetics of electrons in a film. These papers can 
be divided into two groups. One group[ 1-41 considers 
classical films, in which the film thickness a is large 
compared with the characteristic wavelength of the 
electron. For such films, it is possible to use a classi­
cal distribution function n( r, p) satisfying the kinetic 
equation inside the film and a certain boundary condi­
tion on its averaged surface. The simplest boundary 
condition of this type is the condition that the total par­
ticle flux through the surface S vanish: [ 31 

S pnn(reS,p}d3p=0, (1) 

where n is the normal to the surface. However, being an 
integral condition, it does not yield complete informa­
tion for the determination of the conductivity and other 
kinetic coefficients. It is therefore necessary to use 
model assumptions concerning the isotropic distribution 
of the scattered particles (total or partial "diffuse­
ness")/3•41 or to connect the boundary condition on the 
distribution function with the microscopic scattering 
mechanism:[ 1•21 

n(r,p)= ~ n(r,p')a(p',p)II(E(p)- E(p') )d3p', 

pn > 0, p'n < 0, reS. (2) 

The function a (p', p) describes scattering by the sur­
face, which is assumed to be elastic; a(p', p) should 
conserve the number of particles and make Eq. (2) an 
identity when the equilibrium distribution function is 
substituted. This imposes on p( p', p) the limitations: 

p'n=- \ pna(p',p)6(E(p)-E(p'))d3p, 

s a(p', p)6(E(p)- E(p') )(/3p' = 1. 

(3) 

(4) 

However, the form of the scattering function and its 
connection with the transition probability have been de­
termined so far quasiclassically, [1, 5 ' 61 or else from 
semi-intuitive consideration/ 21 

Another group of papers[ 7 - 91 considers a quantum 
film with a slightly-roughened surface. The applicability 
of the results of these papers is limited to the condi-
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tion that the height of the roughnesses be small com­
pared with the transverse wavelength of the electron, a 
condition apparently rather rarely satisfied. 

In this paper we consider the relaxation of the elec­
tron states and the conductivity of a quantum film with 
isotropic dispersion in the presence of surface defects. 
The boundary condition on the carrier distribution func­
tion is obtained in the classical limit. The scattering of 
the electrons by volume defects is neglected (the film 
thickness a is much smaller than the volume mean free 
path). H the normal component of the electron momen­
tum is much smaller than the reciprocal interatomic 
distance, then the boundary condition for the wave func­
tion on the surface has the form l/J(r E S) = 0. The prob­
lem of scattering by a rough surface is then equivalent 
to the problem of scattering on potential centers dis­
tributed along the surface, with a potential that is infin­
ite in a limited spatial region, outside of which the po­
tential vanishes. Indeed, when the potential tends to in­
finity the wave function will tend to zero on the boundary 
of this region. 

1. RELAXATION TIME OF THE ELECTRON STATES 

We consider a quantum film occupying the region 
0 s z sa; on the surface z = 0 there are potential cen­
ters with potential 

V(p,z)=~ u(p-p1,z). 
i 

The coordinates of the centers p i=(xi,yi>O) are distrib­
uted randomly and independently, and have a density c. 
The second surface, for simplicity, is assumed to be 
specular. 

As is well known, the relaxation of the electron 
states and the conductivity are determined by the mean 
values of the Green's function and its derivatives aver­
aged over the positions of the centers. [ 101 In the rep­
resentation of the eigenfunctions of the unperturbed 
problem, the equation for the Green's function is 

G,.n•(p, p') = 6nn•ll(p- p')Gn°(p) 

+(2rr)-2Gn°(p) ~ ~ Unn,(P- Pt)Gn,n•(Pi, p')exp {i(p- Pt) p;} dZp,, (5) 
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Here p and p' are the longitudinal momenta, n and n' 
the transverse quantum numbers 

GnO(p) = [E- En(P) + i6]-1, En(P) = 1/zP2 + 1f2:rt•n•a-•, 

and unn'(P) is the matrix element of the potential of one 
center. 

