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The frequency correlation properties of the radiation from an atom in a strong field in resonance with 
neighboring transitions are considered. It is shown that the difference in frequency correlation in two­
photon and stepwise processes decreases with increase of the external field. The spectral composi­
tions of the Doppler-broadened resonance scattering and fluorescence are analyzed. It is shown that in 
these cases the Doppler line width is anisotropic. 

1. INTRODUCTION 

THERMAL motion of radiating atoms leads, owing to 
the Doppler effect, to an isotropic broadening of the 
luminescence line. At the same time, the line width of 
Rayleigh scattering depends on the directionl 1J 

<1w=w if -2sin~, if=Y2kT/m, 
c 2 

and vanishes in the case of forward scattering (8 = 0). 
This difference in the manifestation of the Doppler 
effect is due· entirely to the difference between the 
frequency-correlation properties of the indicated proc­
essesl21. On the other hand, the frequency-correlation 
properties are strongly pronounced also in other two­
photon processes (two-quantum absorption and lumines­
cence, or Raman scattering). It is therefore natural to 
expect the existence of anisotropy of the Doppler line 
width in this case, too. This question is discussed in 
Sec. 3. 

We note now that an analysis of radiative processes 
within the framework of second order perturbation­
theory leads to a delimitation of two-photon processes 
proper from stepwise (or cascade) processes, for ex­
ample two-photon luminescence and cascade emission 
of two photons with a real intermediate state. Such a 
delimitation is based essentially on the frequency­
correlation properties. On the other hand, if the energy 
of interaction of the atom with the field is larger than 
the level width, then the frequency-correlation proper­
ties of the radiative processes experience a strong 
metamorphosis (Sec. 2). In particular, two-photon and 
stepwise processes turn out to be physically indis­
tinguishable. As a consequence, in strong fields the 
manifestation of the Doppler broadening also changes 
strongly. The resultant phenomena are traced for the 
resonant-scattering doublet and resonant-fluorescence 
triplet (Sees. 4 and 5). 

2. FREQUENCY-CORRELATION PROPERTIES OF 
RADIATIVE PROCESSES 

We shall consider the radiation of an atom situated 
in an external field with two monochromatic components 
of frequencies w and w!J. and amplitudes E and EJJ.. We 
assume that each field component interacts only with 
one transition (resonance approximation). In the scheme 
corresponding to Raman scattering (Fig. 1), a photon 
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FIG. I. Tenn scheme. 

ti w is absorbed and a photon ti w!J. is emitted. The 
probability amplitudes ai of the states i = m, n, l satisfy 
the system of equations 

tim + VmlLm = iGe-H"an + tG~e-i<>•ta1, 
an+ '\'nUn= iG'eiD1am, dz + y1a1 = iG~'ei"•1a,., (2.1) 

Q = w- Wmn, Q"= w"-Wmz, G= dmnE/21!, c .. = dmzE~/21!, 

where dij are the matrix elements of the dipole mo­
ment. 

We shall henceforth regard Ge-mt as a strong per­
turbation and GJJ. exp(-m!J. t) as a weak perturbation. We 
are interested in the probability w!J. of emission of the 
photon ti w ll' The solution of the system (2 .1) can be ob­
tained by successive approximations in the parameter 
GJJ. [3- 51 : we consider the system of equations 

in the zeroth approximation and introduce its exact 
solution into the right-hand side of the equation for az(t) 
in (2.1). Integration of this equation yields the first ap­
proximation GJJ. for az(t), with the aid of which we calcu-
late ~ 

w"=2yz~ laz(t)j 2 dt. 
0 

The solution of the system (2.2) can be represented in 
the form 

(2.3) 
r+tQ ·v· (Q-iy)" Ut,2=-2-±• G•+ -2- ' r=vm+Yn, y=vn-Ym, 

(2.4) 

where A1, 2 are the integration constants. In the case of 
interest to us, an(O) = 1, we have 
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X (az + az•)-1 -(at + U2•)-'} 
Yz+a/ +iQ~ · 

(2.6) 

The frequency-correlation properties consist in the 
fact that the frequencies njJ. at which there is maximum 
probability of emitting the photon ti. w IJ. (U IJ. 1 = Im a 1, 

UIJ. 2 = Im a2) turn out to depend on n, i.e., on the fre­
quency of the absorbed photon. In the case of small G, 
we have in place of (2.4) and (2.6) 

a,= Ym, az = Yn + iQ, G~ J.Q- iyJ, 
JGG~J 2 

(2. 7) 

