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Using hydrodynamic equations for the electrons and ions, we have obtained a van der Pol equation that 
describes the stationary laminar ion acoustic wave of finite amplitude that propagates across a weak 
magnetic field. If the ion viscosity is high, the amplitude of this wave is proportional to the square 
root of the linear growth rate. If the ion viscosity is small there exists a solution in the form of a 
sawtooth wave which describes the experimentally observed sharpening in the profile of the ion acous­
tic wave. It is also shown that this kind of wave can be established in a plasma with electrodes. 

1. IN an earlier work of the present author[ 11 (cf. also 
121 ) consideration has been given to the nonlinear sta­
tionary drift wave that propagates in an unstable inho­
mogeneous plasma in a strong magnetic field. In the 
present work we study the case of a weak magnetic field 
in which excitation of ion acoustic waves is possible in 
the linear approximation; these waves propagate essen­
tially across the magnetic fi.eld (cf. for example [31 ). 
This kind of wave has recently been observed experi­
mentally in a fully ionized plasma in a Q-machine.[ 41 

The principal results obtained in the hydrodynamic 
approximation are the following: 

A. A nonlinear differential equation similar to the 
van der Pol equation is obtained; this equation describes 
stationary ion acoustic waves. 

B. It is shown that if the ion viscosity is high, in 
which case higher harmonics of a given mode are 
damped in the linear approximation, the plasma sup­
ports an essentially harmonic ion acoustic wave that 
propagates essentially across the magnetic field. The 
amplitude of this wave is proportional to the square 
root of the linear growth rate for a given mode while 
the frequency is reduced by an amount proportional to 
the growth rate. 

C. It is found that for the case of small ion viscosity 
the equation indicated in A allows a solution in the 
form of a stationary sawtooth wave which, in our opin­
ion, describes the sharpening in the profile of the ion 
acoustic wave that is observed in Q-machine experi­
ments.[41 

D. Consideration has also been given to the excita­
tion effects associated with processes at the ends of the 
Q-machine in order to see the effect of these processes 
on the stationary finite-amplitude oscillations. It is 
found that such oscillations are possible only if there 
are large potential jumps in the double electrode 
sheath. 

2. We first obtain a differential equation that re­
lates the ion density and the electric potential rp for 
periodic perturbations of large amplitude in an inhomo­
geneous plasma in a weak magnetic field. 

For reasons of simplicity the following assumptions 
are made: a) the electric field E is irrotational, that 
is, E = -vrp; b) the magnetic field H is uniform and 
constant and perturbations of the magnetic field can be 
neglected; c) the ion motion along H can be neglected; 
d) ion pressure effects are neglected (the ion tempera-
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ture Ti is much lower than the electron temperature 
Te); e) the frequencies in question w lie appreciably 
above the ion-cyclotron frequency ni (the ions are not 
magnetized); f) a plane geometry is assumed; g) the 
variation of the density n in the x-direction (perpendic­
ular to H) is exponential: 

1 an 
x == - -c- = const. 

n i!x 
(1) 

Since we are interested in stationary waves it is as­
sumed that the electric potential, density, and other 
physical quantities are periodic functions with period 
2JT of the argument ~ = kyY- wt, where ky is the mean 

wave number. Thus, for example, rp = rp(~, kzz) where 
kz is the mean wave number along the magnetic field, 
which is independent of the variable x. Separating the 
dependence of the perturbation on the variable z (along 
the magnetic field) makes it possible to treat nonlinear 
waves which can be traveling waves or standing waves 
along H. 

The equations that describe a fluid made up of singly 
charged ions which perform one-dimensional motion 
along the y -axis assume the following form: 

av av aq;, a"v 
mc-;-+mv- = -e-+mll-at ay ay ay2 , 

(2) 

~"-'-'- ~n;u)_- 0 (3) 
at ' ay - ' 

where ni is the ion density; v = Viy is the velocity of 
the ion fluid; m is the ion mass; J.L is the viscosity of 
the unmagnetized ion fluid: 

Jl = 0,96T;<;; I m, 

Tii is the mean time for ion-ion collisions and the 
Boltzmann constant has been set equal to unity. 