The usual diagram technique is obtained for the aver­
age Green's function.[ 91 Summation of diagrams with 
unclosed dotted lines corresponds to the potential pro­
duced by the centers (bending of the bands), and there­
fore leads to an immaterial renormalization of the en­
ergy eigenvalues En (p) and of the matrix ele-
ments unn'(p). In the approximation when the self­
energy part ~nn'(P) satisfies the inequalities 

~nn•(p)«1!;En+t(p)-En(P)=!J.E, ~nn(p)«1!;En(p), (6) 

the Green's function contains only diagonal elements in 
the essential energy region E - En(P) ~ Im ~nn(p): 

Gnn•(p, p') = 6(p- p') {(2rr) 2«5nn•[E -En(P)- ~nn(P) + icS]-I 

+o(~nn•I!J.E)}. (7) 

For the relaxation time of the electron state we ob­
tain 

,;-I= lm ~nn(p). (8) 

Let us find T for scattering by screened Coulomb cen­
ters. When the screening radius q.;-1 is smaller than the 
film thickness, the screening occurs as in an unbounded 
sample: 

e• 
u(r)= -exp(- qor). 

er 
(9) 

In the Born approximation we have 

u«1!;[kqo, qo'/k2], k=y2E, (10) 

n' 

If only one subband of transverse quantization is 
filled~ then the electron energy lies in the range 
27?/a > E > 1T2 /2a2 , onlyoneterm with n' = n + 1 re­
mains of the sum (11), and 

(12) 

In the opposite classical case (E >> 21T2/a2) it is 
possible to go over in (11) to integration with respect 
to Pz = n1r/a, and 

rl= 
(2n) 2e'kc { 2 1 1 

e2a q02 ( q02 + 4k2) - · k2 co;-e "J'A 

xln 2A+B+2(qo2 +k2 cos6)"J'A l, ( 13) 
2A- B + 2(q02 - k2 cos 6)"J'A 

where 

k = (p, p,), cos 8 = p, I k, A = qo• - k' sin2 6, B = 2qo2k2 cos 8. 

In the limit as q0 >> k, we obtain 

(16) 

when Pz << q0 • 

The Born approximation is not applicable to scatter­
ing by roughnesses, since the perturbation potential be­
comes infinite. It is therefore necessary to sum dia­
grams containing more than two dashed lines per cen­
ter (see [ 101 ). The self-energy part is expressed in 
terms of the vertex part r nn' (p, p', E): 

~nn• (p) = cf nn•(p, p, E), 

which satisfies the equation 

I'nn•(p, p', E)= Unn•(p- p')- ~ ~ __!!!!!__ 
(2n) 2 

X Unn, (p- PI) I' "•':'_(P~oP~'!l_ (17) 
R-En,(PI)+ i6 

Comparing (17) with (A.3), we see that when E - En(P) 
<< En(P), the quantity 2a1T - 1r nn' (p, p', E) coincides with 
the amplitude F nn'(P, p') for scattering by a surface 
center. 

We confine ourselves to the case of a centrally­
symmetrical potential of a center. The corresponding 
surface roughnesses have the form of hemispherical 
craters of different radii. The final result is averaged 
over the dimension of the crater. Using the known for­
mulas for the amplitude of scattering by a solid sphere, 
we obtain for the relaxation time the following results 
(we confine ourselves to the case of a classical film): 

1. Radius of crater r much smaller than the wave­
length k - 1 (rk << 1), 

2. rk >> 1, 

3n2 
,;-1 ~--pfk"(r'l)c; 

2aa 

rrfa (r") kc, if 
n/Ba (r') p,2kc, 

p,r>1, 
if p,r..;;; 1. 