The second term in the expression for wiJ. reaches a 
maximum at a frequency wiJ. = w- wzn (Raman scatter­
ing). It can therefore be said that in the second stage of 
the two-process the atom "remembers" which quantum 
was absorbed during the first stage. The Raman­
scattering line width 'Yl + Yn also "remembers" from 
which level the atom arrived at the first stage. These 
indeed are the properties of frequency correlation. To 
the contrary, the first term in (2.7) gives resonance at 
niL = wiJ. - wmz = 0, i.e., at the frequency of the transi­
tion between the intermediate and final states of the 
atom. The width of the corresponding line is also de­
termined by the levels m and z. This term describes 
the cascade or stepwise transition n - m - l, and there 
is no correlation in it at all between the absorption and 
emission acts. 

The correlation properties of the emission proces­
ses are closely connected with the type of evolution of 
the amplitude am (t) of the intermediate state. Let JU I 
» Ym, 'Yn; then the rapidly oscillating term 
exp[-(in + Ynh] (virtual state) carries information con­
cerning the initial state (yn) and the absorbed quantum 
(U), and causes the appearance of a scattering line, i.e., 
the second term in (2. 7) (the terms 2(ym + Yn ± it1 can 
be discarded). The time dependence of the second term, 
exp(-ymt), contains no attributes of the absorption act 
and does not differ from the case when the state m is 
the initial state (i.e., am(O) = 1). We can therefore say 
with respect to this term and with respect to the corre­
sponding unshifted line at the transition m - l that the 
intermediate state is a real state of the atom, having a 
finite lifetime (2rmr1• 

A separate examination of the transitions through the 
virtual and real states signifies that only squares of the 
moduli of the first and second terms remain in the ex­
pression for laz(t) 12 • The crossing term lead to the 
appearance of 2(ym + 'Yn ± mr1 in wjJ., and it is legiti­
mate to neglect them if Jill » Ym• 'Yn· In the case when 
lUI - Ym, 'Yn• the crossing terms, which reflect the 
interference between the real and virtual states, are 
significant and cannot be discarded. However, even here 
wiJ. can be represented in the form of a sum of terms 
with and without "memory," and allowance for the 
interference only changes the coefficient preceding these 
terms. 

The only physical basis for contrasting the stepwise 
and two-photon processes is the difference between 

their frequency-correlation properties, wnich are 
uniquely connected with the singularities of the evolu­
tions of the individual terms of the amplitude am(t) of 
the intermediate state. On the other hand, formulas 
(2. 7) are valid within the framework of second-order 
perturbation theory, and are no longer valid at suffi­
ciently large G2• In the general case, am contains two 
exponential terms (formula (2.5)), which are formally 
analogous to the "virtual" and "real" states. However, 
both a 1 and a 2 depend on the parameters of the field 
(G2, n) and of the two combining levels (ym , Yn). With 
respect to wiJ., this means that in both resonances the 
atom "remembers" which quantum was observed dur­
ing the first stage of the process. In the limiting case 
of a very strong field we have 

a1,2 e!: ['Ym + 'Yn + iQ] /2 ± iG, G > JQ- iyJ, (2.8) 

i.e., the differences in the temporal properties of the 
two exponentials in (2. 5) have disappeared completely. 
At the same time, the differences in the frequency­
correlation properties of the corresponding lines have 
also disappeared, and there are no grounds for dis­
tinguishing between the two. The concepts of stepwise 
and two-photon transitions or of the virtual and real 
states are likewise physically indistinguishable. It is 
clear from the foregoing that these concepts are 
inseparably linked with perturbation theory and lose 
physical meaning outside the region of its applicability. 

The external field levels out the differences between 
a 1 and a 2 both with respect to the yield of the resonance 
(n) and with respect to the difference in the damping of 
the states m, n. Let us consider in greater detail the 
case Ym = Yn = r, when the leveling function of the field 
simplifies: 

a1,2 = r + ia,.z", ad'= 1/2[Q ± l'Q2 + 4G2]. (2.9) 

Figure 2 shows plots of a f,2 as functions of n. The 
asymptotic approach of the plots to the abscissa axis 
and to the dashed line a" = n corresponds respectively 
to real and virtual states. As n changes from positive 
to negative values, we have for a r' for example, a 
smooth transition from the properties of the virtual 
state to the properties of the real state, and for a: the 
inverse sequence. In the region Jill < G, the states a 1 

and a 2 differ little. 
As the measure of the "memory" of the absorbed 

quantum we can choose the quantity 

da ," 1 [ Q 1 
M,,z == d~- =z 1 ±l'~2'+4G2 ' 