Making use of the periodicity assumption, we have 
from Eqs. (2) and (3): 

(4) 

-m(w -~1111_) u-mook /)V = -ek en (5) 
2 r Y iJG ""' 

-wn; + kyn;v = -wn0, (6) 

where n0 is the unperturbed density. Substituting v 
from Eq. (6) in Eq. (5) we have 

e<f = ~~[ 1 _ (~)2] + JlWno dn; , (7) 
m 2 k 2 n; n; 2 d£ 

or, introducing the notation Vi= ln (n/n0), 
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1 oo 2 oo 11oo dvi 
11'=--(1-e-""•)+-e-•,-· 

2 Cllo2 Wo2 d£' 
11' == eq>/ T,, Wo == ky(T,/ m) '". Wu == J.tkj. {8) 

3. In similar fashion it is possible to obtain an equa­
tion that relates the density of the electron fluid ne 
with the potential. In addition to making the assump­
tions listed above we also assume that a) the frequen­
cies in question lie well below the electron cyclotron 
frequency (fully magnetized electrons), the electron 
fluid is described by an isothermal equation of 
state, c) friction can be neglected for the electron flow 
perpendicular to H, as can the effects of electron iner­
tia and the electron Larmor radius. 

With these assumptions the relation being sought be­
tween the electron density and the potential can be ob­
tained without difficulty (cf. [ 21 ): 

ro dve w. d11J O ---+--+,e""""•(11Jzz-Vezz)= , 
w, d£ w,d!; {9) 

where ve = ln (ne/no); w* = KTJty/ilim is the mean 

drift frequency; Ui = eH/mc; Ws = Dek~; De= Te/ 
meVei is the electron diffusion coefficient; Vei is the 
mean frequency of electron-ion collisions and c is the 
velocity of light. The subscript z in (9) indicates dif­
ferentiation with respect to the argument kzz. 

4. In what follows it will be assumed that the motion 
in question is quasineutral, that is to say, 

Ve ='Vi== V. (10) 

It is evident that when J.L ...... 0 and Vei- 0 Eqs. (8)­
{10) do not have solutions for an arbitrarily large am­
plitude. This result is reasonable because in the ab­
sence of dissipation processes for quasineutral motion 
we would expect to obtain a nonstationary solution char­
acteristic of a simple Riemann wave. 

Substituting Eq. {8) in Eq. (9), eliminating the poten­
tial 1/J, and making use of Eq. {10) we obtain a wave 
equation for a single variable, the density v. Thus 

w , w. [ 1 w2 w11w ']' {11) --v +- --(1-e-"")+-e-•v 
Ws Ws 2 Wo2 Wo2 

+ e-"' [~~ (1- e-"") + 001100 e-"' v'- v] = 0, 
2 (I)~ (!)~ -

where the primes denote differentiation with respect 
to~. 

We shall first consider solutions that correspond to 
infinitesimally small amplitudes. It will be assumed 
that the plasma is not bounded along H so that v 
a: exp (i(kyy + kzZ- wt)]. In this case v' = Vz = iv and 
linearizing Eq. {11), we obtain the dispersion equation 

it is not difficult to obtain a solution of Eq. (12) in the 
form 

Rew=wo, Imw =+( 00 ·:-, 000 wo-ool1)· (14) 

If we now take 

{15) 

where rH = (T e/m) 112 /Ui is the ion-Larmor radius 
computed with the electron temperature, we have 

1 ( w.wo ) Rew = w0, Imw =-;;- --- Wp • 
- w, 

(16) 

It will be evident from Eq. (16) that modes with large 
ky cannot be stabilized in the linear approximation by 
ion-ion collisions. The ion viscosity only leads to a re­
duction of the growth rate for an unstable mode with a 
given ky· However, it does follow from Eq. (16) that 
one might expect to stabilize an unstable mode by vir­
tue of wave interactions because it is evident from the 
expression for Im w that starting at some given har­
monic all higher harmonics will be damped. 