2. CONDUCTIVITY 

(18) 

(19) 

The conductivity is expressed in terms of the elec­
tron Green's function with the aid of the Greenwood­
Peierls formula in the same manner as in [ 91 : 

r ato d2pd2q 
a=-4ne2 ~ J qp<Gnm(P,q)Gmn(q,p)) aE (2n)• dE, (20) 

n,m 

where G = GR - GA is the difference between the re­
tarded and advanced Green's function, obtained in the 
first part of the paper; f0 (E) is the Fermi distribution 
function per unit volume. 

Without stopping to discuss the intermediate calcu­
lations, we present the final formulas obtained in the 
approximation (6): 

a=-4rre2 ~ r Mn(P) ajo 6(E-E ( ))d2 dE· (21) 
.<::J J lm~nn(P) aE "p p ' 

( 14) Mn(p) is defined by the equation 

In semiconductors usually q0 << k. The time of re­
laxation of the electron state depends in this case 
strongly on the angle between the surface and k: 

,;-I = 2n3e'c I ae2kq02 (15) 

At not too slow a decrease (pz >> q0), and 

~ r IF ,. PPI Mz(Pt) 
Mn(P)=P2 +c.<::J J nz(P,PI) -.-dcp I .., ( ) ' 

PI ill.<tll PI 

(22) 
n2l 2 rr2n2 PP1 

PI2 +-=P2 +-.-, COS<:p=-. 
a2 a2 PPI 

In the limit of a thick film, the sums in (21) and (22) 
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go over into integrals, 6- a1r - 1 J dpz. The approxima­

tion (6) remains in force, since the condition ~nn 
>> ~E does not depend on the film thickness. Indeed 
according to (A.4), in the classical limit ' 

Im~nn•(P)=c2: rm[t(~~)-f J 

==c 2:-~ ~ dQ'it(~)-rr, 
while ~E ~ pzfa and (6) reduces to the inequality 

c~~ dQ'It(~')-rl 2~f, r==t(~~')- (23) 

This condition requires that the scattering cross sec­
tions of individual centers, projected on the surface of 
the film, must not overlap. From (14), (16), (18), and 
(19) we see that (23) is satisfied also at small values of 
Pz (glancing incidence). 

On the other hand, the problem of determining the 
conductivity of a classical film reduces to a solution of 
the kinetic equation for the distribution function n(r, p) 
with boundary condition (2). In this case we obtain for 
the conductivity 

a= ae~~ ato ( 2D(k)- p2 )a•k, (24) 
aE P• 

k = (p, Pz), E = k2 I 2, 

where the functions D(k) are defined by 

D(k)=: +25 a(k',k)O(k'2-k2)~~~D(k')W, (25) 

and a (k', k) is taken from the boundary condition (2) 
We separate explicitly in the scattering function 

a(k', k) the specular part 1 - ii(k): 

26(k12 - k2)«(k', k) = (1- a(k))ll(k' -k) + 2a1 (k', k)~(k''- k2). 

Substituting (26) in (25) and comparing with the c~~~) 
responding quantum formulas (with allowance for (A.4)) 
we find that a (k', k) is expressed in terms of the am- ' 
plitude for scattering by surface centers 

a(k)= :crm[/(1)-/e~)], 
at(k',k)= ;. 1 t( ~,)- rl 2 

_ 

(27) 

This form of the scattering function satisfies the condi­
tions (3) and (4). 

It is easy to understand the physical meaning of the 
results. In one unit of time, pzn(k) particles are emit­
ted from a unit surface area in the direction of k; from 
among these particles, 

are scattered and 

p.n(1i)-cn(1i) ~kif(~)- fl 2dQ' 
are reflected specularly. Comparing with (26) and using 
the optical theorem, we get formulas (27). 

3. DISCUSSION 

The results of this paper are valid in the "gas" ap­
proximation (6). We note that in this approximation it is 

easy to take into account also the potential centers that 
are distributed in the volume of the film. Indeed, the 
~mplitude for scattering in the film, given in Appendix 1, 
1s applicable also to the description of scattering by 
centers inside the film. The final result must only be 
averaged over the transverse coordinate of the scatter­
ing centers. The entire diagram technique remains the 
same as before, ~ consists of two independent parts 
~S and ~V, which are connected respectively with the 
surface and volume scattering, and the reciprocal re­
laxation times are additive. 