(2.10) 

which varies from 0 to 1. The value M = 0 means com­
plete absence of memory (stepwise transition), while 

FIG. 2. Plot of a" 1,2 against U. 
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M = 1 corresponds to total correlation between the fre­
quencies of the absorbed and emitted photons (two-pho­
ton transition). Since a 1 + a 2 = r + iO, it follows that 
M1 + Ma = 1; this fact can be interpreted as follows: 
the intermediate state as a whole, without subdivision 
into two states, retains the entire information on the ab­
sorbed photon. In the case 101 « G, we have M1, 2 R~ 1/2, 
i.e., the "memory" is equally divided between the two 
terms in am (t). 

If 0! r - 0! ~ is sufficiently small, the interference of 
the states a 1 and a 2 is quite significant. A separate 
analysis of the transitions through these intermediate 
states is meaningful if the distances between the reson­
ances exceed their widths by wiJ.: 

Ia•"- a2''1 ~a{+ a2' + 2y1. 

Under these conditions, the emission spectrum for 
the transition m- l has the form of a well resolved 
doublet, the appearance of which can be interpreted as 
the splitting of the intermediate-state level into two 
sublevelsl3- 9 l. In accordance with the foregoing, it is 
meaningless to attribute the components of this doublet 
to stepwise or two-photon transitions. One can only 
speak of the resonance-scattering doublet as a unit. We 
shall henceforth use this term. 

For concreteness, we have referred throughout to 
processes of the type of Raman scattering. All the 
physical conclusions pertain also to other processes in 
which two-photons take part, such as two-quantum 
luminescence, two-quantum absorption, and Raman 
scattering via a lower intermediate level. It is only 
necessary to reverse the signs of n and niJ. in all the 
formulas, depending on whether the corresponding quan­
tum is emitted or absorbed. 

3. DOPPLER BROADENING OF RAMAN SCATTERING 
LINE 

Allowance for the motion of the atom in the case of 
traveling waves reduces, as is well known, to the substi­
tutions n- n -k·v and nj.J.- nj.J.- kj.J. . v, where k 
and kiJ. are the wave vectors of the waves. This means 
that the amplitudes A1 and A2 also depend on the velocity 
of the atom. Within the framework of the second ap­
proximation of perturbation theory, this pertains only to 
the virtual sublevel. This case apparently has not been 
discussed in the literature, and will be considered in 
the present section. Averaging over the velocities will 
be carried with a Maxwellian distribution: 

(3.1) 

Let the deviation from resonance be larger not only 
than the natural width but also of the Doppler width 
(IOI » kV), Under this condition we can neglect the 
interference between the real and virtual states, and 
we can easily obtain from (2. 7) 

(w~> = I GG: 1• Re{ "'fn_ eP•H - <I> (P•) J + -vn. eP•lf +Ill (P2) 1} , 
Q 'l'mk"v 'l'nqv 

PI= ['\'L +'I'm+ iQ"] I k"v, P2 = [y1 + '\'n + i(Q"- Q)] I qv, 
q= lk"-kl =l'(k"-k)2+4k~ksin2 (H/2), (3.2) 

where if? (z) is the probability integral and 0 is the angle 
between k and kiJ.. If the Dopple!_ broadening do,!llinates 
over the natural broadening, kiJ. v >> yz + i'm, qv >> yz 

a Forward 

FIG. 3 FIG. 4 

FIG. 3. Spectrum of Raman scattering and stepwise transition (a) 
and spectrum of Doppler-broadened resonant scattering (b). 

FIG. 4. Resonance fluorescence triplet. 

+ i'n• then we can assume that CI?(p1,2) = 0 and (3.2) con­
tains two terms of Gaussian form 

(Q .. - Q)2]}. 
(qv)• 

(3.3) 

The first terms in (3.2) or (3.3) (stepwise-transition 
line) has a Doppler width kiJ. v, which does not depend on 
0. On the other hand, the Doppler width qv of the Raman­
scattering line depends strongly on the observation 
direction, changing from lkiJ. - klv to (kiJ. + klvwhen 8 
changes from zero to rr (Fig. 3a). If lkiJ. - klv « yt + i'n• 

then the Raman scattering has a Lorentz shape in the 
angle interval 10 I ~ ( i'Z + Yn)/kiJ. v 

('I'L+'I'n)/yn 
(yl + 'l'n),2 + (Q~- Q)2 

and its width is determined by the natural damping of 
the initial and final states. On the other hand, for the 
direction 0 = rr, the width (2kV) is twice the width of the 
stepwise-transition line. 