By virtue of the approximations in {13) and {15), 
Eq. {11) can be written in the form 

(17) 

A further simplification of Eq. (17) is obtained under 
the assumption that 

v(kvy-wt,k,z) =v(kyy+k.z-wt), (18) 

which means that the nonlinear wave is assumed to be 
a traveling wave in the direction of the magnetic field. 
This assumption means that the number of independent 
variables in Eq. (17) is reduced to one so that a single 
integration is possible. We will assume that the ampli­
tude is not too large so that we can expand the nonlinear 
term in powers of v and retain terms up to the cubic 
terms. For reasons of simplicity we neglect the quad­
ratic term; this term does not have an effect on the 
qualitative results of the analysis since the contribution 
of this term reduces only to the introduction of an 
asymmetry between the peaks and valley of the wave 
profile. 

As a result of these simplifications, we find that 
Eq. (17) is replaced by an expression of the form 

werol1 ~-~(~-t)( 1- 2oozvz ) dv + v = 0, (19) 
w.w d£2 w. w2 wo2 -w2 d~ 

where now ~ = kyY + kzz- wt. Equation {19) exhibits 

the structure of the van der Pol equation which, as is 
well known, has nontrivial periodic solutions for appro­
priate values of the parameters. We recall that the 
density v must be a periodic function of the argument ~ 
with period 21T or with frequency w = 1. Introducing the 
new independent variable t 

(20) 

we reduce Eq. (19) to the standard form 

d2-v dv 
d~' - e ( 1 - 1..2v2) d~ + v = 0, (21) 

where 
e == (w,/ Wpw.oo3)'1•(wo2 - w2), (22) 

1..2 == 2w2 / (wo2 - w2 ) > 0. {23) 

It is well known [ 51 that values of the parameter 
E << 1 correspond to a solution of Eq. (21) in the form 
of harmonic oscillations with respect to t with frequen­
cy wt = 1: v = v 0 cost t. On the other hand, values of 
the parameter E >> 1 correspond to a solution in the 
form of a sharply nonsinusoidal sawtooth relaxation os­
cillation with period T t = 1.614 E. In this connection we 
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now consider the way in which the frequency w (or the 
phase velocity v cp = w/k..) varies for various values of 
the plasma parameters. In particular, we wish to ex­
amine solutions corresponding to the sinusoidal solu­
tion (E << 1) and the sawtooth solution (E >> 1) for the 
traveling ion acoustic wave. 

5. It is evident that a harmonic profile of the sta­
tionary wave will be obtained when 

(24) 

In this case, as we have already noted, we find that 
W[; = 1. However, in terms of the variable~ the solu­
tion, by assumption, must be periodic with frequency 
w~ = 1; it follows that the coefficient in the conversion 
from the variable ~ to the variable t [in accordance 
with (20)] must be equal to unity: 

Thus (25) 

Taking account of Eqs. (22) and (25) we can write (24) 
in the form 

( OJ•OJo ) 1 1 ( OJ"m.s )''• ---OJ .. -<----
OJ, OJo 2 wom,S ' 

(26) 

and (23) reduces to the requirement 

OJ,wol w,- OJ"> 0. (27) 

Thus, if (26) and (27) are satisfied we obtain a peri­
odic solution of Eq. (21): 

[ OJ, ( fil•Wo )]''• v:::::: 2 -- ---m" cos(kty+k,z-OJt), 
Uh.COo OOs (28) 

m,( W•OJo ) ro:=::::roo-- ---rop.. 
ro • ro, 

The meaning of the conditions in (26) and (27) can be 
understood if we recall [ cf. the solution of the disper­
sion equation(16)] that the quantity [(~w0)/wsl- wll /2 
represents the imaginary part of the frequency of the 
ion acoustic wave of infinitesimally small amplitude. 
Thus, the condition in {27) means that the wave must be 
a growing wave in the linear approximation. The condi­
tion in (26) means that the higher harmonics of a given 
unstable mode cannot be excited in the linear approxi­
mation (these are damped) so that as a result of the 
linear excitation of the given mode and the nonlinear 
damping in the higher harmonics there is established 
an essentially sinusoidal oscillation of the inhomogene­
ous plasma with an amplitude proportional to the square 
root of the linear growth rate. In this case the oscilla­
tion frequency is shifted (reduced) by an amount propor­
tional to the growth rate. 