It is interesting to trace the transition to a non­
quantum film in the formulas for the relaxation time 
and the conductivity. As expected, when averaging over 
the transverse coordinates of the impurities the non­
diagonal matrix elements in ~V vanish, and' condition 
(6) assumes the usual form ~y(P) << E. 

Thus, the approach of the present paper makes it 
possible in principle to determine various kinetic coef­
ficients in the film. However, for classical films it is 
more convenient to solve the kinetic equation with the 
corresponding boundary conditions. The obtained bound­
ary condition (27) and (2) is linear in the distribution 
function, in accordance with the Greenwood-Peierls 
formula. The linearity of the boundary condition corre­
sponds to linearity of the collision term in the kinetic 
equation in the case of elastic scattering. Green's non­
linear boundary condition[al is apparently the conse­
quence of an incorrect allowance for the Pauli princi­
ple. 

The boundary condition (2) and (27) simplifies great­
ly if the amplitude for scattering by a surface center is 
isotropic in the plane of the film (the case of a center 
whose dimension is small compared with the wave­
length), and the nonequilibrium part of the distribution 
function of the electrons incident on the surface of the 
film is proportional to the electron-momentum compo­
nent parallel to the surface. This is satisfied for ex-

- ' ample, m the problem of the conductivity of the film 
with impurities. We obtain a boundary condition of the 
type given by Fuchs, [ 4 l 

n(r, k) = (1-a(k))n(r, k), kn > 0. 

As seen from (14), (16), (18), (19), and (27), the diffuse­
ness coefficient a(k) depends strongly on Pz vanishing 
like a(k) ~ Pz· ' 

This result has apparently a general character. In­
deed, the model of [ 91 can be employed for values of Pz 
small compared with the reciprocal height of the sur­
face roughness. The relaxation time obtained in [ 9 1 de­
termines the diffuseness coefficient in accordance with 
the formula 

a(k) = T /'1:, (28) 

where T = 2a/pz is the period of the transverse motion 
of the particle. Using the results of [ 91 , we see that a 
~ Pz at small Pz· Physically this is attributed to the 
well known phenomenon that a rough surface is specular 
with respect to waves incident on it at a small angle. 

If we investigate the conductivity of a film with a 
transverse bending of the bands, 

T = ~ dzfY2E- p 2 - 2<p(z) 

(cp(z) is the potential energy of the electron in the trans-
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verse electric field), ii as a function of the momentum 
of the particle near the wall remains the same as be­
fore if the characteristic of the center is smaller than 
the region of the transverse motion. Then (28) yields 
the dependence of the relaxation time on the magnitude 
of the bending of the bands. 

If the scattering from the surface is isotropic in the 
plane of the film, then the mobility J.lf in a classical 
film is expressed in terms of the relaxation time in the 
usual manner 

(29) 

Here Ts(k) is the previously-obtained relaxation time 
in scattering by surface centers (see formulas (14), 
(16), (18), and (19)). At small Pz, the integral in (29) 
diverges like p~1 • The divergence is connected with 
neglect of quantization and with volume scattering 
mechanisms. As shown above, when volume scattering 
is taken into account, the relaxation time is determined 
by the formula 

(TV is the volume relaxation time). If TV << T oS, 
where T oS is the minimum value of Ts as a function of 
Pz, then the conductivity of the sample is determined 
only by the value of scattering. 

Let us consider the case TV >> T aS· If TV >> T oSJTa 
x rr -a min (1/b2 , k2), where b = r, q;\ then the lower 
limit of integration in (29) is determined by quantiza­
tion of the transverse motion, and J.lfiJ.lv ~ T 0s/Tv. 
If TV << T oS aarr-a min [1/b2 , k2 ], then the integration 
limit is determined by the volume scattering and 
J.lfiJ.LV ~ VT 0s/Tv. As seen from these formulas, the 
well known result 

~~ Tos In~, 
flv Tv Tos 

which has been derived for the case of fully diffuse 
scattering, l 11 does not hold in this approximation in 
any region of the parameters. 