It is easy to show that the doublet-component intensi­
ties integrated with respect to n 1-L do not depend on 0. 
Consequently, the width anisotropy means also an angu­
lar dependence of the ratio of the intensities at the 
maxima of the lines in the range from kiJ.ym/(kiJ. + k)yn 
to kiJ. Yml lkj.J. - kiYn· 

Formula (3.2) for qv is analogous to the expression 
fo~ the line width of the Rayleigh scattering in a gas, 
2kv sin (0/2)[1J, which is obtained from (3.2) when 
k = kj.J.. Just as in the case of Rayleigh scattering, 
formulas (3.2) and (3.3) admit of a simple interpreta­
tion, if we consider Raman scattering as emission of a 
classical oscillator moving with velocity v. A change­
over to the c.m.s. of the oscillator changes the fre­
quency w of the external field by w - k · v. The forced 
oscillations induced by the field also have a frequency 
w - k · v. The internal motion in the atom (or in the 
molecule) with natural frequency wzn modulates the 
forced oscillation and leads to the appearance in the 
emission spectrum of a component of frequency w - k · v 
- w ln. Finally, for the wave emitted in the kiJ. direction, 
the inverse transition to the stationary system of coor­
dinates yields a frequency w - wzn (k - k) • v and 

- j.L ' 
averaging over v leads to a Doppler width lkiJ. - klv = qv. 
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4. DOPPLER BROADENING OF RESONANT-SCATTER­
ING DOUBLET 

Let us turn now to the strong-field problem and as­
sume that G >> kV. Here, too, we can neglect the 
"interference" terms (a 1 + a !t1 and (a 2 + a ir1 in the 
expression (2.6) for wJ.l., and the Doppler shifts of a 1,2 
can be taken into account in the first nonvanishing ap­
proximation: 

a;= a;o- iM;kv, j = 1, 2, (4.1) 

where a j 0 are the values of Ql j at k · v = 0 and Mj is the 
"memory" factor determin«~d by formula (2.10). 
Neglecting the difference between a j and a jo everywhere 
except in the resonant denominators, we get from (2.6) 

( > _ IGG"I 2 R < Ym-1 

w" -Q2-f-4G2 e y1 -f-a1o'-l-,i[Q"-(k"-M1k)v] 

Yn-1 ) 

X y1 -l-a20'-l-i([.!"-(k"-M2k)v] . 
(4.2) 

Averaging of this expression leads to a formula of the 
type (3.2), in which the quantities P1,2 should be replaced 
by 

q; = y (k"- M,k) 2 + 4M;kk" sin 2 (8 I 2), 

j = 1, 2, (4.3) 

anj the widths kJ.l. v and qv should be replaced by q1v and 
q2v. Thus, the widths and the positions of both lines in 
the m- l transition depend on the frequency and direc­
tion of propagation of the absorbed photon, and its role 
is determined by the "memory" factor M1,2• In the 
case of exact resonance we have M1 = M2 = 1/2 and 
a~0 =-a~= J, i.e., both lines are symmetrical relative 
to the frequency wmz and have an identical angular de­
pendence of the width (Fig. :lb). It is interesting that 
when the condition kJ.l. = M1k or kJ.l. = Mak is satisfied, 
one of the lines has a natural width in the case of obser­
vation along () = 0 (see the discussion of formulas (3.2) 
and (3.3)). 

Thus, variation of n leads to the following changes in 
the spectrum. When 1n1 d> G, one component of the 
doublet is near wmz and the other near w - w ln. With 
decreasing 1n I, the shifted component moves towards 
the unshifted one, the latter shifts in the same direc­
tion, and the rate of motion (M1,2l is larger for the com­
ponent that is farthest from Wml· The distance between 
the components is ·/n 2 + 4G2·. When n = 0, the splitting 
is symmetrical, and the distance between components is 
minimal (2G). Further change of n brings the 
previously-shifted component closer to wml• and moves 
the previously-unshifted component at an increased rate. 
In addition to the shift of the lines, their Doppler widths 
also change in accordance with the memory factors 
M1,2 and the observation direction. The widths have 
minimal values lk - M1, 2klv along the direction() = 0, 
and a maximal vafue (kJ.l. + M1,2k)v in the opposite direc­
tion. 