6. We now wish to examine the conditions under 
which one might expect highly nonlinear waves, in which 
case the profile of the traveling wave will be approxi­
mately a sawtooth. As we have already noted this kind 
of relaxation oscillation with respect to the variable t 
arises when 

e~1. 

The period of these oscillations is[ 5 J 

"tt = 1,614e. 

(29) 

(30) 

Assuming that 

(31) 

where T~ is the oscillation period with respect to ~ and 

(32) 

making use of Eqs. (30), {31), (32), and (22) we find 

Thus 

2n=1.614- --1 . (I)•( (llrr ) 

oo • ro2 

OJ=OJo(1-~ OJ•) 
1.614 (1), • 

2n ( moOJ• )''• 
B= 1.614 ~ • 

(33) 

(34) 

{35) 

The condition for the existence of a sawtooth profile 
{29) then becomes 

( 2n ) 2 (ll,Wo 

{!)" < 1,614 ·-;:-
(36) 

and is physically clear since it means that in the linear 
approximation we not only have the excitation of a given 
mode, but also a large number of higher harmonics. 

7. We now wish to show that a stationary ion acous­
tic wave of finite amplitude can, under certain condi­
tions, also exist in an inhomogeneous plasma with elec­
trodes that are oriented perpendicularly to the magnetic 
field and separated by a distance L. These waves have 
been considered in the linear approximation in an ear­
lier work by the present author.r 6 J Here we consider 
the following simple model of the plasma which allows 
us to obtain some of the results in simple analytic form. 
As before we assume that the ions are described by 
Eqs. {2) and (3) so that the appropriate relation be­
tween the ion density and the potential is given by 
Eq. (8). In contrast with [ 6 J now we assume that the 
electron fluid is ideal and governed by the equations 

TeVn.= en.Vcp-~[v.B], 
c 

one 1 at + div n.v. = 0. 

{37) 

(38) 

Expressing the transverse flux by means of Eq. (37) 
and substituting it in the equation of continuity (38) we 
find that Eqs. (37) and (38) are replaced by the system 

8-.p I oz = Ove I oz, {39) 
81.,1 oz = noe••(OJv'- CJl,l)l'), (40) 

where lez represents the z component of the electron 
flux. 

(41) 

and, as before, the primes denote differentiation with 
respect to ~. The solutions of Eqs. (39) and (40) must 
satisfy the electrode boundary conditions at the left 
(z = -L/2) and at the right (z = L/2); when CfJp > 0 (cpp 
is the plasma potential with respect to the electrode) 
these conditions can be written in the form 

Ioe•{1- exp(- [IJl(-L 12 )- v.(-L 12)]} =I.,( -LI2), (42) 
Ioe•{1- exp(- [1jJ(L 12) - v.(L /2)]} = -I.,(L I 2), 

where 1:e is the fixed electron emission current from 
the electrode into the plasma. 
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It will be evident that perturbations of the density lie 
and potential 1/J that are uniform along z and the anti­
symmetric current Iez = n0 (exp 11 eHw11'- w*l/J ')z repre­
sent solutions of Eqs. (39) and (40). Substituting this 
solution in one of the boundary conditions (42) (in this 
case the second condition is satisfied automatically) we 
obtain the required relation between the electron den­
sity 11 e and the potential 1/J: 

-~ve' +~'- e-v.[1- e-N-v,>]=O, (43) 
Ols ffis 

where now 
<ils ""' 21 r;e3 / noL. (44) 