The authors take this pleasant opportunity to thank 
A. V. Chaplik, V. L. Pokrovskii, and M. Ya. Azbel' for 
a useful discussion of this work. 

APPENDIX 1 

SCATTERING BY A SURFACE CENTER IN A FILM 

In analogy with the amplitude of scattering in an in­
finite volume, we introduce the amplitude of scattering 
in a film. At infinity, the wave function has the asymp­
totic form 

,,, () ' io +' /m v ( ')exp(ip'p) (A.1) 
't'n' p ::-:-:: Unn' e p v 2 r nn' p, p a v PIP ' 

where 

V2 1 nn' 
'l>n•(p)= ~.) ')l(p,z) sin-zdz. 

a a 
(A.2) 

The quantity Fnn'(P, p') plays the role of the scatter­
ing amplitude. It is similar to the scattering amplitude 
in the inelastic process, l 111 if n' denotes the decay 

channel and n the initial channel. Therefore relations 
analogous to the optical theorem, etc., should be satis­
fied for F. It is easy to derive the equation satisfied by 
Fnn'(P, p'): 

Fnn'(p,p')=~Unn'(p-p')- .2; ~ dZpl Unn,(P-Pi')En,n•(P~oP') 
n (2n) 2 [En(p)-En,(Pi)+ i&l 

n, (A.3) 
The problem of finding the amplitude of scattering in 

a film entails certain difficulties. However, in the case 
of interest to us, that of a film which is thick compared 
with the characteristic dimension of the center (the 
screening radius, the transverse dimension of the 
roughnesses), the amplitude of scattering in a film can 
be expressed in terms of the volume-scattering ampli­
tude: 

(kk') (kk~\ 
F nn•(p, p') = f kk' - f kk' ' 

k = (p, p,), k = (p, -p,), p, = nn I a. (A.4) 

APPENDIX 2 

BOUNDARY CONDITION FOR THE CLASSICAL 
DISTRIBUTION FUNCTION 

As is well known, in the absence of collisions the 
classical distribution function n(r, q) can be expressed 
in terms of the single-particle density matrix p(r1, ra): 

n(r,q)= ~ Exp (2iq~)p(r+s,r-s)ds. (A.5) 

Let us examine the density matrix of the pure state 
corresponding to particles incident on the surface of a 
semi-infinite sample with momentum k. In this case 

(A.6) 

In scattering on widely -spaced (in a sense of condition 
(6)) surface centers, the wave function of such a state 
is given at large distances from the surface by 

')> (r) =sin p z e'P' + _.!, "'exp (ik I r- Pn I) elPnP [t (k, (r -- Pn)) -7] 
k z 2z L! I r - Pn I k I r - Pn I ' 

n (A. 7) 

where r = (p, z), and Pn = (pn, O) is the coordinate of 
the surface center. 

The boundary condition for the distribution function 
is imposed in that region near the surface, where z is 
much larger than the electron wavelength k-\ but is at 
the same time small compared with the characteristic 
dimension of variation of the distribution function (the 
mean free path in the volume or the thickness of the 
film). Using this, we obtain the distribution function 
near the surface: 

n(r, q) = &(1J- p) { &(q,- p,) + o(q, + p,) 
(A.8) 

><[1-c~:Im(/(1)-t(kk~))J +2;. b(q2 -k2 )1 t(~~)-fl 2 , 
q = (tJ, q,). 

The term proportional to o(qz- Pz) describes the dis­
tribution function of the incident particles, and the term 
with o (qz + pz) describes the distribution function of the 
particles that are specularly reflected. The third term 
in (A.8) gives the contribution of the scattered particles. 
Separating the contributions of the incoming and outgo­
ing particles, we get (27). 
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