We recall that the use of the obtained results for an 
analysis of other two-photon processes implies a rever­
sal of the signs of n and nJ.l. in accordance with whether 
a particular photon is absorbed or emitted. In the case 
of two-quantum luminescence and absorption, the quan­
tities ±(n + nJ.l.) are involved. Therefore, unlike Raman 

scattering, the minimum of the Doppler width will be 
reached at () = 1T. The magnitude of the narrowing will 
be the same as before. 

5. DOPPLER BROADENING OF RESONANCE-FLUOR­
ESCENCE LINE ON EXCITED LEVELS 

The results of Sec. 2 allow us to explain the corre­
lation and frequency properties of the radiation also in 
the case of a transition between the levels that interact 
with the strong field (m- n). Within the framework of 
second-order perturbation theory, the radiation power 
wJ.l. is determined directly by formula (3.2) in which ~e 
put k = kJ.l. and yz = yll' In the angle interval () '.S rulkv, 
the second term will have a dispersion form with width 
2Yn· Thus, the main conclusions of Sec. 3 concerning 
the width anisotropy, the line shift, etc. apply also to 
resonance fluorescence 1'. 

In the case of a strong field G, a singularity of the 
transition is the need for taking into account the field 
disturbance of both equations-both the upper and the 
lower. As a result, the formula for w J.L, in the case of 
a strong field, is more complicated than (2.6). For our 
purposes it suffices, however, to use the general con­
clusions of Sec. 2. From formula (2.3) it is easy to con­
clude that w J.1. will consist of four transitions between 
two sublevels of the upper state and two sublevels of 
the lower state. Each of these transitions contributes 
its own resonant term: 

[2at' + i(Q"- Q- qv) ]-1, [r + i(Q"- k"v- 2at'') ]-1, 
(5.1) 

[2a{ + i(Q"- Q- qv) ]-1, [r + i(Q"- k"v- 2a2") ]-1• 

In the general case these terms differ in the positions 
of their maxima (as functions of nJ.l.), in their widths, 
and in the coefficients with which they enter in wJ.L. We 
consider the simplest and most striking case when 
G >> 1n 11', kV, r, yz. The amplitudes of all the sub­
states are the same here, and the fact (5.1) enter in wJ.l. 
with equal weights. Further, formula (2.8) is valid for 
a 1 and a2, and consequently (wJ.l.) is given by 

(w.)=([r+i(Q"-Q-2G-qv)]-1 + 2[r+i(Q,,- Q-qv)]-1 

x [r+i(Q"-Q+2G-qv)]-1), ( 5.2) 

q=k .. -k, q=2ksin(8/2). 

The position of the maximum of one of the terms coin­
cides with the frequency w of the strong field, and the 
two others are shifted to the points w ± 2G. The widths 
of all the components of the triplet have identical angu­
lar characteristics. At large observation angles, the 
contours of the lines have a Gaussian form with width 
qv. Inside the cone() < r/kv, the lines have a disper­
sion form with natural width r. 

It is of interest to trace the connection between the 
components of the triplet (5.2) of the resonant fluores­
cence with the lines of the stepwise transition or 
Rayleigh scattering. If we successively increase the 
deviation from resonance, say in the direction of posi­
tive n, then the component in (5.2) of frequency n - 2G 
will shift towards Wmn and change into a stepwise-

I) Resonance fluorescence is usually considered for the case when 
the lower level is the ground level ( 'Yn = 0), and transitions from m are 
allowed only to n. Neither premise is satisfied in our problem. 
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transition line. The frequency of the central component 
will increase and coincide at all time with w, yielding a 
Rayleigh-scattering line. Finally, the third component 
will move away from Wmn at a still larger length, and 
its amplitude will become of the order of G4/rl 4 (i.e., it 
disappears in the second approximation of perturbation 
theory). When n changes in the opposite direction, the 
unshifted component, as before, remains at the fre­
quency of the external field, and the roles of the shifted 
components are interchanged. 

Thus, the changes of the frequency-correlation 
properties due to an external field become manifest in 
the Doppler broadening of the resonance fluorescence 
lines to the same degree as in Raman scattering. In 
addition, there appears one more line that does not fit 
in the classification oLsecond-order perturbation 
theory. 
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