Substituting Eq. (8) in Eq. (43) and taking account of 
quasineutrality (10) we obtain a wave equation for the 
density: 

ro , (i)• [ 1 w2 ro"ro ']' --v +- -~(1-e-2Y)+-e-Yv (45) 
ro, (II, 2 roo2 (l)o2 

- e-v{1- exp[ _ _!_~(1- e-2Y)- (11"(11 e-vv' + v]} = 0. 
2 <llo2 roo2 

Linearizing Eq. (45) for small amplitude waves in the 
y-direction we obtain dispersion relation exactly like 
(12); now, however, the quantity Ws is determined from 
Eq. (44). The solution of Eq. (12) in the form of Eq. (16) 
shows that the "end effect" instability being considered 
cannot be stabilized by ion-ion collisions in either the 
linear or nonlinear approximations; if any mode is un­
stable then all of its harmonics are also unstable. 

When 
(46) 

there is a solution of Eq. (12) in the form 

Re ro = m0 (l)o, Imro = ro,( 1-~. 02
) -(II... (47) 

(I)• (0•2 

When w* }::, w0 ion acoustic waves that are unstable for 
large values of ky in the approximation of (46) can be 
stabilized by the nonmagnetic ion viscosity. However, a 
mode with Im w > 0 in the linear approximation can be 
stabilized by wave interactions since the higher harmon­
ics are damped. 

Using the approximation of (46) and keeping in (45) 
only the cubic term in 11, which gives rise to the higher 
harmonics, we find an equation of the form 

m•ro"m ( m m•ro 2 ) (. ro 2 ) 2 (112 
--2 v"+ --+--2 v'+ 1--2 v---2 v3 =0.(48) 
w sWo . ro s <OsCOo (t)o 3 ~roo 

It is expected that if the amplitude is not too large the 
neglected terms will not change the qualitative features 
of the behavior in a plasma with electrodes. 

The equation we have obtained (48) is in the form of 
the equation for an anharmonic oscillator with friction 
and with a "soft" restoring force. It will exhibit peri­
odic solutions so long as the damping coefficient van­
ishes. This requirement allows us to obtain the oscilla­
tion frequency 

ro = rorr I ro., (49) 

which coincides with Re w of Eq. (47). Making use of 
(49) we can write Eq. (48) in the simple form 

v" + a!-v - plvS = 0, (50) 

where 

(51) 

Equation (50) has a well-known periodic solution with 
respect to the variable~ (cf. for example [71 ): 

If/a 

S de 
Tt = 412 [2a2 - p2vo2 - p2Vo2 sin2 6]'/o ' 

0 

(52) 

where 11 0 is the amplitude. Since, by definition, the 
period in ~ is equal to 27T the relation in (52) deter­
mines the amplitude 11 0 in terms of the system param­
eters a 2 and p2• In particular, at the oscillation thresh­
old for the fundamental mode, in which case in Eq. (47) 

Im <~~Re ro, (53) 

we can find the following relation without difficulty 
from Eqs. (52) and (53) (if the amplitude is assumed to 
be small): 

(54) 

Thus, for sufficiently large positive jumps in the po­
tential in the double sheath at the electrodes, in which 
case (53) is satisfied, the plasma can support essential­
ly sinusoidal ion acoustic waves with amplitude propor­
tional to the square root of the linear growth rate (47). 

As the ion viscosity is reduced the wave profile be­
comes richer in higher harmonics, which are also ex­
cited in the linear approximation and the wave acquires 
a sawtooth shape. The maximum amplitude of these re­
laxation oscillations is found by setting the elastic force 
in Eq. (50) equal to zero: 

(55) 

which is also found to be proportional to the square root 
of the linear growth rate. 

The nonlinear analysis presented here makes it pos­
sible to understand a number of experimental facts 
which can evidently not be explained within the frame­
work of the linear theory. Here, we refer to experi­
ments carried out in alkali-metal plasmas[ 41 which 
show steepening in the profile of an ion acoustic wave 
of large amplitude that travels in the azimuthal direc­
tion. A wave of this type corresponds to the sawtooth 
solutions obtained here in the limiting case of a non­
magnetic ion viscosity. 

In conclusion the author wishes to thank B. B. Ka­
domtsev for his continued interest. 
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